4474 Vol. 36 (1988)

Chem. Pharm. Bull. 36(11)4474—4477(1988)

Availability of Substituent Entropy Constants σ_s° and Descriptor μ^2/α as Predictors of Relative Retention Values on Gas-Liquid Chromatography of Substituted Propane and Butane Derivatives

Su-Lan Hsiu,^a Hideko Kawaki,^b Keiko Yokoyama,^c Hitoshi Takai,**.^c and Yoshio Sasaki^c

China Medical College, Taichung, 400 Taiwan, Republic of China, Faculty of Pharmacy, Kinki University, Kowakae 3-4-1, Higashi-Osaka, Osaka 577, Japan, and Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan

(Received April 28, 1988)

Under apolar conditions, the logarithm of the relative retention values $\log \gamma$ of substituted *n*-propane and *n*-butane derivatives can be expressed by a linear combination of the substituent entropy constant σ_{s^*} and descriptor μ^2/α . There seems to be a clear physical basis for this result in terms of the enthalpy of dissolution, ΔH_s° .

Keywords—gas-liquid chromatography; relative retention value; three-body problem; substituent entropy constant $\sigma_{s^{\circ}}$; descriptor μ^2/α ; regression analysis

Introduction

In the previous study¹⁾ on quantitative structure-activity relationships (QSAR), two kinds of novel descriptors—substituent entropy constant σ_{s^o} and descriptor μ^2/α —were derived from a consideration of the modified Lennard-Jones 12, 6 potential. The former represents both dispersion and repulsion force, and the latter represents both induction and orientation force.

These two descriptors are useful for weak interactions, exemplified by biological responses. They may also be applicable to gas-liquid chromatography (GLC), where a weak interaction occurs between the solute and the stationary liquid. Thus, we examined the applicability of the descriptors to the relative retention values ($\log \gamma$) of substituted *n*-propane and *n*-butane series on GLC under apolar conditions.

Experimental

Relative Retention Value log γ and Experimental Conditions—The index log γ is defined by Eq. 1;

$$\log \gamma = \log[t_{R(R)}/t_{R(H)}] \tag{1}$$

where $t_{R(R)}$ and $t_{R(H)}$ are the adjusted retention time (s) of substrate and reference, respectively.

The relative retention values were all measured on a Yanagimoto TCD G1880 gas chromatograph under the following conditions: mobile phase = He; stationary phase = 20% squalane + Chromosorb W; column = glass column treated with Me₂SiCl₂, followed by anhydrous methanol; column temperature = 80 °C; reference = n-butane.

Substituent Entropy Constant σ_{s^o} of *n*-Propane and *n*-Butane Derivatives—The substituent entropy constant σ_{s^o} given by Eq. 2 was determined from the absolute entropy S_{298}° (g) compiled in the references²⁾;

$$\sigma_{s^{\circ}} = \log[S_{298}^{\circ}(g)(R)/S_{298}^{\circ}(g)(H)]$$
 (2)

where (R) and (H) mean the substrate and reference, respectively.

No. 11 4475

Descriptor μ^2/α of Substituted *n*-Propane and *n*-Butane Derivatives—The values of dipole moment are all cited from a data book,³⁾ and polarizability α was calculated by means of Clausius-Mossotti's equation, using the refractive index observed with the Na_D line at 20°C.

Regression Analysis—Regression analyses were carried out using the program MVA,⁴⁾ developed in our laboratory.

Results and Discussion

GLC as a Three-Body Problem

From the previous study¹⁾ on the two kinds of novel QSAR descriptors σ_{s^o} and μ^2/α , the free-energy-average polar potential (cf. Eq. 3) represents the potential energy of a pair of polar molecules a and b.

$$\phi^{\text{av.}} = 4\varepsilon^{\circ} [(\sigma^{\circ}/r)^{12} - (\sigma^{\circ}/r)^{6}] - 1/r^{6} (\mu_{\alpha}^{2} \mu_{b}^{2}/3kT + \alpha_{\alpha}\mu_{b}^{2} + \alpha_{b}\mu_{a}^{2})$$
(3)

Equation 3 should be valid for QSAR analyses, when a biological response produced by a substrate-receptor interaction occurs in a hydrophobic field. However, GLC requires substrate and mobile and stationary phases, namely, this situation should be treated as a "three-body problem." For example, when we specify a substrate and mobile and stationary phases by the numbers 1, 2, and 3, the total potential energy U_{123} of a system composed of the three factors could be given by Eq. 4;

$$U_{123} = \phi_{12} + \phi_{23} + \phi_{31} + \Delta\phi_{123} \tag{4}$$

where ϕ_{12} , ϕ_{23} and ϕ_{31} mean the potential energies of the 12, 23 and 31 pairs, $\Delta\phi_{123}$ means an additional minor increment of the whole system, and ϕ_{23} becomes constant when 2 and 3 are specified. It follows that we can regard $E_{\text{dis.}}$ (total), $E_{\text{ind.}}$ (total) $E_{\text{ori.}}$ (total) as the sum of ϕ_{12} and ϕ_{31} .

From the definition of the Lennard-Jones 12, 6 potential, and the mixture rule of the force constant ε/k , Eq. 5 is obtained as follows:

$$E_{dis.}(total) = (\varepsilon_{11}\varepsilon_{22})^{1/2} + (\varepsilon_{11}\varepsilon_{33})^{1/2}$$

$$= \varepsilon_{11}^{1/2}(\varepsilon_{22}^{1/2} + \varepsilon_{33}^{1/2})$$
(5)

When both mobile and stationary phases are specified, $\varepsilon_{22}^{1/2} + \varepsilon_{33}^{1/2}$ becomes constant, and we obtain Eq. 6:

$$E_{\rm dis.}({\rm total}) \propto \varepsilon_{11}^{1/2}$$
 (6)

As shown in the previous report,¹⁾ according to the linear relation between ε_{11} and absolute entropy S_{298}° (g), $E_{\rm dis.}$ (total) becomes linear with respect to S_{298}° (g)^{1/2}, *i.e.* substituent entropy constant $\sigma_{s'}$, and an analogous argument holds for the repulsion interaction.

Furthermore, the total E_{ind} (total) and orientation E_{ori} (total) are expressed as below;

$$E_{\text{ind.}}(\text{total}) = E_{\text{ind.}}(12) + E_{\text{ind.}}(31)$$
$$\simeq \mu_1^2 / \alpha_1 + \mu_2^2 / \alpha_2 + \mu_1^2 / \alpha_1 + \mu_3^2 / \alpha_3$$

When 2 and 3 are specified, Eq. 7 is obtained:

$$E_{\text{ind.}} \text{ (total)} = 2 \,\mu_1^2 / \alpha_1 + \text{constant} \tag{7}$$

An analogous treatment can be applied to $E_{ori.}$ (total),

4476 Vol. 36 (1988)

$$E_{\text{ori.}}(\text{total}) = E_{\text{ori.}}(12) + E_{\text{ori.}}(31)$$

 $\simeq \mu_1^2 / \alpha_1 (\mu_2^2 / \alpha_2 + \mu_3^2 / \alpha_3) / 3kT$

When both 2 and 3 are specified, Eq. 8 is obtained;

$$E_{\text{ori.}}(\text{total}) = \mu_1^2 / \alpha_1 \times \text{constant}$$
 (8)

Thus, we are able to utilize the descriptors σ_s and μ^2/α for the evaluation of relative retention values. Furthermore, the participation of $E_{\rm ori.}$ need not be considered under apolar conditions, where the term μ^2/α could be ascribed to the contribution of $E_{\rm ind.}$

Estimation of Unknown σ_{s}

For the estimation of the descriptor $\sigma_{s^{\circ}}$, the corresponding value of S_{298}° (g) is essential, but this is not always available. For instance, in the *n*-BuR series, we lack S_{298}° (g) values for R=I, OMe, COMe. In this work, from the linear relation (*cf.* Eq. 9) between 13 congeners of *n*-PrR and *n*-BuR (*cf.* Tables I and II), the unknown values of the latter series could be estimated as given in parentheses in Table II.

$$\sigma_{s^{c}}(n-\text{BuR}) = 0.927 \ (\pm 0.027)\sigma_{s^{c}}(n-\text{PrR}) + 0.066 \ (\pm 0.007)$$

$$n=13 \quad r=0.999 \quad s=2.05 \times 10^{-3} \quad F=5.86 \times 10^{3}$$

$$R=H, \text{ Me, Et, } n-\text{Pr, } n-\text{Bu, Cl, Br, OH, NH2, CHO, NO2, SH, SMe}$$

Relative Retention Value of n-Propane and n-Butane Derivatives

In this work, as the retention index, the logarithm of the relative retention value is used. The thermodynamics of $\log \gamma$ is known to described by Eq. 10;

$$\log \gamma = -[H_s^{\circ}(\mathbf{R}) - H_s^{\circ}(\mathbf{H})]/2.303 \, RT + \text{constant}$$
 (10)

where ΔH_s° means the enthalpy of dissolution. Consequently, the analysis of $\log \gamma$ by means of the novel descriptors σ_s and μ^2/α has a clear molecular basis.

TABLE I.	$\log \gamma$, $\sigma_{s^{\circ}}$ and μ^2/α [erg × 10 ⁻¹²] of <i>n</i> -Propane Derivatives	

Substituent	$\log \gamma$	$\sigma_{s^{\circ}}$	μ^2/α
Me	0.000	0.221	0.000
Et	0.445	0.275	0.000
n-Pr	0.808	0.319	0.000
<i>n</i> −Bu	1.158	0.361	0.000
n-Pent	1.490	0.399	0.000
Cl		0.234	
Br	0.869	0.260	0.405
I	1.158	0.256	0.312
OMe	0.395	0.273	0.175
ОН	0.339	0.241	0.425
NH ₂	0.374	0.241	0.238
CHO	0.553	0.268	0.814
COMe	0.888	0.305	0.737
CN	0.734	0.242	1.621
NO_2	0.964	0.281	1.498
SH		0.257	
SMe		0.300	

Correlation coefficient r = -0.318 between σ_s and μ^2/α . n = 12 (Me, Et, *n*-Pr, *n*-Bu, *n*-Pent, OMe, OH, NH₂, CHO, COMe, CN, NO₂).

No. 11 4477

Substituent	log γ	σ_{s} .	μ^2/α	
Н	0.000	0.221	0.000	
Me	0.445	0.275	0.000	
Et	0.808	0.319	0.000	
n-Pr	1.158	0.361	0.000	
n-Bu	1.490	0.399	0.000	
Cl	0.864	0.284	0.373	
Br	1.180	0.298	0.338	
I	1.557	(0.303)	0.272	
OMe	0.795	(0.318)	0.141	
ОН	0.767	0.290	0.293	
NH,	0.797	0.290	0.206	
CHO	0.961	0.313	0.664	
COMe	1.245	(0.348)	0.605	
SH	1.165	0.304	0.156	
SMe		0.345		
NO ₂		0.326		

TABLE II. $\log \gamma$, σ_s and μ^2/α [erg × 10⁻¹²] of *n*-Butane Derivatives

Correlation coefficient between σ_s and μ^2/α r=0.085. n=10 (H, Me, Et, n-Pr, n-Bu, OMe, OH, NH₂, CHO, COMe).

The observed values of log γ for substituted *n*-propane and *n*-butane series are summarized in Tables I and II, together with the descriptors σ_s and μ^2/α , and the results of the regression analyses are gived below:

1. *n*-Propane series except halogens

$$\log \gamma = 8.055(\pm 0.898)\sigma_s + 0.308(\pm 0.081)\mu^2/\alpha - 1.762(\pm 0.274)$$

$$n = 12 \quad r = 0.989 \quad s = 0.066 \quad F = 208.6**$$

2. n-Butane series except halogens and SH

$$\log \gamma = 8.046(\pm 1.112)\sigma_s + 0.336(\pm 0.241)\mu^2/\alpha - 1.739(\pm 0.351)$$

$$n = 10 \quad r = 0.999 \quad s = 0.069 \quad F = 159.7**$$

References

- 1) Y. Sasaki, T. Takagi, and H. Kawaki, Chem. Pharm. Bull., 36, 3743 (1988).
- a) D. R. Stull, E. F. Westrum Jr., and G. C. Sinke, "The Chemical Thermodynamics of Organic Compounds,"
 John Wiley and Sons, Inc., New York, 1969; b) S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen,
 H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969).
- 3) A. L. McClellan, "Tables of Experimental Dipole Moments," W. H. Freeman & Co., San Francisco, 1963.
- 4) T. Takagi, K. Tange, N. Iwata, Y. Shindo, A. Iwata, T. Katayama, H. Izaki, S. Fujii, and Y. Sasaki, Proceedings of the 4th Software Conference, Osaka, March 1988, p. 285.