No. 12 4659

Chem. Pharm. Bull. 36(12)4659—4670(1988)

Cyclofunctionalization of Olefinic Urethanes and Ureas with Halogens. Synthesis of 1-Substituted Spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one Derivatives

HARUKI TAKAI,* HIROYUKI OBASE, and MASAYUKI TERANISHI

Tokyo Research Laboratory, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194, Japan

(Received March 22, 1988)

The cyclization reaction of 4-(2-carbamoylaminophenyl)-1,2,5,6-tetrahydropyridine derivatives (9) and a 4-(2-methoxycarbonylaminophenyl)-1,2,5,6-tetrahydropyridine derivative (4) with halogen was investigated. Treatment of the former (9) with bromine or N-chlorosuccinimide (NCS) under acidic conditions gave the corresponding 3'-halogeno-2-amino-spiro[4H-3,1-benzoxazine-4,4'-piperidine] derivatives (11) and with iodine under basic conditions gave 5,6-dihydro-3-iodo-spiro[pyridine-4(1H),4'(3'H)-quinazolin]-2'(1'H)-one derivatives (14), which were converted to spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one derivatives (15 and 17). Treatment of the latter (4) with bromine under acidic conditions gave 3'-bromo-spiro[4H-3,1-benzoxazine-4,4'-piperidin]-2(1H)-one derivatives (5 and 6).

Keywords—spiro compound; piperidine; quinazoline; benzoxazine; olefin; urea; urethane; halogenocyclization

Previous reports¹⁾ on piperidine derivatives with a spirooxazinone ring (1) or a quinazolinone ring (2) at the 4 position led us to consider the possibility of developing a useful antihypertensive agent through further modification of this series. During this investigation, we were interested in the effect of the stereochemical relationship between the piperidine ring and quinazolinone ring on the antihypertensive activity. Accordingly, we selected the spiroquinazolinone derivatives 3 (Chart 1) for further modification. In this report, we wish to describe the synthesis of spirooxazinone and spiroquinazolinone skeletons by the cyclization of the olefinic urethane 4 and the olefinic ureas 9 with halogens.

Iodolactonization is a well-known reaction that has been applied to the preparation of various compounds.²⁾ Recently, the application of this reaction to carbamate was developed for the preparation of aminosugar derivatives.³⁾ We were interested in the application of this

reaction to the preparation of spiro compounds. Firstly, we treated the olefinic urethane 4⁴ with bromine in aqueous acetic acid (AcOH) at room temperature. The expected cyclization reaction occurred to give 5 and 6 in 10.9% and 36.4% yields, respectively. Next, we tried to apply this reaction to the cyclization of the olefinic ureas 9 in expectation of the formation of the spiroquinazolinone skeleton. The starting materials 9 were prepared from 7, which was previously reported by us,40 as shown in Chart 3. Compound 9a was obtained by treatment of 7 with sodium cyanate in aqueous AcOH in 92.6% yield and compounds 9b—g, k were obtained by treatment of 7 with the appropriate isocyanate in ethyl acetate (AcOEt) in moderate yields. The analytical data are summarized in Table I. Compounds 9h—j were also obtained by treatment of 7 with ethyl chlorothioformate in pyridine in 38.2% yield, followed by treatment with the appropriate amine, and used in situ for the next reaction. The treatment of 9 with bromine in aqueous AcOH at room temperature, contrary to our expectation, resulted in the formation of the aminooxazines (11A) with no production of the quinazolines (10). Treatment with N-chlorosuccinimide (NCS) instead of bromine also afforded 11B (Chart 4). The results are summarized in Table II and the carbon-13 nuclear magnetic resonance (13C-NMR) spectral data of 11 are given in Table III.

Recently, several methods for iodocyclization of an amide or carbamate nitrogen onto an intramolecular carbon–carbon double bond have been reported. Accordingly, compound 9b was treated with an aqueous solution of I₂ and NaI in CH₂Cl₂ and aqueous 10% NaHCO₃ at room temperature to give the spiro compound 14b. In order to complete this reaction, 2 eq of iodine was needed. A proposed mechanism for the formation of 14b is shown in Chart 5. The reaction seems to proceed by initial cyclization of the urea 9b to the intermediate 12b and then to the enamine 13b by the elimination of HI. The enamine 13b may be iodized to give the iodoenamine 14b. The same reaction of the other ureas (9c, d, f, h, and i) also gave the spiro

No. 12 4661

TABLE I. Analytical Data for the Ureas (9)

Compd.	R	R Yield Recrystn. mp Form	•	· -	Formula	Analysis (%) Calcd (Found)			
140.				C H N					
9a	Н	92.6	EtOH	185—187	C ₁₉ H ₂₀ ClN ₃ O	66.76 5.90 12.29 (66.79 5.88 12.35)			
9b ^{a)}	CH ₃					(00.77 3.00 12.33)			
9c	C_2H_5	60.4	AcOEt	152155	$C_{21}H_{24}ClN_3O$	68.19 6.54 11.36			
						(68.39 6.66 11.32)			
9d	(CH2)2CH3	54.4	AcOEt-hexane	6769	$C_{22}H_{26}ClN_3O$	65.74 7.02 10.45			
					\cdot H ₂ O	(65.92 6.94 10.44)			
9e	$CH(CH_3)_2$	47.7	AcOEt	150—152	$C_{22}H_{26}CIN_3O$	68.03 6.88 10.82			
					$\cdot 0.25 H_2 O$	(68.31 6.94 10.97)			
9f	(CH2)3CH3	50.3	AcOEt-hexane	6163	$C_{23}H_{28}ClN_3O$	66.41 7.27 10.10			
					\cdot H ₂ O	(66.88 7.38 10.07)			
9g	$CH(CH_3)C_6H_5$	42.8	Amorphous	powder	$C_{27}H_{28}ClN_3O$	MS m/z Calcd: 445.1923 (M ⁺)			
						Found: 445.1922			
9k	Cyclo-hexyl	68.4	AcOEt	167—169	$C_{25}H_{30}CIN_3O$	70.82 7.13 9.91			
						(70.78 6.97 10.15)			

a) This compound was previously reported by us.3)

Bzl-N
$$\longrightarrow$$
 NHCONHR

Br₂ or NCS \longrightarrow C-N bond C1

aq. AcOH \longrightarrow NR

Bzl-N \longrightarrow NR

Bzl-N \longrightarrow NR

C1

11A: X=Br

11B: X=C1

compounds (14c, d, f, h, and i, respectively) (Tables IV and V), but compounds 9e and k with bulky substituents, such as an isopropyl or a cyclohexyl group at the nitrogen atom, gave only an unknown crude product in low yield under the same conditions. The catalytic hydrogenation of 14b at 40 °C in aqueous EtOH was examined, to ascertain the structure. The reaction without additives gave 15 in 13.0% yield. The reaction in the presence of 1 eq of HCl gave 16 as the main product in 22.2% yield. The reaction in the presence of 10 eq of triethylamine (TEA) gave 17 in 98.8% yield. These results are shown in Chart 6. The structure of 14b was established by confirming the structure of 15 on the basis of its spectral similarity to the oxazine 18, the structure of which was already determined by us. 6) The physical properties of 15 and 18 are summarized in Table VI. Compound 15 had the molecular

TABLE II. Analytical Data for the Aminooxazines (11)

Compd. ^a No.	R	Yield	Method $^{b)}$	Recrystn.	mp (°C)	Formula	Analysis (%) Calcd (Found)			
		(/0)		JOIVEIL	(C)		C H N			
11Aa	Н	50.8	В	CHCl ₃ -	176—180	C ₁₉ H ₁₉ BrClN ₃ O	54.24 4.55 9.99			
11Ab	CH ₃	75.5	В	EtOH CHCl ₃ -	173—174	C ₂₀ H ₂₁ BrClN ₃ O	(53.97 4.75 9.71) 55.25 4.87 9.67			
11Ac	C_2H_5	56.1	В	EtOH EtOH	138—139	C ₂₁ H ₂₃ BrClN ₃ O	(55.06 4.85 9.58) 56.20 5.17 9.36			
11Ad	(CH ₂) ₂ CH ₃	58.7	В	EtOH	111—113	C ₂₂ H ₂₅ BrClN ₃ O	(56.30 5.22 9.33) 57.09 5.44 9.08			
11Ae	CH(CH ₃) ₂	61.7	В	Oil		C ₂₂ H ₂₅ BrClN ₃ O	(57.13 5.47 8.99) MS m/z Calcd: 461.0872 (M ⁺)			
11Af	(CH ₂) ₃ CH ₃	55.0	В	EtOH	123—124	C ₂₃ H ₂₇ BrClN ₃ O	Found: 461.0863 57.93 5.70 8.81			
11Ag	CH(CH ₃)Ph	25.0	В	Oil		C ₂₇ H ₂₇ BrClN ₃ O	(58.21 5.93 8.71) MS m/z Calcd: 523.1028 (M ⁺)			
11Ah	(CH ₂) ₄ CH ₃	31.8	C	AcOEt-	117—120	C ₂₄ H ₂₉ BrClN ₃ O	Found: 523.1022 58.73 5.95 8.56			
11Ai	(CH ₂) ₂ CH(CH ₃) ₂	55.3	D	hexane EtOH	137—138	C ₂₄ H ₂₉ BrClN ₃ O	(58.56 6.02 8.33) 58.72 5.96 8.56			
11Aj	$(CH_2)_5CH_3$	24.2	C	Hexane	131—133	C ₂₅ H ₃₁ BrClN ₃ O	(58.97 5.80 8.38) 59.47 6.19 8.32			
11Ak	Cyclo-hexyl	67.4	В	Oil		C ₂₅ H ₂₉ BrClN ₃ O	(59.19 6.08 8.05) MS m/z Calcd: 501.1185 (M ⁺)			
11Al	$(CH_2)_6CH_3$	21.6	D	Hexane	102—104	C ₂₆ H ₃₃ BrClN ₃ O	Found: 501.1165 60.18 6.41 8.10			
11Be	CH(CH ₃) ₂	46.6	Е	Oil		$C_{22}H_{25}Cl_2N_3O$	(60.01 6.45 8.04) MS m/z Calcd: 417.1378 (M ⁺)			
11Bf	(CH ₂) ₃ CH ₃	27.5	E	МеОН	126—128	C ₂₃ H ₂₇ Cl ₂ N ₃ O	Found: 417.1350 63.89 6.29 9.72			
11Bi	(CH ₂) ₂ CH(CH ₃) ₂	11.9	F	МеОН	138—139	C ₂₄ H ₂₉ Cl ₂ N ₃ O	(63.66 6.30 9.63) 64.57 6.55 9.41			
11Bk	Cyclo-hexyl	34.7	E	Oil		$C_{25}H_{29}Cl_2N_3O$	(64.42 6.54 9.19) MS m/z Calcd: 457.1691 (M ⁺) Found: 457.1679			

a) Each product except for 11Ag (1-1.5:1 diastereomixture) was a single isomer, the configuration of which could not be determined. b) See Experimental.

formula $C_{20}H_{22}N_3O$ on the basis of its elemental analysis data and mass spectrum (MS) (M; m/z: 355 for ³⁵Cl). Its proton and carbon-13 nuclear magnetic resonance (¹H-NMR and ¹³C-NMR) spectra indicated the presence of a benzyl group, a piperidine ring and a 1-chloro-3,4-disubstituted benzene ring by comparison with those of 18. The remaining group ($C_2H_4N_2O$), which was not determined, was a partial structure corresponding to the isourea group of 18. The infrared (IR) absorption indicated the presence of a carbonyl group or an imino group (1667 cm^{-1}).

TABLE III. 13C-NMR Spectral Data for 5, 6, 11A and 11B

C1	z	x	Y	Chemical shifts (ppm)					
Compd. No.						Solvent			
				C-2′,6′	C-3′	Position C-4′	C-5′	C-7′′	
5	О	Н	Br	47.40	49.89	79.93	28.78	60.71	DMSO-d ₆
				53.58					
6	O	Br	Br	47.76	49.04	81.97	29.73	61.83	$CDCl_3$
				54.16					
11Aa	NH	Н	Br	47.55	49.89	78.13	28.75	60.83	$DMSO-d_6$
				53.34					
11Ab	NCH_3	Н	Br	47.58	49.71	77.64	28.69	60.80	$DMSO-d_6$
				53.40					
11Ac	NC_2H_5	Н	Br	48.19	49.31	78.77	29.88	62.14	CDCl ₃
				54.74					
$11Ag^{a}$	NCH(CH ₃)Ph	Н	Br	48.10	49.13	79.74	29.45	61.74	$CDCl_3$
				(47.79)		(80.26)	(29.85)	(61.93)	
				53.88					
11Be	$NCH(CH_3)_2$	Н	Cl	47.83	55.98	79.76	29.62	62.08	$CDCl_3$
				54.28					
11Bf	$N(CH_2)_3CH_3$	Н	Cl	47.35	56.27	77.28	28.57	61.03	$DMSO-d_6$
				53.05					
11Bi	$N(CH_2)_2CH(CH_3)_2$	Н	Cl	47.37	56.27	77.43	28.60	61.06	$DMSO-d_6$
				53.07					
11Bk	N-Cyclo-hexyl	Н	Cl	47.91	55.96	_	29.72	62.18	CDCl ₃

a) Compound 11Ag was obtained as a diastereomixture and the chemical shifts of the other diastereoisomer are noted in parentheses.

In the ¹³C-NMR spectra of **18** and **11**, a singlet due to C-4 of piperidine was observed in the vicinity of 80 ppm, but in the case of **15**, the signal appeared at higher field (57.08 ppm). On the basis of the above results, the presence of the C-N bond at the 4'-position of the piperidine ring of **15** was determined. Compound **17** was converted into aminoketones **20a**—c by reaction with the appropriate bromoketone **19a**—c in ethanol using TEA as a base. The aminoketones **20a** thus obtained were reduced to the alcohol **3a** by treatment with sodium borohydride. The selective reduction of **20b** and **20c** with L-Selectride gave **3b** and **3c**, respectively. Analysis of the proton nuclear magnetic resonance (¹H-NMR) spectra of **3a** and **3b** permitted assignment of the configurations. The coupling constants of the benzylic proton were 10 Hz for **3b** and 9 Hz for **3c**. These are comparable with the values of 8.3 and 4.0 Hz for pseudoephedrine (*threo*) and ephedrine (*erythro*), as described previously for compounds **1** and **2**. The virtual identity of the coupling constants of these compounds supported the assignment of *threo* configuration to **3b** and **3c**.

Experimental

Chart 5

·TABLE IV. Analytical Data for the Quinazolinones (14)

Compd.	R	Yield	Method ^{a)}	Recrystn.	mp	Formula	Analysis (%) Calcd (Found)		
No.		(%)		solvent	(°C)		С	Н	N
14b	CH ₃	83.4	G	EtOH	197—198	C ₂₀ H ₁₉ ClIN ₃ O	50.07		
14c	C_2H_5	75.1	G	MeOH	196—197	$C_{21}H_{21}ClIN_3O$	(50.15	4.29	8.51
14d	$(CH_2)_2CH_3$	44.5	G	MeOH	199—200	$C_{22}H_{23}CIIN_3O$	52.03	4.57	8.28
14f	$(CH_2)_3CH_3$	62.3	G	CHCl ₃ -MeOH	216—217	$C_{23}H_{25}CIIN_3O$	(52.25 52.93	4.83	8.05
14h	$(CH_2)_4CH_3$	40.5	Н	AcOEt	167—170	C ₂₄ H ₂₇ ClIN ₃ O	(53.16 53.79	5.08	7.84
14i	(CH ₂) ₂ CH(CH ₃) ₂	32.5	Н	AcOEt	184—186	C ₂₄ H ₂₇ ClIN ₃ O	(53.89 53.79 (53.87	5.08	7.84

a) See Experimental.

TABLE V. ¹³C-NMR Spectral Data for 14 and 16 in CDCl₃

			Chemical shifts (ppm)						
Compd. No.	R	X	Position						
			C-3',4'	C-5′	C-6′	C-7′′			
14b	CH ₃	I	63.82 64.62	32.65	42.53	59.24			
14c	C_2H_5	I	63.75 65.99	34.76	42.61	59.21			
14d	$(CH_2)_2CH_3$	I	63.70 65.76	34.89	42.59	59.24			
14f	$(CH_2)_3CH_3$	I	63.75 65.78	34.96	42.61	59.24			
14h	$(CH_2)_4CH_3$	I	63.72 65.80	34.98	42.63	59.26			
14i	$(CH_2)_2CH(CH_3)_2$	I	63.66 65.82	35.06	42.64	59.24			
16	CH ₃	Н	95.08 (3') 58.98 (4')	32.19	42.85	59.37			

Chart 6

TABLE VI. IR, MS, ¹H-NMR (270 MHz), and ¹³C-NMR (25.1 MHz) Spectral Data for 15 and 18

1667 cm ⁻¹ (C=O) (KBr) 355 (M ⁺) (6H, m, piperidine H), 2.7—2.9 piperidine H), 3.11 (3H, s, N-CH ₃), , s, NCH ₂ Ph), 6.80 (1H, d, J=8.3 matic H), 7.14—7.39 (7H, m, t H), 8.87 (1H, br s, NH)	1.95—2.1 (4H, (2H, m, piperid piperidine H), (2H, s, NCH ₂ I	dine H), 2.75—2.85 (2H, m, 2.93 (3H, s, N-CH ₃), 3.56	
(6H, m, piperidine \underline{H}), 2.7—2.9 piperidine \underline{H}), 3.11 (3H, s, N-C \underline{H}_3), , s, NC \underline{H}_2 Ph), 6.80 (1H, d, J =8.3 natic \underline{H}), 7.14—7.39 (7H, m,	(2H, m, piperio piperidine H), (2H, s, NCH ₂ I	m, piperidine H), 2.3—2.5 dine H), 2.75—2.85 (2H, m, 2.93 (3H, s, N-CH ₃), 3.56	
piperidine \underline{H}), 3.11 (3H, s, N-C \underline{H}_3), s, NC \underline{H}_2 Ph), 6.80 (1H, d, J =8.3 natic \underline{H}), 7.14—7.39 (7H, m,	(2H, m, piperio piperidine H), (2H, s, NCH ₂ I	dine H), 2.75—2.85 (2H, m, 2.93 (3H, s, N-CH ₃), 3.56	
_	1.95—2.1 (4H, m, piperidine H), 2.3—2.5 (2H, m, piperidine H), 2.75—2.85 (2H, m, piperidine H), 2.93 (3H, s, N-СH ₃), 3.56 (2H, s, NСH ₂ Ph), 4.8 (1H, brs, NH), 6.85—7.4 (8H, m, aromatic H)		
ns Chemical shifts (ppm) 156.53 (s) 57.08 (s) 115.69 (d) 127.24 (d) 127.83 (d) 126.63 (s) 128.38 (s) 135.65 (s) 29.40 (q) 31.93 (t) 50.89 (t) 138.02 (s) 129.06 (d) 128.33 (d)	Carbons 2 4 (4') 5 7 8 4a 6 8a 9 3' 5' 2' 6' 1'' 2'' 6'' 3'' 5'' 4''	Chemical shifts (ppm) 154.41 (s) 78.12 (s) 122.32 (d) or 123.36 (d) 127.14 (d) 128.48 (d) 127.08 (s) 129.87 (s) 140.81 (s) 28.14 (q) 34.87 (t) 48.55 (t) 138.26 (s) 129.10 (d) 128.28 (d) 122.32 (d) or 123.36 (d)	
	126.63 (s) 128.38 (s) 135.65 (s) 29.40 (q) 31.93 (t) 50.89 (t) 138.02 (s) 129.06 (d)	126.63 (s) 4a 128.38 (s) 6 135.65 (s) 8a 29.40 (q) 9 31.93 (t) 3' 5' 50.89 (t) 2' 6' 138.02 (s) 1'' 129.06 (d) 2'' 6'' 128.33 (d) 3'' 5'' 124.80 (d) 4''	

a) Benzyl group signals were assigned on the basis of the data in reference 7.

spectra were measured on a Shimadzu IR-27G spectrometer, ¹H-NMR spectra on a Varian EM 390 spectrometer, a JEOL JNM-PS-100 spectrometer, or a JEOL JNM-GX 270 spectrometer with tetramethylsilane as an internal standard, and ¹³C-NMR spectra on a JEOL JNM-FX-100 spectrometer at 25.1 MHz, operating in the Fourier-transform mode with tetramethylsilane as an internal standard. MS were measured on a JEOL JMS-OISG-2 spectrometer.

(A) Conversion of 4 to 5 and 6. Synthesis of 1'-Benzyl-3'-bromo-6-chloro-spiro[4*H*-3,1-benzoxazine-4,4'-piperidin]-2(1*H*)-one (5) and 1'-Benzyl-6-chloro-3',8-dibromo-spiro[4*H*-3,1-benzoxazine-4,4'-piperidin]-2(1*H*)-one (6)—A solution of bromine (2.00 g, 12.5 mmol) and sodium bromide (NaBr) (1.29 g, 12.5 mmol) in H₂O (15 ml) was added dropwise over 30 min to a stirred solution of 1-benzyl-4-(2-methoxycarbonyl-5-chlorophenyl)-1,2,5,6-tetrahydropyridine (4) (1.81 g, 5.08 mmol) in acetic acid (60 ml) and H₂O (15 ml) at room temperature. Then, the reaction mixture was stirred for 30 min and concentrated *in vacuo*. The residue thus obtained was mixed with ice-water, made basic with concentrated aqueous NaOH, and extracted with CHCl₃. The extract was washed with H₂O, dried, and concentrated to give an oily residue, which was chromatographed on silica gel (AcOEt: hexane = 3: 7, v/v) to afford 5 (233 mg, 10.9%) and 6 (927 mg, 36.4%). Recrystallization of 5 from CHCl₃-EtOH gave an analytical sample, mp 185—187 °C. *Anal.* Calcd MS m/z: 420 (M⁺) for ⁷⁹Br and ³⁵Cl. IR (KBr): 1741 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.7—2.1 (1H, m, piperidine \underline{H}), 2.7—3.1 (5H, m, piperidine \underline{H}), 3.55 (1H, d, J = 13.5 Hz, C₆H₅C \underline{H} ₂), 4.33—4.50 (1H, m, Σ HBr), 6.82 (1H, d, J = 9 Hz, aromatic \underline{H}), 7.2—7.6 (7H, m, aromatic \underline{H}), 9.23 (1H, s, N \underline{H}). Recrystallization of 6 from CHCl₃-EtOH gave an analytical sample, mp 194—195 °C. *Anal.* Calcd MS m/z: 498 (M⁺) for ⁷⁹Br and ³⁵Cl. IR (KBr): 1740 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.8—2.1 (1H, m, piperidine \underline{H}), 2.7—3.1 (5H, m, piperidine \underline{H}), 3.55 (1H, d, J = 13.5 Hz, C₆H₅C \underline{H} ₂), 4.30—4.46 (1H, m, piperidine \underline{H}), 3.55 (1H, d, J = 13.5 Hz, C₆H₅C \underline{H} ₂), 4.30—4.46 (1H, m,

$$\begin{array}{c} \text{H}_{3}\text{CO} \\ \text{H}_{3}\text{CO} \\ \text{R}_{1} \\ \text{R}_{2} \\ \\ \text{19a}: \text{R}_{1} = \text{H}, \text{R}_{2} = \text{H} \\ \text{19b}: \text{R}_{1} = \text{H}, \text{R}_{2} = \text{CH}_{3} \\ \text{19c}: \text{R}_{1} = \text{CH}_{3}\text{O}, \text{R}_{2} = \text{CH}_{3} \\ \\ \text{H}_{3}\text{CO} \\ \text{H}_{3}\text{CO} \\ \text{R}_{2} \\ \\ \text{R}_{1} \\ \\ \text{20a}: \text{R}_{1} = \text{H}, \text{R}_{2} = \text{H} \\ \text{20b}: \text{R}_{1} = \text{H}, \text{R}_{2} = \text{CH}_{3} \\ \\ \text{20c}: \text{R}_{1} = \text{CH}_{3}\text{O}, \text{R}_{2} = \text{CH}_{3} \\ \\ \text{20c}: \text{R}_{1} = \text{CH}_{3}\text{O}, \text{R}_{2} = \text{CH}_{3} \\ \\ \text{20c}: \text{R}_{1} = \text{CH}_{3}\text{O}, \text{R}_{2} = \text{CH}_{3} \\ \\ \text{Chart 7} \\ \end{array}$$

 Σ HBr), 7.2—7.6 [8H, m, NH and aromatic H (d, J=2 Hz at 7.52 ppm)].

- (B) Conversion of 9 to 11. Typical Procedure. Synthesis of 1'-Benzyl-3'-bromo-6-chloro-2-methylamino-spiro-[4H-3,1-benzoxazine-4.4'-piperidine] (11Ab)—A solution of bromine (800 mg, 5.00 mmol) and NaBr (515 mg, 5.00 mmol) in H_2O (5 ml) was added dropwise over 1 h to a stirred solution of 1-benzyl-4-[2-(N-methylcarbamoyl)-amino-5-chlorophenyl]-1,2,5,6-tetrahydropyridine (9b) (1.42 g, 3.99 mmol) in acetic acid (40 ml) and H_2O (10 ml) at room temperature. Then, the reaction mixture was stirred for 30 min and concentrated *in vacuo*. The residue was mixed with saturated aqueous NaHCO₃ and extracted with CHCl₃. The extract was washed with H_2O , dried, and concentrated *in vacuo*. The residue was crystallized from MeOH to give 11Ab (1.31 g, 75.5%). Recrystallization of 11Ab from CHCl₃-EtOH gave an analytical sample, mp 173—174 °C. IR (KBr): 1655 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.8—2.0 (2H, m, piperidine H_1), 2.6—3.2 [7H, m, piperidine H_2 and CH_3 (s at 2.93 ppm)], 3.55 (1H, d, J=13.5 Hz, $C_0H_5CH_2$), 3.76 (1H, d, J=13.5 Hz, $C_0H_3CH_2$), 4.26—4.40 (1H, m, CH_3CH_3), 6.93 (1H, d, J=9 Hz, aromatic H_1).
- (C) Conversion of 7 to 11. Typical Procedure. Synthesis of 1'-Benzyl-3'-bromo-6-chloro-2-n-pentylamino-spiro-[4H-3,1-benzoxazine-4,4'-piperidine] (11Ah)——Ethyl chlorothioformate (0.200 ml, 1.92 mmol) was added dropwise over 30 min to a solution of 4-(2-amino-5-chlorophenyl)-1-benzyl-1,2,5,6-tetrahydropyridine (7) (299 mg, 1.00 mmol) in pyridine (5 ml) at 0 °C. Then, the mixture was stirred at room temperature for 30 min and concentrated in vacuo. The residue was heated at 80 °C for 45 min in pentylamine (5 ml) and concentrated in vacuo to give an oily residue. The crude product (urea) was dissolved in AcOH (10 ml) and H₂O (4.5 ml). To this stirred solution, a solution of bromine (0.105 ml, 2.04 mmol) in AcOH (1 ml) was added dropwise over 30 min at room temperature. Then, the reaction mixture was stirred for 2 h, mixed with H₂O (80 ml), made basic with concentrated aqueous NaOH, and extracted with CHCl₃. The extract was washed with H₂O, dried, and concentrated in vacuo to give an oily product, which was chromatographed on silica gel (AcOEt: hexane = 2:8, v/v) to afford 11Ah (156 mg, 31.8%). Recrystallization from AcOEt-hexane gave an analytical sample, mp 117—120 °C. IR (KBr): 1655 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.91 (3H, t, J=6 Hz, CH₃), 1.2—1.65 (6H, m, -CH₂CH₂CH₂CH₃), 1.75—2.0 (1H, m, piperidine H), 2.5—3.2 (5H, m, piperidine H), 3.31 (2H, t, J=6 Hz, =NCH₂-), 3.55 (1H, d, J=13.5 Hz, C₆H₅CH₂), 3.76 (1H, d, J=13.5 Hz, C₆H₅CH₂), 4.26—4.40 (1H, m, >CHBr), 6.90 (1H, d, J=9 Hz, aromatic H), 7.1—7.5 (7H, m, aromatic H).
- (D) Conversion of 8 to 11. Typical Procedure. Synthesis of 1'-Benzyl-3'-bromo-6-chloro-2-isopentylamino-spiro[4H-3,1-benzoxazine-4,4'-piperidine] (11Ai) A mixture of 1-benzyl-4-(5-chloro-2-ethylthiocarbonylamino-phenyl)-1,2,5,6-tetrahydropyridine (8) (1.77 g, 4.57 mmol) and isopentylamine (5 ml) was stirred at 90 °C for 30 min. The reaction mixture was concentrated *in vacuo* and the residue was dissolved in AcOH (50 ml) and H_2O (22.5 ml). To this stirred solution, a solution of bromine (0.37 ml, 7.18 mmol) in AcOH (3.5 ml) was added dropwise over 30 min at room temperature. The reaction mixture was stirred for a further 1 h and concentrated *in vacuo*. The residue was mixed with H_2O (100 ml), made basic with conc. aqueous NaOH, extracted with CHCl₃, and concentrated *in vacuo*. The residue was crystallized from EtOH to give 11Ai (1.24 g, 55.3%). Recrystallization from EtOH gave an analytical

sample, mp 137—138 °C. IR (KBr): $1661 \, \mathrm{cm}^{-1}$. 1 H-NMR (CDCl₃) δ : $0.89 \, [6H, d, J=6 \, \mathrm{Hz}, -\mathrm{CH}(\mathrm{CH_3})_2]$, 1.2— $2.0 \, [4H, m, -\mathrm{CH_2CH}(\mathrm{CH_3})_2$ and piperidine H), 2.4— $3.15 \, (5H, m, \text{ piperidine }\mathrm{H})$, $3.30 \, (2H, t, J=7 \, \mathrm{Hz}, -\mathrm{NCH_2CH_2-})$, $3.51 \, (1H, d, J=13.5 \, \mathrm{Hz}, \mathrm{C_6H_3CH_2-})$, $3.72 \, (1H, d, J=13.5 \, \mathrm{Hz}, \mathrm{C_6H_5CH_2-})$, 4.23— $4.40 \, (1H, m, \mathrm{CHBr})$, $5.5 \, (1H, \mathrm{br\,s}, \mathrm{NH})$, $6.90 \, (1H, d, J=9 \, \mathrm{Hz}, \mathrm{aromatic }\mathrm{H})$, 7.0— $7.5 \, (7H, m, \mathrm{aromatic }\mathrm{H})$.

- (E) Conversion of 9 to 11B. Typical Procedure. Synthesis of 1'-Benzyl-2-n-butylamino-3',6-dichloro-spiro[4H-3,1-benzoxazine-4,4'-piperidine] (11Bf) NCS (534 mg, 4.00 mmol) was added to a stirred solution of 1-benzyl-4-(2-n-butylcarbamoylamino-5-chlorophenyl)-1,2,5,6-tetrahydropyridine (9f) (398 mg, 1.00 mmol) in AcOH (10 ml) and H₂O (2.5 ml). Then, the reaction mixture was stirred at room temperature overnight, mixed with ice-water (100 ml), made basic with aqueous NaOH, and extracted with ether. The extract was washed with H₂O, concentrated *in vacuo*, and chromatographed on silica gel (AcOEt-hexane = 2:8, v/v) to afford 11Bf (119 mg, 27.5%) (crystallized from MeOH), mp 126—128 °C. IR (KBr): 1656 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 0.89 (3H, t, J = 7 Hz, -CH₂CH₃), 1.2—1.6 (4H, m, -CH₂CH₂CH₃), 1.7—1.85 (1H, m, piperidine H), 2.6—3.2 (7H, m, piperidine H and = NCH₂CH₂-), 3.53 (1H, d, J = 13.4 Hz, C₆H₅CH₂), 3.69 (1H, d, J = 13.4 Hz, C₆H₅CH₂), 4.13—4.20 (1H, m, >CHCl), 6.82 (1H, d, J = 8.1 Hz, aromatic H), 7.15—7.4 (7H, m, aromatic H).
- (F) Conversion of 8 to 11B. Typical Procedure. Synthesis of 1'-Benzyl-3',6-dichloro-2-isopentylamino-spiro[4H-3,1-benzoxazine-4,4'-piperidine] (11Bi) A mixture of 8 (355 mg, 0.917 mmol) and isopentylamine (1 ml) was stirred at 90 °C for 30 min. The reaction mixture was concentrated *in vacuo* and dissolved in AcOH (10 ml) and H_2O (2.5 ml). To this stirred solution, NCS (534 mg, 4.00 mmol) was added at room temperature. Then, the reaction mixture was stirred at room temperature overnight, mixed with ice-water (100 ml), made basic with aqueous NaOH, and extracted with ether. The extract was washed with H_2O , dried, concentrated *in vacuo*, and chromatographed on silica gel (AcOEt-hexane = 2:8, v/v) to afford 11Bi (49 mg, 11.9%) (recrystallized from MeOH), mp 138—139 °C. IR (KBr): 1660 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 0.89 [6H, d, J = 6.6 Hz, -CH(C H_3)₂], 1.35—1.45 [2H, m, -C H_2 CH(C H_3)₂], 1.52—1.68 [1H, m, -CH₂CH(CH₃)₂], 1.71—1.82 (1H, m, piperidine H), 2.6—3.2 (7H, m, piperidine H] and = NC H_2 CH₂CH₂O, 3.53 (1H, d, J = 13.6 Hz, C_6 H₅C H_2 O, 3.69 (1H, d, J = 13.6 Hz, C_6 H₅C H_2 O, 4.13—4.20 (1H, m, CHCl), 6.82 (1H, d, J = 8.2 Hz, aromatic H), 7.15—7.4 (7H, m, aromatic H).
- (G) Conversion of 9 to 14. Typical Procedure. Synthesis of 1-Benzyl-6'-chloro-5,6-dihydro-3-iodo-3'-methyl-spiro[pyridine-4(1H),4'(3'H)-quinazolin]-2'(1'H)-one (14b)—A solution of I_2 (5.08 g, 20.0 mmol) and NaI (9.00 g, 60.0 mmol) in H_2O (50 ml) was added dropwise over 30 min to a stirred solution of 1-benzyl-4-(2-methylcarbamoyl-amino-5-chlorophenyl)-1,2,5,6-tetrahydropyridine (9b) (3.56 g, 10.0 mmol) in CH_2CI_2 (150 ml) and 10% aqueous NaHCO₃ (100 ml) at room temperature. After a further 1.5 h, the reaction mixture was treated with a small amount of $Na_2S_2O_3$ and this CH_2CI_2 layer was washed with 5% aqueous NaHCO₃, and H_2O , dried, and concentrated *in vacuo*. The residue thus obtained was crystallized from MeOH and collected by filtration to give 14b (4.00 g, 83.4%). Recrystallization from EtOH gave an analytical sample, mp 197—198 °C. MS m/z: 479 (M^+). IR (KBr): 1668 cm⁻¹. 1H -NMR (CDCl₃) δ : 1.8—2.6 (2H, m, piperidine H), 2.8—3.2 [5H, s at 3.06 (N-C H_3) and m, piperidine H), 4.16 (2H, s, $C_0H_3CH_2$), 6.7—7.6 (9H, m, N-CH=C-I and aromatic H), 9.2 (1H, br s, NH).
- (H) Conversion of 8 to 14. Typical Procedure. Synthesis of 1-Benzyl-6'-chloro-5,6-dihydro-3-iodo-3'-n-pentyl-spiro[pyridine-4(1H), 4'(3'H)-quinazolin]-2'(1'H)-one (14h)—A mixture of 8 (1.77 g, 4.57 mmol) and pentylamine (1.2 ml, 10 mmol) was stirred for 30 min at 80 °C. The reaction mixture was concentrated *in vacuo* and the residue was dissolved in CH₂Cl₂ (75 ml) and 10% aqueous NaHCO₃ (50 ml). To this stirred solution, a solution of I₂ (2.54 g, 10.0 mmol) and NaI (4.50 g, 30.0 mmol) in H₂O (25 ml) was added dropwise over 30 min at room temperature. After a further 1.5 h, the reaction mixture was treated with a small amount of Na₂S₂O₃ and diluted with CHCl₃ (200 ml). Then, the organic layer was washed successively with 5% aqueous NaHCO₃ and H₂O, dried, and concentrated *in vacuo*. The oily residue thus obtained was crystallized from MeOH and the precipitated crystals were collected by filtration to give 14h (993 mg, 40.5%). Recrystallization from AcOEt afforded an analytical sample, mp 167—170 °C. IR (KBr): 1661 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.93 (3H, t, J=6 Hz, CH₃), 1.15—1.6 (4H, m, -CH₂CH₂CH₂CH₃), 1.7—2.6 (4H, m, =NCH₂CH₂- and piperidine H), 2.8—3.05 (2H, m, piperidine H), 3.30 (2H, t, J=7 Hz, =NCH₂CH₂-), 4.16 (2H, s, C₆H₅CH₂), 6.68 (1H, d, J=9 Hz, aromatic H), 7.0—7.5 (7H, m, aromatic H), 9.20 (1H, s, NH).
- (I) Synthesis of the Other Compounds. 1-Benzyl-4-[5-chloro-2-ethylthiocarbonylaminophenyl)-1,2,5,6-tetrahydropyridine (8)—Ethyl chlorothioformate (18.5 ml, 177 mmol) was added dropwise at 0 °C over 30 min to a solution of 1-benzyl-4-(2-amino-5-chlorophenyl)-1,2,5,6-tetrahydropyridine (7) (26.5 g, 88.7 mmol) in pyridine (200 ml). Then, the mixture was stirred at room temperature for 2 h and concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and the solution was washed with saturated aqueous NaHCO₃ and saturated aqueous NaCl, dried, and concentrated *in vacuo* to give an oily residue, which was chromatographed on silica gel (AcOEt: hexane = 1:10, v/v) to afford 8 (13.1 g, 38.2%) as an oily product. 1 H-NMR (CDCl₃) δ : 1.33 (3H, t, J=7.5 Hz, OCH₂CH₃), 2.2—2.5 (2H, m, NCH₂CH₂-), 2.71 (2H, t, J=6 Hz, >NCH₂CH₂-), 2.96 (2H, q, J=7.5 Hz, OCH₂CH₃), 3.05—3.25 (2H, m, NCH₂CH=CC), 3.66 (2H, s, C₆H₅CH₂), 5.65—5.8 (1H, m, -CH=CC), 7.05—7.5 (7H, m, aromatic H), 7.98 (1H, d, J=9 Hz, aromatic H).
- 1-Benzyl-4-[2-carbamoylamino-5-chlorophenyl]-1,2,5,6-tetrahydropyridine (9a)——Sodium cyanate (325 mg, 5.00 mmol) was added to a solution of 7 (745 mg, 2.49 mmol) in acetic acid (8 ml) and H₂O (2 ml), and the mixture was stirred at room temperature for 1 h, mixed with H₂O (50 ml), and made basic with concentrated aqueous NaOH.

Precipitated crystals were collected by filtration, washed with H_2O , and dried to give **9a** (788 mg, 92.6%). Recrystallization from EtOH afforded an analytical sample, mp 185—187 °C. IR (KBr): 1670 cm⁻¹.

1-Benzyl-4-[5-chloro-2-(*N*-butylcarbamoylamino)phenyl]-1,2,5,6-tetrahydropyridine (9f)——*n*-Butyl isocyanate (1.98 g, 20.0 mmol) was added to a solution of 7 (2.98 g, 10.0 mmol) in AcOEt (20 ml), and the mixture was stirred at 50 °C for 9 h, then allowed to stand at room temperature overnight. The solution was concentrated *in vacuo* and the oily residue was chromatographed on silica gel (AcOEt:hexane = 2:8, v/v) to afford 9f (2.00 g, 50.3%) as crystals. Recrystallization from AcOEt-hexane gave an analytical sample, mp 61—63 °C. IR (KBr): 1670 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.90 (3H, t, J = 6 Hz, CH_3), 1.10—1.70 (4H, m, $CH_2CH_2CH_3$), 2.2—2.5 (2H, m, $CH_3CH_2CH_3$), 2.73 (2H, t, J = 6 Hz, CH_3CH_3), 3.0—3.5 (4H, m, $CH_3CH_3CH_3$), 3.62 (2H, s, CH_3CH_3), 5.55—5.8 (2H, m, CH_3CH_3), 6.95—7.4 (8H, m, CH_3CH_3), 8.08 (1H, d, CH_3CH_3), aromatic CH_3).

1-Benzyl-4-[2-(N-substituted carbamoylamino)-5-chlorophenyl]-1,2,5,6-tetrahydropyridine (9c—e, 9g, and 9k)
— These compounds were prepared in the same manner as described for 9f from 7 except for the use of the appropriate isocyanate in the place of n-butyl isocyanate.

1-Benzyl-6'-chloro-3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (15)—A mixture of 1-benzyl-6'-chloro-5,6-dihydro-3-iodo-3'-methyl-spiro[pyridine-4(1H), 4'(3'H)-quinazolin]-2'(1'H)-one (14b) (480 mg, 1.00 mmol) and 10% Pd-C (480 mg) in H_2O (20 ml) and MeOH (30 ml) was stirred at 40 °C under a hydrogen atmosphere for 4 h 40 min. The catalyst was filtered off and the filtrate was concentrated *in vacuo*. The residue was mixed with H_2O , made basic with aqueous NaOH, and extracted with CHCl₃. The extract was concentrated *in vacuo* to give an oily residue, which was crystallized from MeOH to afford 15 (46.0 mg, 13.0%). Recrystallization from EtOH gave an analytical sample, mp 197—198 °C. *Anal.* Calcd for $C_{20}H_{22}ClN_3O$: C, 67.50; H, 6.23; N, 11.81. Found: C, 67.47; H, 6.20; N, 11.97.

1-Benzyl-6'-chloro-5,6-dihydro-3'-methyl-spiro[pyridine-4(1H),4'(3'H)-quinazolin]-2'(1'H)-one (16)—A mixture of 1-benzyl-6'-chloro-5,6-dihydro-3-iodo-3'-methyl-spiro[pyridine-4(1H),4'(3'H)-quinazolin]-2'(1'H)-one (14b) (240 mg, 0.500 mmol), 10% Pd-C (240 mg), and 1 N HCl (0.5 ml) in H₂O (9.5 ml) and MeOH (15 ml) was stirred at 40 °C under a hydrogen atmosphere for 17.5 h. The catalyst was filtered off and the filtrate was concentrated *in vacuo*. The residue was mixed with H₂O, made basic with aqueous NaOH, and extracted with CHCl₃. The extract was concentrated *in vacuo* to give an oily residue, which was chromatographed on silica gel with AcOEt and crystallized from EtOH to afford 16 (39.2 mg, 22.2%), mp 167—168 °C. Anal. Calcd for C₂₀H₂₀ClN₃O: C, 67.88; H, 5.70; N, 11.88. Found: C, 67.84; H, 5.73; N, 11.83. MS m/z: 353 (M⁺). IR (KBr): 1660 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.7—1.8 (2H, m, piperidine H), 2.7—2.85 (2H, m, piperidine H), 3.03 (3H, s, N-CH3, 4.14 (2H, s, C₆H₅CH2), 4.29 (1H, q, H3.1 Hz, H4 (2Hz, m, aromatic H4), 8.65 (1Hz, d, H5, NH).

3'-Methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (17)——A mixture of 14b (9.60 g, 20.0 mmol), 10% Pd-C (9.6 g) and triethylamine (27.9 ml, 200 mmol) in H₂O (400 ml) and MeOH (600 ml) was stirred at 40 °C under a hydrogen atmosphere for 16 h. The catalyst was filtered off and the filtrate was concentrated *in vacuo*. The residue was mixed with H₂O, made basic with aqueous NaOH, and extracted with CHCl₃. The extract was concentrated *in vacuo* to give 17 (4.57 g, 98.8%) as an amorphous powder. ¹H-NMR (CDCl₃) δ : 2.0—3.2 [11H, m, piperidine H and s at δ 3.1 (NCH₃)], 6.8—7.5 (4H, m, aromatic H), 9.25 (1H, br s, NH).

1-[2-(3,4-Dimethoxyphenyl)-2-hydroxyethyl]-3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (3a) — A mixture of α-bromo-3,4-dimethoxyacetophenone (19a) (518 mg, 2.00 mmol), 3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (17) (462 mg, 2.00 mmol), and TEA (0.28 ml, 2.0 mmol) in EtOH (15 ml) was stirred at room temperature for 34 h. Then, NaBH₄ (500 mg, 13.2 mmol) was added in one portion to the stirred solution and the reaction mixture was further stirred at room temperature overnight. The reaction mixture was concentrated *in vacuo*, mixed with H₂O, and extracted with CHCl₃. The extract was concentrated *in vacuo* and the residue was chromatographed on silica gel (CH₂Cl₂: MeOH = 30:1) to give 3a (379 mg, 46.1%) as an amorphous powder. ¹H-NMR (CDCl₃) δ: 2.1—3.5 [13H, m, piperidine H, d at δ2.53, J = 7 Hz, $-CH_2CH(OH)$ and s at δ3.13, $-CH_3$], 3.86 and 3.88 (6H, each s, $2 \times CH_3O$), 4.71 [1H, t, J = 7 Hz, $-CH_1OH_2$], 6.8—7.5 (7H, m, aromatic H), 8.6 (1H, s, NH).

1-[2-(3,4-Dimethoxyphenyl)-1-methyl-2-oxoethyl]-3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (20b)——A mixture of α-bromo-3,4-dimethoxypropiophenone (19b) (1.09 g, 3.99 mmol), 17 (924 mg, 3.99 mmol), NaI (600 mg, 4.00 mmol), and TEA (0.56 ml, 4.0 mmol) in EtOH (20 ml) was stirred at room temperature for 34 h. The reaction mixture was concentrated *in vacuo* and chromatographed on silica gel (CH₂Cl₂: MeOH = 30:1) to give 20b (648 mg, 38.3%) as an amorphous powder. IR (KBr): $1660 \, \text{cm}^{-1}$. $^1\text{H-NMR}$ (CDCl₃) δ: $1.30 \, (3\text{H, d, } J=7 \, \text{Hz, } \text{CHCH}_3)$, $1.9-3.0 \, (9\text{H, m, piperidine H} and <math>\text{CHCH}_3$), $3.10 \, (3\text{H, s, NCH}_3)$, $3.95 \, (6\text{H, s, 2} \times \text{CH}_3\text{O})$, 6.7—7.9 (7H, m, aromatic H), $8.7 \, (1\text{H, s, NH})$.

3'-Methyl-1-[2-oxo-2-(3,4,5-trimethoxyphenyl)-1-methylethyl]-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (20c)—A mixture of α -bromo-3,4,5-trimethoxypropiophenone (19c) (1.21 g, 3.99 mmol), 17 (924 mg, 3.99 mmol), NaI (600 mg, 4.00 mmol), and TEA (0.56 ml, 4.0 mmol) in EtOH (20 ml) was stirred at room temperature for 34 h. Precipitated crystals were collected by filtration, washed successively with MeOH and H₂O, and dried to give 20c (1.06 g, 58.5%). Recrystallization from EtOH afforded an analytical sample, mp 181—186 °C. Anal. Calcd for

4670

C₂₅H₃₁N₃O₅: C, 66.21; H, 6.89; N, 9.27. Found: C, 66.17; H, 6.97; N, 8.99. IR (KBr): $1660 \,\mathrm{cm}^{-1}$. 1 H-NMR (CDCl₃) δ : 1.30 (3H, d, J=6 Hz, >CHCH₃), 1.8—3.0 (9H, m, piperidine H and >CHCH₃), 3.10 (3H, s, >NCH₃), 3.93 and 3.90 (9H, each s, 3 × CH₃O), 6.75—7.5 (6H, m, aromatic H), 8.55 (1H, s, NH).

threo-1-[2-Hydroxy-1-methyl-2-(3,4-dimethoxyphenyl)ethyl]-3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (3b)—A stirred solution of 3'-methyl-1-[2-oxo-2-(3,4-dimethoxyphenyl)-1-methylethyl]-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (20b) (423 mg, 0.999 mmol) in dry THF (20 ml) was treated with 1 m L-Selectride/THF (3 ml) and the mixture was stirred for 1 h at room temperature. The reaction mixture, after addition of H_2O , was extracted with CH_2Cl_2 . The extract was concentrated in vacuo and the residue was crystallized from MeOH-AcOEt to afford 3b (205 mg, 48.2%). Recrystallization from EtOH gave an analytical sample, mp 212—214 °C. Anal. Calcd for $C_{24}H_{31}N_3O_4$: C, 67.73; H, 7.34; N, 9.88. Found: C, 67.63; H, 7.60; N, 9.60. IR (KBr): 1666 cm⁻¹. ¹H-NMR (CDCl₃+DMSO- d_6) δ : 0.82 (3H, d, J=7 Hz, Σ CHC H_3), 2.0—3.2 (12H, m, piperidine H_3 , Σ HC H_3 , and s at δ 3.13, NC H_3), 3.88 and 3.90 (6H, each s, 2 \times C H_3O), 4.25 [1H, d, J=10 Hz, Σ CH(OH)-], 6.8—7.5 (7H, m, aromatic H_3), 9.0 (1H, s, N H_3).

threo-1-[2-(Hydroxy-1-methyl-2-(3,4,5-trimethoxyphenyl)ethyl]-3'-methyl-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (3c)— This compound (218 mg, 47.9%) was prepared from 3'-methyl-1-[2-oxo-2-(3,4,5-trimethoxyphenyl)-1-methylethyl]-spiro[piperidine-4,4'(3'H)-quinazolin]-2'(1'H)-one (20c) (453 mg, 0.999 mmol) as described for 3b. mp 205—208 °C. Anal. Calcd for $C_{25}H_{33}N_3O_5$: C, 65.91; H, 7.30; N, 9.23. Found: C, 65.72; H, 7.55; N, 9.16. IR (KBr): 1667 cm⁻¹. ¹H-NMR (CDCl₃+DMSO- d_6) δ: 0.90 (3H, d, J=7 Hz, $CHCH_3$), 2.1—3.5 (12H, m, piperidine H and s at δ3.10, CH_3), 3.76 and 3.85 (9H, each s, H s H can be a comparable of H can

References

- a) H. Takai, H. Obase, M. Teranishi, A. Karasawa, K. Kubo, K. Shuto, Y. Kasuya, M. Hashikami, N. Karashima, and K. Shigenobu, *Chem. Pharm. Bull.*, 33, 1129 (1985); b) H. Takai, H. Obase, N. Nakamizo, M. Teranishi, K. Kubo, K. Shuto, Y. Kasuya, K. Shigenobu, M. Hashikami, and N. Karashima, *ibid.*, 33, 1116 (1985).
- a) M. D. Dowle and D. I. Davies, Chem. Soc. Rev., 1979, 171; b) S. Terashima and S. S. Jew, Tetrahedron Lett., 1977, 1005; c) P. A. Bartlett and J. Myerson, J. Am. Chem. Soc., 100, 3950 (1978); d) A. R. Chamberlin, M. Dezube, and P. Dussault, Tetrahedron Lett., 22, 4611 (1981).
- a) H. W. Pauls and B. Fraser-Reid, J. Am. Chem. Soc., 102, 3956 (1980); b) S. Takano and S. Hatakeyama, Heterocycles, 19, 1243 (1982); c) P. A. Bartlett, D. J. Tanzella, and J. F. Barston, Tetrahedron Lett., 23, 619 (1982); d) S. Kobayashi, T. Isobe, and M. Ohno, ibid., 25, 5079 (1984).
- 4) H. Takai, H. Obase, and M. Teranishi, Chem. Pharm. Bull., 34, 1901 (1986).
- a) A. J. Biloski, R. D. Wood, and B. Ganem, J. Am. Chem. Soc., 104, 3233 (1982); b) M. Hirama, M. Iwashita,
 Y. Yamazaki, and S. Ito, Tetrahedron Lett., 25, 4963 (1984); c) S. Knapp, K. E. Rodriques, A. T. Levorse, and
 R. M. Ornat, ibid., 26, 1803 (1985).
- 6) H. Takai, H. Obase, and M. Teranishi, Chem. Pharm. Bull., 36, 4671 (1988).
- 7) M. Yamato, J. Horiuchi, and Y. Takeuchi, Chem. Pharm. Bull., 28, 2623 (1980).
- 8) G. G. Lyle and L. K. Keefer, J. Org. Chem., 31, 3921 (1966).