4330 Vol. 36 (1988)

Chem. Pharm. Bull. 36(11)4330-4336(1988)

Pregnane Glycosides of Teikasides B and C Series, from *Trachelospermum asiaticum*¹⁾

FUMIKO ABE and TATSUO YAMAUCHI*

Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-01, Japan

(Received May 2, 1988)

Seven pregnane glycosides including six bisdesmosidic glycosides of teikagenin were isolated and their structures were determined. L-Sarmentose, a new 2,6-dideoxy-3-O-methylhexose, was found as one of the component sugars.

Keywords—Apocynaceae; *Trachelospermum*; pregnane; pregnane bisdesmosidic glycoside; teikaside; L-sarmentose; 4-0-acetyl- α -L-sarmentosyl- $(1 \rightarrow 4)$ - β -D-digitaloside; teikagenin; 3β , 17α ,20-trihydroxy- 5α ,20S-pregn-6-ene

In the course of our studies on the constituents of Apocynaceae plants, we have described pregnanes from Nerium, 2 $Anodendron^{3}$ and Apocynum, 4 and bisdesmosidic pregnane glycosides from $Trachelospermum^{1.5}$ and Apocynum. In the preceding paper of this series, eight bisdesmosidic glycosides of teikagenin $(3\beta,17\alpha,20$ -trihydroxy- $5\alpha,20S$ -pregn-6-ene), having D-digitalose at the 3-OH and one or two 2,6-dideoxy-3-O-methylhexoses with one terminal glucose at the 20-OH, were described. This paper deals with teikasides B and C groups, seven teikagenin glycosides having an α -L-sarmentosyl- $(1\rightarrow 4)$ - β -D-digitalosyl moiety at the 3-OH with or without one acetyl residue.

Seven glycosides (1—7) were obtained from plants collected separately in two different

$$\begin{array}{c} R_{1}O_{CH_{3}}\\ CH_{3}O_{OH}\\ CH_{3}$$

Table I. ^{1}H Chemical Shifts of Pregnane Glycosides, δ (ppm) from Tetramethylsilane in Pyridine- $d_{5}{}^{a)}$

H	1b	1	2	3	4	5	6	7
	5.58	5.56	5.58	5.58	5.58	5.58	5.60	5.59
	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)
	5.35	5.34	5.37	5.37	5.36	5.37	5.37	5.37
	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)	(br d, 10)
8, 19	0.76, 0.80	0.74, 0.80	0.75, 0.77	0.74, 0.75	$0.74 (\times 2)$	0.75, 0.77	0.75, 0.77	0.75, 0.77
0	4.13	4.12	3.99	3.95	3.94			
	(q, 6)	(q, 6)	(q, 6)	(q, 6)	(q, 6)			
1	1.50	1.48	1.63	1.61	1.61	1.63	1.63	1.63
	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)
-O-Sug.b)	(=, -/	(-, -,	(-, -,	(-, -,	(-, -,	(, , , ,	. , ,	
. (D-Digt.)	4.84	4.77	4.78	4.79	4.78	4.79	4.79	4.80
. (D D.g	(d, 8)	(d, 7)	(d, 8)	(d, 7)	(d, 7)	(d, 7)		(d, 8)
	4.36	4.27	4.28	4.29	4.29	4.29	(-, -,	. , ,
	(dd, 8, 9)	(dd, 7, 10)		(dd, 7, 9)	(dd, 7, 9)	(dd, 7, 9)		
	3.54	3.52	(44, 6, 7)	(dd, 7, 2)	3.53	3.52		
	(dd, 9, 3)	(dd, 10, 3)			(dd, 9, 2)	(dd, 9, 2)		
	4.09	4.14	4.14	4.15	4.15	4.15	4.15	4.22
		(d, 3)	(d, 3)	(d, 3)	(d, 3)	(d, 3)		(d, 3)
	(d, 3)	(d, 3) 3.79	3.80	(u, 3)	3.81	3.81	3.81	(u, 3)
,	3.82							
	(q, 7)	(q, 6)	(q, 6)	1.50	(q, 6)	(q, 6)	(q, 6)	1.59 ^d)
i	1.60	1.52	1.52	1.52	1.52	1.53	1.53	
	(d, 7)	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)		(d, 6)
)Me	3.60	3.65	3.66	3.66	3.66	3.66	3.66	3.66
(L-Sar.)		5.59	5.60	5.60	5.60	5.60	5.61	5.60
		(t, 4)	(t, 4)	(t, 4)	(t, 4)	(t, 4)	(t, 4)	(t, 4)
i		3.56	3.55	3.54	3.55	3.56		
		(brs)	(brs)	(brs)	(brs)	(brs)		
		5.13	5.13	5.13	5.14	5.13	5.14	4.15
		(dd, 4, 2)	(dd, 4, 2)	(dd, 4, 2)	(dd, 4, 2)	(dd, 4, 2)	(dd, 4, 2)	(dd, 4, 2)
i		4.57	4.58	4.59	4.59	4.59	4.59	
		(qd, 7, 2)	(qd, 7, 2)	(qd, 6, 2)	(qd, 6, 2)	(qd, 6, 2)	(qd, 6, 2)	
,		1.24	1.24	1.25	1.25	1.25	1.25	1.50^{d}
		(d, 7)	(d, 7)	(d, 6)	(d, 6)	(d, 6)	(d, 6)	(d, 6)
ЭMe		3.27	3.27	3.28	3.27	3.28	3.27	3.36
OAc		2.10	2.10	2.10	2.10	2.10	2.10	
0- <i>O</i> -Sug.)		(D-Dig.)	(D-Ole.)	(D-Can.)	$(D-Ole.) \times 2$	$(D-Ole.) \times 2$	$(D-Ole.) \times 2$
			4.76	4.83	4.89	4.82, 4.91	4.82, 4.90	4.81, 4.90
			(br d, 10, H-1)	(br d, 10, H-1)	(br d, 9, H-1)	(br d, 9, H-1)	(br d, 9, H-1)	(br d, 9, H-1)
			3.48	1.76	3.49	1.46, 1.74	1.46, 1.62	1.46, 1.62
			(br d, 10, H-3)	(3H, d, 6)	(t, 9, H-4)	(3H, d, 6, H-6)	(3H, d, 6, H-6)	
			4.20	3.54	1.77	3.51, 3.56	$3.53, 3.54^{e}$	3.53, 3.54 ^{e)}
			(br s, H-4)	(3H, s, OMe)	(3H, d, 6, H-6)	(3H, s, OMe)	(3H, s, OMe)	(3H, s, OMe)
			1.53	(D-Glc.)	(D-Glc.)	(D-Glc.)	(D-Cym.)	(D-Cym.)
			(3H, d, 6, H-6)	5.14	4.98	5.13	5.27	5.27
			3.41	(d, 8, H-1)	(d, 8, H-1)	(d, 8, H-1)	(br d, 9, H-1)	(brd, 10, H-
			(3H, s, OMe)	4.34	4.30	4.34	1.43	1.43
			(D-Glc.)	(dd, 12, 6,	(dd, 12, 6,	(dd, 12, 6,	(3H, d, 6, H-6)	(3H, d, 6, H-
			5.16	H-6a)	H-6a)	H-6a)	3.52 ^{e)}	3.52 ^{e)}
			(d, 8, H-1)	4.52	4.58	4.52	(3H, s, OMe)	(3H, s, OMe
			4.35	(dd, 12, 1,	(dd, 12, 1,	(dd, 12, 1,	(D-Glc.)	(D-Glc.)
			(dd, 12, 6,	H-6b)	H-6b)	H-6b)	4.94	4.94
			H-6a)	00)	00)	00)	(d, 8, H-1)	(d, 8, H-1)
			4.56				4.40	4.40
							(dd, 12, 6,	(dd, 12, 5,
			(dd, 12, 1,					
			H-6b)				H-6a)	H-6a)
							4.58	4.58
							(br d, 12,	(br d, 12,

a) Signal pattern and J value (Hz) are given in parentheses. b) D-Digt. = β -D-digitalose, L-Sar. = α -L-sarmentose. c) D-Dig. = β -D-diginose, D-Ole. = β -D-oleandrose, D-Can. = β -D-canarose, D-Cym. = β -D-cymarose, D-Glc. = β -D-glucose. d, e) Signal assignments marked d) or e) may be reversed.

4332 Vol. 36 (1988)

Table II. $^{13}{\rm C}$ Chemical Shifts of 1b, 1, 2 and Sugar Moieties of 3—7, δ (ppm) from Tetramethylsilane in Pyridine- $d_{\rm S}$

======================================												
C	1b	1	2	С	1b	1	2	3	4	5	6	7
				3- <i>O</i> -Sug. ^{h)}								
1	34.9	34.8	34.9	D-Digt. 1	102.6	102.6	102.6	102.7	102.6	102.6	102.6	102.7
2	30.0	29.9	30.0	2	70.8	71.3	71.3	71.3	71.3	71.3	71.3	71.3
. 3	77.6	77.7	77.8	3	85.0	86.2	86.2	86.2	86.2	86.2	86.2	86.3
4	32.9	32.9	32.9	4	68.6	72.7^{a}	$72.7^{a)}$	72.7^{a}	72.7^{a}	72.7^{a}	72.7^{a}	72.3
5	45.1	45.1	45.1	5	71.0	70.5	70.5	70.5	70.5	70.5	70.5	70.7
6			129.5	6	17.4	17.5	17.6	17.6	17.6	17.6	17.6	17.7
7	131.1	131.1	131.1	OMe	57.2	58.8	58.8	58.8	58.8	58.8	58.8	58.7
8	38.2	38.2	38.3	L-Sar. 1	· · · · <u>-</u>	97.2	97.2	97.2	97.2	97.2	97.2	97.3
9	52.7	52.7	52.7	2		29.2	29.2	29.2	29.2	29.2	29.2	29.7
10	34.6	34.5	34.6	3		74.9	74.9	74.9	74.9	74.9	74.9	78.7
11	21.0	20.9	21.0	4		$73.0^{a)}$	73.0^{a}	$73.0^{a)}$	73.0^{a}	$73.0^{a)}$	73.0^{a}	71.84)
12	38.5	38.5	37.9	5		63.3	63.3	63.4	63.3	63.3	63.3	65.9
13	47.0	47.0	47.0	6		16.0	16.0	16.0	16.0	16.0	16.0	16.3
14	49.5	49.5	49.1	OMe		56.1	56.1	56.1	56.1	56.1	56.1	56.2
15	23.5	23.5	23.5	OAc		170.4	170.4	170.4	170.4	170.4	170.4	
16	32.0	32.0	31.9	-		20.7	20.7	20.7	20.7	20.7	20.7	
17	85.3	85.3	84.9	20- <i>O</i> -Sug. ⁱ⁾			D-Dig.	D-Ole.	D-Can.	D-Ole.	D-Ole.	D-Ole.
18	11.5	11.4	11.5	i			102.9	101.9	102.2	100.0	100.1	100.1
19	14.5	14.4	14.7	2			33.0	37.4	39.9	37.6^{a}	37.7^{a}	$37.7^{b)}$
20	71.8	71.8	83.2	3			73.4	79.5	70.3	79.2	$79.1^{b)}$	79.1c)
21	19.4	19.4	18.2	4			80.0	83.5	89.3	$83.2^{b)}$	83.1 ^{c)}	83.1^{d}
				5			70.7	72.0^{b}	71.3	72.1 ^{c)}	71.8^{d}	$71.8^{a)}$
				6			17.9	19.0	18.5	18.9	18.8^{e}	$18.8^{e)}$
				OMe			56.0	57.0		57.1^{d}	57.3^{f}	57.3 ^f)
							D-Glc.	D-Glc.	D-Glc.	D-Ole.	D-Ole.	D-Ole.
				1			104.7	104.5	105.7	102.1	102.0	102.0
				2			75.9	75.7	75.1	37.7^{a}	37.9^{a}	$37.9^{b)}$
				3			78.5^{b}	78.6°	78.4	79.6	$79.2^{b)}$	79.2^{b}
				4			71.9	71.9^{b}	71.6	$83.4^{b)}$	$83.2^{(c)}$	83.2^{d}
				5			$78.3^{b)}$	78.0^{c}	78.4	72.0^{c}	71.7^{d}	71.6^{a}
				6			63.1	63.1	62.5	18.9	18.7 ^{e)}	18.7 ^{e)}
				OMe						57.2^{d}	57.4 ^f)	57.4 ^f)
											D-Cym.	
				1						104.4	98.4	98.4
				2						75.7	36.7	36.7
				3						78.6 ^{e)}	78.1^{g}	78.1 ^{g)}
				4						71.5	82.8 ^{c)}	82.8^{d}
				5						78.3 ^{e)}	69.6	69.6
				6						63.1	18.6 ^{e)}	18.6 ^{e)}
				OMe							58.5	58.5
											D-Glc.	D-Glc.
				1							106.5	106.5
				2							75.4	75.4
				3							78.3^{g}	78.4 ^{g)}
				4							71.5^{d}	71.5
				5							78.3^{g}	78.3^{g}
				6							63.1	63.1

a-g) Signal assignments marked a-g) in each column may be reversed. h) D-Digt. = β -D-digitalose, L-Sar. = α -L-sarmentose. i) D-Dig. = β -D-diginose, D-Ole. = β -D-oleandrose, D-Can. = β -D-canarose, D-Cym. = β -D-cymarose, D-Glc. = β -D-glucose.

No. 11 4333

districts. We had reported in Part 1 of this series that teikagenin is the only pregnane in this plant,⁵⁾ and the aglycone of 1—7 was confirmed to be teikagenin, based on the characteristic signals in the proton and carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) spectra.

Compound 1 afforded the M⁺ + Na peak at m/z 703.403 in the fast atom bombardment-mass spectrum (FAB-MS), suggesting the molecular formula to be $C_{37}H_{60}O_{11}$. The presence of one acetyl group was shown by ¹H-NMR, along with two anomeric proton signals as a doublet (δ 4.77, J=8 Hz) and a triplet (δ 5.59, J=4 Hz), two methoxyl proton signals and two 6-methyl proton signals of 6-deoxy-3-*O*-methylsugars. In a comparison of the ¹³C-NMR spectrum with that of teikagenin 3-*O*- β -D-digitaloside (1b),^{1.5)} signals due to C-17, C-20 and C-21 were observed at the same chemical shifts, and two sugars having one acetyl residue were considered to be linked linearly at the 3-OH of teikagenin. One of the two deoxysugars in 1 was assignable as D-digitalose, the signals of C-4 of which showed a downfield shift (+4.1 ppm).

When 1 was subjected to alkaline hydrolysis, the acetyl residue was split off to afford a deacetyl derivative (1a), which was then hydrolyzed with $0.05 \,\mathrm{N}$ H₂SO₄ in 50% dioxane to afford 1b and sarmentose. Based on the $^1\mathrm{H}^{-1}\mathrm{H}$ COSY spectrum of 1, the acetyl group was allocated to the 4-OH of the sarmentose. Since the anomeric proton signal of the sarmentose was observed as a triplet with a small coupling constant ($J=4\,\mathrm{Hz}$), the glycosidic linkage of the sarmentose to the digitalose was determined to be α , suggesting the sarmentose to be an L-sugar. The difference between the molecular rotations ($\Delta[M]_D$) of 1a and 1b was calculated as -242° , while the $[M]_D$ values of methyl α -D-sarmentoside and methyl β -D-sarmentoside were given as $+274^\circ$ and -69.3° , respectively. Since the acetylsarmentose (1c), obtained by acid hydrolysis of 1, showed a negative specific rotation value ($[\alpha]_D - 15.0^\circ$), the sarmentose was determined to be of L-type. Compound 1 was therefore elucidated as teikagenin 3-O-(4-O-acetyl- α -L-sarmentosyl-($1\rightarrow4$)- β -D-digitaloside), and is named teikaside C-0.

Compound 2 was suggested to be a tetraoside of teikagenin, based on four anomeric proton signals besides three secondary methyl and three methoxyl proton signals of 6-deoxy-3-O-methylhexose. The M⁺ + Na peak in the FAB-MS at m/z 1009 suggested the molecular formula to be $C_{50}H_{82}O_{19}$. Two of the four anomeric protons were observed as doublets, one as a broad doublet and one as a triplet. In a comparison of the ¹³C-NMR spectra of 1 and 2, the signals due to 1 corresponded to those in the spectrum of 2 with a downfield shift of the C-20 (+11.4 ppm). The remaining two sugars were considered to be one each of 2,6-dideoxy-3-O-methylhexose and glucose, being linked to the 20-OH. Signals at δ 4.76, 3.48, 4.20 and 1.53 (H-1, -3, -4 and -6, respectively) and one methoxyl proton signal were assignable to those of β -D-diginoside based on their coupling constants. The chemical shifts of the ¹³C-NMR signals due to the β -D-glucosyl- β -D-diginosyl moiety at the 20-OH were in good agreement with those of teikaside A-IIa, a glycoside having the same sugar sequence at the 20-OH.¹⁾ Upon acid hydrolysis of 2 with 4% HOAc in 50% EtOH, the products were identical with 1, teikaside A-IIa, 1c, and β -D-glucosyl-D-diginose on thin layer chromatography (TLC). The structure of 2 was thus determined to be teikagenin 3-O-(4-O-acetyl- α -L-sarmentosyl-(1 \rightarrow 4)- β -Ddigitalosyl)-20-O-(β -D-glucosyl- β -D-diginoside), and **2** is named teikaside C-IIa.

Compound 3 showed the M⁺ peak at m/z 986, suggesting the same molecular formula as 2, $C_{50}H_{82}O_{19}$. In the ¹³C-NMR spectrum, the signals due to 1 were assignable with a downfield shift of the C-20. The sugar sequence at the 20-OH was determined to be β -D-glucosyl- β -D-oleandroside by comparison of the ¹³C-NMR signals with those of teikaside A-IIb¹⁾ and by direct comparison of the biose with authentic β -D-glucosyl-D-oleandrose on TLC after acid hydrolysis. The structure of 3 was established as teikagenin 3-O-(4-O-acetyl- α -L-sarmentosyl-(1 \rightarrow 4)- β -D-digitalosyl)-20-O-(β -D-glucosyl- β -D-oleandroside), and 3 is named teikaside C-IIb.

Compound 4 afforded the $M^+ + Na$ peak at m/z 995, 14 mass units smaller than 2. The

4334 Vol. 36 (1988)

signals due to 1 were also assignable in the 13 C-NMR spectrum. The sugar sequence at the 20-OH seemed to be β -D-glucosyl- $(1\rightarrow 4)$ -D-canarose from a comparison of the NMR signals with those of teikaside A-IIc. After removal of the acetyl residue of 4 in alkaline medium, the deacetyl-4 (4a) was hydrolyzed with acid to afford β -D-glucosyl- $(1\rightarrow 4)$ -D-canarose and L-sarmentose along with 1b. Compound 4 was thus determined to be teikagenin 3-O-(4-O-acetyl- α -L-sarmentosyl- $(1\rightarrow 4)$ - β -D-digitalosyl)-20-O- $(\beta$ -D-glucosyl- $(1\rightarrow 4)$ - β -D-canaroside), and is named teikaside C-IIc.

In the ¹H-NMR spectrum of **5**, five anomeric proton signals were observed at δ 5.60, 5.13, 4.91, 4.82 and 4.79 along with one 3H singlet due to an acetyl residue, four 6-methyl proton signals and four methoxyl proton signals, and thus **5** was suggested to be a teikagenin pentaoside having one more 2,6-dideoxy-3-*O*-methylhexose than the monoacetyltetraosides mentioned above. The M⁺ + Na peak at m/z 1153 in the FAB-MS was also consistent with a pentaoside structure. The presence of **1** in the molecule of **5** was confirmed by the ¹³C-NMR spectrum, and three sugars at the 20-OH were suggested to be one D-glucose and two D-oleandrose. Upon acid hydrolysis of **5**, β -D-glucosyl-D-oleandrose and D-oleandrose were detected on TLC. The sugar moiety at the 20-OH was also confirmed by comparison of the ¹³C-NMR signals with those of teikaside A-IIIc. ¹⁾ The structure of **5** was therefore established as teikagenin 3-*O*-(4-*O*-acetyl- α -L-sarmentosyl-(1 \rightarrow 4)- β -D-digitalosyl)-20-O-(β -D-glucosyl- β -D-oleandrosyl- β -D-oleandroside), and is named teikaside C-IIIa.

Compound 6 showed six anomeric proton signals, one as a triplet $(J=4\,\mathrm{Hz})$, three as broad doublets $(J=9\,\mathrm{Hz})$ and two as doublets $(J=8\,\mathrm{Hz})$, of which two doublet signals were assignable as those of β -linked D-digitalose and D-glucose. The presence of one acetyl group was suggested by a 3H singlet peak at δ 2.10. The FAB-MS peak at m/z 1297 $(C_{64}H_{106}O_{25}Na)$ in 6 was also consistent with the NMR analysis. In the 13 C-NMR spectrum of 6, the signals due to 1 were assignable. Upon acid hydrolysis of 6, β -D-glucosyl-D-cymarose was detected besides D-oleandrose, 1c and 1b, suggesting the sugar sequence at the 20-OH to be glucosyl-cymarosyl-oleandrosyl-oleandrose. Since the sugar linkages at the 20-OH are β , based on the coupling constants of the anomeric protons, the component sugars at the 20-OH are regarded as being of D-type. The structure of 6 was therefore determined to be the 20-O- $(\beta$ -D-glucosyl- β -D-cymarosyl- β -D-oleandrosyl- β -D-oleandroside) of teikaside C-0. Compound 6 is named teikaside C-IVa.

Unlike other glycosides in this series, 7 has no acetyl residue. In the FAB-MS, the $M^+ + Na$ peak was observed at m/z 1255, 42 mass units less than that of 6. Six anomeric proton and carbon signals were observed in the 1H - and ^{13}C -NMR spectra, and signals due to the sugar moiety at the 20-OH were in good agreement with those of 6. Chemical shifts of the sugar moiety at the 3-OH were almost the same as those of 4a. Since 7 was detected on alkaline deacetylation of 6, 7 was identified as deacetyl-6, and is named teikaside B-IVa.

Six teikasides C, having a teikagenin 3-O-(4-O-acetyl- α -L-sarmentosyl-(1 \rightarrow 4)- β -D-digitalosyl) moiety as the basic structure, and one non-acetylated glycoside, teikaside B-IVa, were obtained in this work. Recently L-cymarose was reported as a component sugar of pregnane glycosides from Asclepiadaceae plant. To the authors' knowledge, this is the first report of the isolation of L-sarmentoside from a natural source. It should be noted that L-sarmentose is present exclusively in the sugar moiety at the 3-OH while D-sarmentose is contained in the sugar sequence at the 20-OH of teikasides A as described before. $^{1)}$

Experimental

Melting points, optical rotations, NMR and MS were measured in the same manner and with the same instruments as described in the preceding paper.¹⁾ For column chromatography and TLC, the following solvent systems were applied; solv. 1, CHCl₃–MeOH–H₂O (bottom layer); solv.2, EtOAc–MeOH–H₂O (top layer); solv.3, benzene–acetone (3:2), solv.4, MeCN–H₂O.

Extraction and Isolation—Whole plants of *Trachelospermum asiaticum* Nakai collected at Beppu City in September, 1987, (sample 1) and at Wakasugi-yama in November, 1985 (sample 2) were air-dried and powdered. Sample 1 (14.8 kg) and sample 2 (3 kg) were each percolated with MeOH and the percolates were treated in the same manner as described in the preceding paper. The following glycosides were obtained from samples 1 and 2 as a solid or as crystals. From sample 1: 1, 50 mg; 2, 45 mg; 4, 47 mg; 1b, 315 mg; teikasides A-Ia, 139 mg; A-Ib, 143 mg; A-IIa, 50 mg; A-IIb, 15 mg, A-IIc, 40 mg. From sample 2: 2, 5 mg; 3, 8 mg, 5, 9 mg; 6, 5 mg; 7, 11 mg, teikaside A-IIIb, 3 mg.

Teikaside C-0 (1)—A solid, $[\alpha]_D^{29} - 105.8^\circ$ (c = 1.00, MeOH), FAB-MS m/z: 703.403, (Calcd for $C_{37}H_{60}O_{11}Na$: 703.403). A mixture of a solution of 1 (50 mg) in MeOH (5 ml) and KHCO₃ (50 mg) in H₂O (1.25 ml) was allowed to stand for one week at room temperature, then diluted with H₂O and extracted with BuOH. The BuOH extract was purified by chromatography on a silica gel column with solv.1 (7:1:2) to give **1a** as a solid, $[\alpha]_D^{30} - 120.6^\circ$ (c = 0.51, MeOH), $[M]_D - 769^\circ$ ($[M]_D$ of **1b**: -527° , $\Delta[M]_D - 242^\circ$), FAB-MS m/z: 661.394 (Calcd for $C_{35}H_{58}O_{10}Na$: 661.393). Compound **1a** (5 mg) was refluxed with 0.05 N H₂SO₄ in 50% dioxane (1 ml) for 1 h. The mixture was diluted with MeOH and deacidified with IRA-410. The methanolic solution was then concentrated *in vacuo*, diluted with H₂O and extracted with CHCl₃. The CHCl₃ extract was examined by TLC in parallel with authentic **1b**. Solvent 1 (7:2:1): Rf 0.55 (**1b** 0.55). The H₂O layer was concentrated to dryness *in vacuo* and the residue was examined on TLC. Solvent 1 (7:2:1): Rf 0.58 (D-sarmentose 0.58), D-cymarose 0.60, D-oleandrose 0.53, D-diginose 0.57); solv.2 (9:1:0.1, homogeneous layer): Rf 0.57 (D-sarmentose 0.57, D-cymarose 0.64, D-oleandrose 0.66, D-diginose 0.55); solv.3: Rf 0.49 (D-sarmentose 0.49, D-cymarose 0.67, D-oleandrose 0.64, D-diginose 0.52).

Compound 1 (20 mg) was treated with 0.05 N H_2SO_4 in 50% dioxane in the same manner as described above. The hydrolysate was passed through a silica gel column with solv.1 (7:1:4) to afford 1c as a solid showing a homogeneous spot on TLC with anilin hydrogen phthalate reagent or dilute H_2SO_4 , $[\alpha]_D^{26} - 15.0^{\circ}$ (c = 0.2, MeOH) (D-sarmentose: $[\alpha]_D + 16.6^{\circ}$). H-NMR (pyridine- d_5) δ : 1.29 (3H, d, J = 7 Hz, H-6), 2.03 (1H, m, H-2a), 2.07 (3H, s, CH₃CO-), 2.24 (1H, br d, J = 15 Hz, H-2b), 3.34 (3H, s, 3-OMe), 3.76 (1H, t, J = 4 Hz, H-3), 4.22 (1H, qd, J = 7, 2 Hz, H-5), 4.95 (1H, dd, J = 3, 1 Hz, H-4), 5.46 (1H, dd, J = 10, 2 Hz, H-1).

Teikaside C-IIa (2)—A solid, $[\alpha]_D^{27} - 93.5^\circ$ (c = 2.0, MeOH), FAB-MS m/z: 1009 ($C_{50}H_{82}O_{19}Na$). Upon usual acetylation of 2 with Ac₂O and pyridine, a pentaacetate of 2 was obtained, mp 244—248 °C, FAB-MS m/z: 1219 ($C_{60}H_{92}O_{24}Na$). Compound 2 (23 mg) was heated at 100 °C with 4% AcOH in 50% EtOH (2 ml) for 3 h. The solution was then neutralized with IRA-410 and concentrated to dryness *in vacuo*. The residue was passed through an ODS column with 30% MeCN to give two sugars, Rf 0.85, 0.21 (solv.1, 7:3:1): 1c 0.85, D-sarmentose 0.61, D-cymarose 0.68, D-oleandrose 0.56, D-diginose 0.58, D-canarose 0.32, β-D-glucosyl-D-diginose 0.21, β-D-glucosyl-D-cymarose 0.15, β-D-glucosyl-D-oleandrose 0.18, β-D-glucosyl-L-oleandrose 0.25, β-D-glucosyl-(1→4)-D-canarose 0.11. Compound 1b, teikaside A-IIa and 1 were also identified on TLC with solv.1 (7:2:1) and solv.2 (9:1:0.1).

Teikaside C-IIb (3)—A solid, $[\alpha]_D^{22}-65.8^\circ$ (c=0.45, MeOH), FAB-MS m/z: 986 ($C_{50}H_{82}O_{19}$). Compound 3 (5 mg) was partially hydrolyzed with 4% AcOH in 50% EtOH (1 ml) as described above, and 1, teikaside A-IIb, 1c and β -D-glucosyl-D-oleandrose were identified on TLC (solv.1 and solv.2).

Teikaside C-IIc (4)—A solid, [α]_D¹⁹ – 112.2° (c=0.60, MeOH), FAB-MS m/z: 995 ($C_{49}H_{80}O_{19}Na$). Compound 4 (20 mg) was treated with KHCO₃ according to the same procedure as described for 1. The resultant solid (**4a**) showed a homogeneous spot on TLC. FAB-MS m/z: 953 ($C_{47}H_{78}O_{18}Na$). **4a**: ¹H-NMR (pyridide- d_5) δ: 0.74 (6H, s, H-18,19), 1.50, 1.59, 1.61, 1.77 (3 H each, d, J=6 Hz, H-21, H_{digt.}-6, H_{sar.}-6, H_{can.}-6), 3.36, 3.66 (3H, s, OMe), 4.79 (1H, d, J=7 Hz, H_{digt.}-1), 4.98 (1H, d, J=8 Hz, H_{glc.}-1) (one of the anomeric proton signals overlapped with the H₂O peak), 5.36, 5.58 (1H, each, br d, J=10 Hz, H-6,7), 5.60 (1H, t, J=4 Hz, H_{sar.}-1). ¹³C-NMR (pyridine- d_5) δ: (sugar moieties) 105.7 (glc.-1), 102.7 (digt.-1), 102.2 (can.-1), 97.4 (sar.-1), 89.2 (can.-4), 86.3 (digt.-3), 78.7 (sar.-3), 78.5, 77.8 (glc.-3,5), 75.1 (glc.-2), 72.4 (digt.-4), 71.7, 71.6, 71.3, 70.7, 70.3 (digt.-2,5, sar.-4, can.-5, glc.-4), 65.8 (sar.-5), 62.5 (glc.-6), 58.7, 56.3 (OMe), 39.9 (can.-2), 29.7 (sar.-2), 18.6 (can.-6), 16.4 (digt.-6).

Upon 0.05N H_2SO_4 hydrolysis, **4a** afforded **1b**, β -D-glucosyl-(1 \rightarrow 4)-D-canarose and sarmentose on TLC (solv.1, 7:3:1; solv.2, 4:1:0.5).

Teikaside C-IIIa (5)—A solid, $[\alpha]_D^{20} - 85.9^{\circ}$ (c = 0.40, MeOH), FAB-MS m/z: 1153 ($C_{57}H_{94}O_{22}Na$). Upon 0.05 N H₂SO₄ hydrolysis, **5** afforded **1b**, **1c**, D-oleandrose and β-D-glucosyl-D-oleandrose on TLC (solv.1, 7:3:1; solv.2, 4:1:0.5).

Teikaside C-IVa (6)—A solid, $[\alpha]_D^{22} - 83.7^\circ$ (c = 0.15, MeOH), FAB-MS m/z: 1297 ($C_{64}H_{106}O_{25}Na$). Upon partial hydrolysis with $0.05 \,\mathrm{N}$ H₂SO₄ in 50% dioxane as described above, the following products were detected on TLC: **1b**, **1c**, D-oleandrose and β -D-glucosyl-D-cymarose (solv.1, 7:2:1, 7:3:1; solv.2, 4:1:0.5).

Teikaside B-IVa (7)—A solid, $[\alpha]_D^{20}$ – 78.2° (c = 0.55, MeOH), FAB-MS m/z: ($C_{62}H_{104}O_{24}Na$). Compound 6 (5 mg) was treated with KHCO₃/MeOH in the same manner as described for 1. The Rf value of the product from 6 was identical on TLC with that of 7 (solv.1, 7:3:1; solv.2, 4:1:0.5).

Acknowledgement We thank Misses Y. Iwase and S. Hachiyama, of the Central Analysis Room in this University, for NMR and MS measurements.

References

- 1) This forms part VI of "Studies on *Trachelospermum*." Part V: F. Abe and T. Yamauchi, *Chem. Pharm. Bull.*, **36**, 621 (1988).
- 2) F. Abe and T. Yamauchi, Phytochemistry, 15, 1745 (1976).
- 3) T. Yamauchi, F. Abe, Y. Nishishita, H. Okabe, K. Shima and S. Nishibe, *Phytochemistry*, 18, 1240 (1979).
- 4) F. Abe, T. Nagao, Y. Mōri, T. Yamauchi and Y. Saiki, Chem. Pharm. Bull., 35, 4087 (1987).
- 5) F. Abe and T. Yamauchi, Chem. Pharm. Bull., 29, 416 (1981).
- 6) H. Hauenstein and T. Reichstein, Helv. Chim. Acta, 33, 446 (1950).
- 7) T. Nakagawa, K. Hayashi, K. Wada and H. Mitsuhashi, Tetrahedron Lett., 23, 5432 (1982).