4980 Vol. 36 (1988)

Chem. Pharm. Bull. 36(12)4980—4985(1988)

Reactions of 2-Hydroxytryptophol. II.¹⁾ Solvolysis of 3-Substituted-2-hydroxytryptophol and N-Methyl Derivatives with Alcoholic Alkali

TOSHIKAZU NOZOYE, YOSHIHISA SHIBANUMA,* TATSUYA NAKAI and YUMI HATORI

Meiji College of Pharmacy, Nozawa, Setagaya-ku, Tokyo 154, Japan

(Received April 9, 1988)

Tosylates (2b, c) of 3-alkyl-2-hydroxytryptophol gave 3-alkyl-2-alkoxyindolenines (3a—f) on treatment with 5% KOH–ROH (R = Me, iso-Pr), as expected. The N-methyl derivatives (6a—c) gave 3-alkyl-3-(2-alkoxyethyl)oxindoles (7a—d) except for 6a, which afforded the 3-spirocyclopropane (10), and gave 3-alkyl-3-vinyloxindoles (8a, b) with 5% KOH–CH₃CN. The hydrolysis of 3b was examined in the range of HCl concentration of 10^{-1} — 10^{-5} M in 90% EtOH by using ultraviolet spectroscopy.

Keywords——3-alkyl-2-hydroxytryptophol; *N*-methyl-3-alkyl-2-hydroxytryptophol; 3-alkyl-2-alkoxyindolenine; *N*-methyl-3-alkyl-3-(2-alkoxyethyl)oxindole; *N*-methyl-3-alkyl-3-vinyloxindole; solvolysis; UV spectra

In the course of our synthetic studies on 2,3-dihydrofuro[2,3-b]indole (1), we showed that 3-alkyl-2-hydroxytryptophol (2a) did not react with 5% potassium hydroxide (KOH) in ethanol (EtOH) but its tosylates (2b, c) gave the iminoethers (3: indolenine type) under the same conditions.¹⁾ The formation of iminoethers²⁾ under such basic reaction conditions is of interest. Therefore, we further studied the solvolysis of 2b, c and its N-methyl derivatives (6a—c) with methanol (MeOH), iso-propanol (iso-PrOH) and acetonitrile (CH₃CN) as an aprotic solvent in the presence of KOH, and we also examined the stability of 3b in an acidic medium.³⁾ The results are presented here.

Compounds 2b, c were refluxed with 5% KOH in MeOH or iso-PrOH to give, as expected, the methylethers (3a, d) or the isopropylethers (3c, f), respectively, but in CH₃CN an inseparable mixture showing many spots on thin-layer chromatography (TLC) was obtained.

The structures of iminoethers were confirmed by converting **3b** to 3-methyl-2-hydroxytryptophol (**2a**) in quantitative yield by the action of hydrochloric acid (HCl) and by direct comparison with the structural isomer (**2d**), which was obtained from the reaction of

$$\bigcap_{H}^{R_1}$$
 OR_2

 $2\mathbf{a} - \mathbf{d}$ $\mathbf{a} : R_1 = CH_3, R_2 = H$ $\mathbf{b} : R_1 = CH_3, R_2 = Ts$

$$\mathbf{c}: R_1 = C_2H_5, R_2 = Ts$$

 $\mathbf{d}: R_1 = CH_3, R_2 = C_2H_5$

$$OR_2$$

 $N \cap OR_2$ $3\mathbf{a} - \mathbf{f}$ $\mathbf{a} : R_1 = CH_3, R_2 = CH_3$

a: $R_1 = CH_3$, $R_2 = CH_3$ b: $R_1 = CH_3$, $R_2 = C_2H_5$ c: $R_1 = CH_3$, $R_2 = iso-C_3H_7$ d: $R_1 = C_2H_5$, $R_2 = CH_3$ e: $R_1 = C_2H_5$, $R_2 = C_2H_5$

e . $R_1 = C_2H_5$, $R_2 = C_2H_5$ **f** : $R_1 = C_2H_5$, $R_2 = iso-C_3H_7$

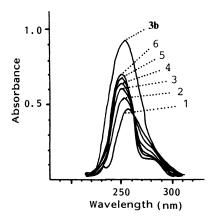


Fig. 1. UV Spectral Changes of **3b** (10⁻⁴ M) in 90% EtOH

Time after the start of hydrolysis in 1 N HCl-EtOH (1:9 in volume): 1=1 min, 2=5 min, 3=10 min, 4=15 min, 5=20 min, 6=30 min (2a).

Table I. Effects of HCl Concentration on the Rate of Hydrolysis of $3b (10^{-4} \text{ M})$ in 90% EtOH

HCl (M)	10-1	10-2	10-3	10-4	10-5
Time (h) ^{a)}	0.5	0.5	2.0	48	48

a) Time required for the completion of hydrolysis.

$$\begin{array}{c} R \\ CH_3 \\ CH_3 \\ A = c \\ A = C$$

2a with C_2H_5I .

The effect of acidity on the hydrolysis of **3b** was precisely examined by ultraviolet (UV) spectroscopy. In the range of HCl concentration of 10^{-1} — 10^{-2} M in 90% EtOH, **3b** was hydrolyzed to **2a** within about 30 min (Table I). The UV spectral changes of **3b** are shown in Fig. 1. In a basic medium (1 N KOH–EtOH), **3b** was fairly stable.

Furthermore, we examined the same reaction with N-methyl derivatives (6a—c) which

4982 Vol. 36 (1988)

TARIE II	Reaction of 2b-	_c and 6a_c wi	th 5% KOH	in DOLIa)	CH CNIb)
I ABLE II.	Reaction of ZD-	−cana oxa−−cwi	IN 37. KUH	I IN KUH" (or CH.CN"

Compd. No. (mmol)	Solvent ^{c)} (ml)	Product No.	Yield ^{d)} (%)	mp (C) (Recryst. sol.)
2b (2.3)	A (30)	3a	93	54—56 (EtOAc)
$(0.3)^{e}$	B (5)	3b	68	109—110 (EtOAc)
(1.9)	C (30)	3c	39	69.5—70 (EtOAc)
2c (0.3)	A (10)	3d	79	72—73 (EtOAc)
$(0.8)^{e}$	B (10)	3e	90	Oil
(0.25)	C (10)	3f	48	72-73 (EtOAc)
6a (0.2)	A (5)	9	Quan.	$84-85 (n-C_6H_{14})$
6b (0.5)	A (10)	7a	77	Oil
(0.5)	B (10)	7 b	59	Oil
(0.34)	D (16)	8a	54	Oil
6c (0.4)	A (5)	7c	Quan.	$42-43 (n-C_6H_{14})$
(0.4)	B (10)	7d	49	Oil
(0.5)	D (20)	8b	35	Oil

a) Refluxed for 1 h. b) Refluxed for 4 h. c) A=MeOH, B=EtOH, C=iso-PrOH, D=CH₃CN. d) Isolated yield after chromatography, except for 3d. e) Data reported in ref. 1.

TABLE III. Physicochemical and Spectral Data for 3a-f, 7a-d and 8a, b

Compd. ^{a)} No.	Formula	Analysis (%) Calcd (Found) C H N	MS M ⁺ , m/z (100%)	UV $\lambda_{\max}^{EtOH} nm$ $(\log \varepsilon)$	IR (neat, cm ⁻¹)
		C H N			
3a	$C_{12}H_{15}NO_{2}$	205.1103 ^{b)}	205	257	3352
		(205.1110)	(205)	(3.74)	1618
					1582
3c	$C_{14}H_{19}NO_{2}$	233.1416 ^{b)}	233	258	3352
,		(233.1417)	(147)	(3.81)	1574
3d	$C_{13}H_{17}NO_{2}$	71.20 7.82 6.39	219	258	3324 ^{c)}
		(70.99 7.93 6.34)	(219)	(3.72)	1616
					1580
3f	$C_{15}H_{21}NO_{2}$	72.83 8.56 5.67	247	258	3304 ^{c)}
		(72.77 8.69 5.69)	(161)	(3.80)	1576
7a	$C_{13}H_{17}NO_{2}$	219.1259b)	219	258	1714
		(219.1268)	(161)	(3.80)	1616
					1120
7b	$C_{14}H_{19}NO_{2}$	233.1416 ^{b)}	233	260	1714
		(233.1414)	(161)	(3.74)	1616
					1118
7c	$C_{14}H_{19}NO_{2}$	72.06 8.21 6.01	233	257	1714 ^{c)}
		(72.06 8.42 6.00)	(175)	(3.83)	1614
					1120
7 d	$C_{15}H_{21}NO_{2}$	247.1572 ^{b)}	247	259	1714
		(247.1573)	(175)	(3.80)	1616
					1118
8a	$C_{12}H_{13}NO$	187.0997 ^{b)}	187	272	1720
		(187.1000)	(187)	(3.31)	1614
8b	$C_{13}H_{15}NO$	201.1154b)	201	270	1714
		(201.1170)	(172)	(3.53)	1614

a) 3a and 3e: ref. 1. b) High-resolution mass. c) KBr.

Compd. Formula	Analysis (%) Calcd (Found)	mp (°C) (Recryst. sol.)	Yield (%)	MS M ⁺ , m/z	UV λ_{max}^{EtOH} nm	IR (KBr, cm ⁻¹)	
		C H N	(Recryst. 301.)	(/0)	(100%)	$(\log \varepsilon)$	(RDI, cm)
5a	$C_{11}H_{13}NO_2$	191.0946 ^{b)}	Oil	22	191	258	3416 ^{c)}
		(191.0947)			(160)	(3.77)	1694
							1616
5b ^{a)}	$C_{12}H_{15}NO_2$	70.21 7.37 6.83	78—80	66	205		3420
		(70.20 7.55 6.66)	(Ether)		(161)		1700
							1615
5c	$C_{13}H_{17}NO_2$	71.19 7.82 6.39	98—99	23	219	258	3420
		(71.13 7.98 6.28)	(EtOAc)		(160)	(3.84)	1700
							1620
6a	$C_{18}H_{19}NO_4S$	62.62 5.55 4.06	109110	44	345	257	1706
		(62.65 5.50 3.99)	(EtOAc)		(173)	(3.78)	1352
							1172
6b	$C_{19}H_{21}NO_4S$	63.52 5.90 3.90	97—98	50	359	255	1704
		(63.26 5.82 3.95)	(MeOH)		(160)	(3.86)	1352
							1178
6c	$C_{20}H_{23}NO_4S$	64.35 6.22 3.75	9699	78	373	256′	1706
		(64.29 6.20 3.76)	(EtOAc)		(373)	(3.72)	1360
							1172

TABLE IV. Physicochemical and Spectral Data for 5a-c and 6a-c

were obtained from N-methyl-2-hydroxytryptophols (5a—c). Compound 6a gave oxindole-3-spirocyclopropane (10), which was identified by comparing its infrared (IR) spectrum with that of an authentic sample.⁵⁾ On the other hand, 6b—c, with a methyl or ethyl group at C-3 of the oxindole ring, gave 3-(2-alkoxyethyl)oxindoles (7a—d) in MeOH or EtOH, and gave 3-vinyloxindoles (8a, b) in CH₃CN. The structures of 7a and 8a were confirmed by direct comparison with authentic samples obtained from the reaction of 5b with CH₃I, and from 9 with 5% KOH-EtOH, respectively (TLC, IR, and MS comparisons).

These transformations are considered to proceed through the solvolysis of the intermediates (11a or 11b).

Experimental

All melting points were measured under a microscope (Yanaco MP-S2) and are uncorrected. IR and UV spectra were recorded on a Hitachi 270-30 spectrophotometer and a Hitachi 200-20 spectrophotometer, respectively. Nuclear magnetic resonance (NMR) spectra were taken on JEOL PS-100 and GX-400 machines with tetramethyl-silane as an internal standard. Mass spectra (MS) were determined with a JEOL D-300 instrument operating at 70 eV. Column chromatography was carried out on silica gel (230—400 mesh, Merck) or alumina (70—230 mesh, Merck).

Reaction of 2b, c and 6a—c with 5% KOH-ROH——A typical experiment is described here for 2b. A solution of 2b (792 mg, 2.3 mmol) and 5% KOH-MeOH (30 ml) was refluxed for 1 h under nitrogen. The solvent was evaporated off in vacuo to give the residue, which was treated with CH₂Cl₂ and H₂O. The CH₂Cl₂ layer was washed with 5% Na₂CO₃ and dried over KOH. Evaporation of the solvent gave the crude product, which was chromatographed on SiO₂ using CH₂Cl₂-EtOAc (1:1) for 3a, b or benzene-EtOAc (2:1) for 7a—d or on Al₂O₃ using benzene-EtOH (19:1) for 3f. Yields, and physicochemical and spectral data are shown in Tables II, III, and V.

Reaction of 6b, c with 5% KOH-CH₃CN—A typical experiment is described here for 6b. A solution of 6b (121 mg, 0.34 mmol) and 5% KOH-CH₃CN (16 ml) was refluxed for 4 h under nitrogen. The solvent was evaporated off *in vacuo* to give the residue, which was treated with EtOAc and H₂O. The EtOAc layer was washed with 5% Na₂CO₃ and dried over KOH. Evaporation of the solvent gave the crude product, which was purified by preparative thin-layer chromatography (SiO₂) using benzene-EtOAc (3:1). Yields, and physicochemical and spectral data are shown in Tables II, III, and V.

a) Lit. 75.5-77.5 C.6 b) High-resolution mass. c) Neat.

Vol. 36 (1988)

TABLE V. ¹H-NMR Spectral Data for the Products (100 MHz, in CDCl₃)

Compd. No.	δ ppm (J in $Hz)^{h)}$
3a	1.38 (3H, s, $C\underline{H}_3$), 2.10 (2H, dt, J =4.7, $-C\underline{H}_2$ -), 2.57 (1H, br, $-O\underline{H}$), 3.25 (2H, t, J =7, $-C\underline{H}_2OH$), 4.04
3c	(3H, s, $-OC\underline{H}_3$), 6.92—7.32 (4H, m, aroma) 1.38 (3H, s, $-C\underline{H}_3$), 1.41 (6H, d, $J=7$, $-CH(C\underline{H}_3)_2$), 1.85 (1H, br, $-O\underline{H}$), 2.10 (2H, dt, $J=4$, 7, $-C\underline{H}_2-$), 3.24 (2H, t, $J=7$, $-CH_2OH$), 5.30 (1H, q, $J=7$, $-CH(CH_3)_2$), 6.96—7.32 (4H, m, aroma)
$3d^{a)}$	0.50 (3H, t, $J = 7.3$, $-CH_2CH_3$), 1.70 (1H, br, $-OH$), 1.84 (2H, q, $J = -CH_2CH_3$), 2.12 (2H, m, $-CH_2$), 3.24 (2H, q, $J = 6.2$, $-CH_2OH$), 4.03 (3H, s, $-OCH_3$), 7.06—7.33 (4H, m, aroma)
3f a)	0.50 (3H, t, $J = 7.3$, $-CH_2CH_3$), 1.38 (6H, d, $J = 6.1$, $-CH(CH_3)_2$), 1.64 (1H, br, $-OH$), 1.83 (2H, q, $J = 7.3$, $-CH_2CH_3$), 2.03—2.17 (2H, m, $-CH_2-$), 3.18—3.31 (2H, m, $-CH_2OH$), 5.29 (1H, q, $J = 6.1$,
5a	$-C$ $_{\rm H}$
_	$(2H, t, J=6.1, -CH_2OH), 6.8-7.3 (4H, m, aroma)$
5c	0.56 (3H, t, $J = 7.3$, $-CH_2CH_3$), 1.60—2.30 (4H, m, $-CH_2CH_3$, $-CH_2$ –), 2.40 (1H, br, $-OH$), 3.24 (3H, s, N–CH ₃), 3.50 (2H, m, $-CH_2OH$), 6.80—7.36 (4H, m, aroma)
6a	2.24 (2H, q, $J=7$, $-CH_2-$), 2.46 (3H, s, ph- CH_3), 3.18 (3H, s, N- CH_3), 3.51 (1H, t, $J=7$, $-CH=$), 4.30
6b	(2H, t, $J=7$, $-C\underline{H}_2-O-$), 6.76—7.18 (4H, m, aroma), 7.30 and 7.70 (each 2H, d, $J=8$, Ts- \underline{H}) 1.38 (3H, s, $-C\underline{H}_3$), 1.92—2.36 (2H, m, $-C\underline{H}_2-$), 2.47 (3H, s, ph- $C\underline{H}_3$), 3.21 (3H, s, N- $C\underline{H}_3$), 3.87 (2H, t, $J=6$, $-C\underline{H}_2-O-$), 6.78—7.20 (4H, m, aroma), 7.26 and 7.38 (each 2H, d, $J=8$, Ts- \underline{H})
6c ^{a)}	0.53 (3H, t, J =7.3, $-CH_2C\underline{H}_3$), 1.71—2.35 (4H, m, $-C\underline{H}_2CH_3$, $-C\underline{H}_2$ –), 2.42 (3H, s, ph- $C\underline{H}_3$), 3.15 (3H, s, N- $C\underline{H}_3$), 3.72—3.83 (2H, m, $-C\underline{H}_2$ –O–), 6.82—7.31 (4H, m, aroma), 7.27 and 7.59 (each 2H, d, J =
7a	8.2, Ts- <u>H</u>) 1.40 (3H, s, -CH ₃), 1.82—2.46 (2H, m, -CH ₂ -), 3.02—3.24 (2H, m, -CH ₂ -OCH ₃), 3.12 (3H, s, -OCH ₃),
	3.24 (3H, s, N-CH ₃), 6.76—7.30 (4H, m, aroma)
7b	1.02 (3H, t, $J = 6.4$, $-OCH_2CH_3$), 1.40 (3H, s, $-CH_3$), 1.84—2.50 (2H, m, $-CH_2$ -), 3.08—3.35 (4H, m, $-CH_3$ -O- CH_3 CH ₃), 3.25 (3H, s, N- CH_3), 6.78—7.30 (4H, m, aroma)
7c ^{a)}	$0.56 \text{ (3H, t, } J = 7.9, -\text{CH}_2\text{CH}_3), 1.76 - 2.33 \text{ (4H, m, -\text{CH}_2\text{CH}_3, -\text{CH}_2-), 3.02} - 3.06 \text{ (2H, m, -\text{CH}_2-)}$
7.1	OCH ₃), 3.07 (3H, s, -OCH ₃), 3.20 (3H, s, N-CH ₃), 6.82—7.29 (4H, m, aroma)
7d	0.57 (3H, t, $J=7$, $-CH_2CH_3$), 1.00 (3H, t, $J=7$, $-OCH_2CH_3$), 1.68—2.48 (4H, m, $-CH_2CH_3$, $-CH_2-$), 3.02—3.32 (4H, m, $-CH_2-O-CH_2CH_3$), 3.23 (3H, s, $N-CH_3$), 6.76—7.32 (4H, m, aroma)
$8a^{a)}$	1.49 (3H, s, $-C\underline{H}_3$), 3.21 (3H, s, $N-C\underline{H}_3$), 5.12 (1H, d, $J=17.4$, $=C\underline{H}_2$), 5.16 (1H, d, $J=10.4$, $=C\underline{H}_2$),
$8b^{a)}$	5.95 (1H, q, $J = 10.4$, 17.4, $-CH = 1$), 6.85—7.31 (4H, m, aroma) 0.66 (3H, t, $J = 7.3$, $-CH_3$), 1.90 (1H, m, $J = 7.3$, $-CH_2$ -), 2.06 (1H, m, $J = 7.3$, $-CH_3$ -), 3.21 (3H, s,
OU T	$N-C\underline{H}_3$, 5.08 (1H, d, $J=17.4$, $-C\underline{H}_2$), 5.13 (1H, d, $J=10.4$, $-C\underline{H}_2$), 5.99 (1H, q, $J=10.4$, 17.4,
	=С <u>Н</u> -), 6.86—7.32 (4H, m, aroma)

a) 400 MHz. b) s = singlet, d = doublet, dd = doublet, dd = doublet, dt = doublet, t = triplet, t

Hydrolysis of 3b in an Acidic Medium to 2a—A solution of 3b (92 mg, 0.4 mmol) in HCl-EtOH [1 N HCl (3 ml) in EtOH (27 ml)] was stirred at room temperature for 30 min, then brine (10 ml) was added, and the mixture was extracted with CH₂Cl₂ (20 ml); the extract was washed with brine, dried over Na₂SO₄, and evaporated *in vacuo* to give 2a (76 mg) in quantitative yield.

Procedure for the N-Methyl-2-hydroxytryptophol Derivatives (5a—c)—A typical experiment is described here for **5b**. A solution of **4b** (3.2 g, 0.02 mol) in dry benzene was added to a suspension of NaH (50%, 1.2 g, 0.024 mol) in dry benzene with stirring at room temperature. The mixture was refluxed for 1 h, then stirred overnight at room temperature. Ethylene oxide (0.9 g) was slowly bubbled into the mixture through an inlet tube at 20—25 °C. Stirring was continued at room temperature for 1 h, then H₂O was added cautiously to the reaction mixture. The benzene layer was separated, washed with brine, and dried over Na₂SO₄. The aqueous layer was acidified with 10% HCl, and extracted with CHCl₃; the extract was dried over Na₂SO₄ after being washed with brine. The combined organic layer was evaporated *in vacuo* to give the residue, which was chromatographed on SiO₂ using benzene–EtOAc (2:1) for **5a—c**. Yields, and physicochemical and spectral data are given in Tables IV and V.

Procedure for the Tosylates (6a—c)—Compounds **6a—c** were obtained from the reaction of **5a—c** with tosyl chloride in anhydrous pyridine as described in the previous paper.¹⁾ Yields, and physicochemical and spectral data are shown in Tables IV and V.

Acknowledgment We are grateful to the staff of the Analytical Center of this college for spectral measure-

ment and elemental analysis.

References and Note

- 1) T. Nozoye, Y. Shibanuma and T. Nakai, Chem. Pharm. Bull., 31, 2986 (1983).
- 2) N. Aimi, E. Yamanaka, J. Endo, S. Sakai and J. Haginiwa, Tetrahedron, 29, 2015 (1973).
- 3) S. Sakai, E. Yamanaka, T. Yokomizo and M. Matsumoto, Yakugaku Zasshi, 95, 1511 (1975).
- 4) Compound **2d** was fully characterized by a combination of spectroscopic and analytical data. **2d**: Oil, C₁₃H₁₇NO₂. IR: 3248, 1702. ¹H-NMR: 1.00 (3H, t, *J*=7.7 Hz), 1.40 (3H, s), 1.70—2.60 (2H, m), 3.17 (2H, t, *J*=6.8 Hz), 3.21 (2H, q, *J*=7.7 Hz), 9.25 (1H, br).
- 5) H. Kondo, T. Nozoye and M. Tobita, Itsuu Kenkyusho Nempo, 5, 80 (1954); H. Kondo and T. Nozoye, ibid., 7, 44 (1956).
- 6) P. K. Battey, D. L. Crookes and G. F. Smith, Can. J. Chem., 57, 1694 (1979).