Chem. Pharm. Bull. **36**(3)1143—1146(1988)₋

Improved Synthesis of (2R,3S,4R)-3,4-Dihydroxy-2-Hydroxymethylpyrrolidine Derivatives

Nobuo Ikota* and Akira Hanaki

National Institute of Radiological Sciences, 4-9-1, Anagawa, Chiba 260, Japan

(Received July 29, 1987)

An improved and facile synthesis of (2R,3S,4R)-2-hydroxymethyl-3,4-dihydroxypyrrolidine derivatives (11 and 15), which are important intermediates for the synthesis of (-)-swainsonine, from D-ribonolactone was developed.

Keywords——(-)-swainsonine; chiral synthesis; (2R,3S,4R)-3,4-dihydroxy-2-hydroxymethylpyrrolidine; D-ribonolactone; Zinner's lactone; selective methoxymethylation

In the previous communications, $^{1,2)}$ we reported the synthesis of (–)-swainsonine (1) and its stereoisomers, which possess α -mannosidase inhibitory activity. In our synthesis of 1, (2R,3S,4R)-3,4-dihydroxy-2-hydroxymethylpyrrolidine derivatives were important intermediates, and in particular 15, having a di-O-benzyl protecting group, was successfully used in a highly diastereoselective allylation for the preparation of 1, and was synthesized from (S)- or (R)-glutamic acid. On the other hand, D-ribonolactone is also an inexpensive, readily available sugar. Although the synthesis of (2R,3S,4R)-4-benzyloxy-2-benzyloxymethyl-3hydroxy-N-toluene-p-sulfonylpyrrolidine from D-ribonolactone in nine steps³⁾ has been re ported, we describe here an imporved and facile synthesis of polyhydroxylated pyrrolidine derivatives (2, 11, and 15) from D-ribonolactone.

Reduction of Zinner's lactone (4), 4-6) prepared from D-ribonolactone (3), with lithium

1144 Vol. 36 (1988)

aluminum hydride in tetrahydrofuran (THF) afforded a triol 5 in 92% yield. The reaction of 5 with 1.3 eq of chloromethyl methyl ether in the presence of N,N-diethylaniline in methylene chloride at -10— -20° C gave the mono-methoxymethyl ether (6) as a major product in 53% yield, and the di-methoxymethyl ether (7) and the mono-methoxymethyl ether (8) were also obtained as minor products in 10.5% and 5% yields, respectively. The desired monomethoxymethyl ether (6) was easily isolated by column chromatography. Mesylation of 6 with methanesulfonyl chloride (2.6 eq) in pyridine afforded the dimesylate (9) in quantitative yield, followed by displacement of the primary mesylate in 9 by sodium azide in dimethylformamide (DMF) to afford the azidomesylate 10. Hydrogenation of the azide group in 10 with palladium black in EtOH gave the pyrrolidine derivative 11 with intramolecular $S_N 2$ displacement in 51% yield from 6 and in six steps from 3. The structure and the optical purity of 11 was confirmed by the conversion of 11 into the hydrochloride of 2 (mp 154—155°C, $[\alpha]_{D}^{20} + 20.8^{\circ}$ (c=0.4, H₂O) by acidic hydrolysis. It was identical with an authentic sample previously prepared.¹⁾ Compound 11 was transformed into 15 by the following procedure. N-Benzylation of 11 with benzyl bromide in the presence of K₂CO₃, selective cleavage of the benzylidene group in 12 under acidic condition (MeOH: 10% aqueous HCl=1:1, 40°C), di-O-benzylation of 13 with benzyl bromide in the presence of sodium hydride in THF-DMF, and acidic hydrolysis of the methoxymethyl group in 14 afforded 15 in 54% overall yield from 11. Thus, the selective methoxymethylation of 5 resulted in the facile preparation of (2R,3S,4R)-3,4-dihydroxy-2-hydroxymethylpyrrolidine derivatives.

Experimental⁷⁾

3,4-O-Benzylidene-D-ribitol (5)—LiAlH₄ (216 mg, 5.7 mmol) was added to a solution of Zinner's lactone (4) (1.23 g, 5.21 mmol) in THF (120 ml) and the whole was stirred at ambient temperature for 2 h. Then, LiAlH₄ (120 mg, 3.2 mmol) was added, and the mixture was stirred for a further 3 h, then neutralized with 10% aqueous HCl. The insoluble materials were filtered off and washed with THF. The combined filtrates were dried over MgSO₄ followed by evaporation and column chromatography (silica gel, AcOEt: MeOH = 10:1) to afford 5 (1.55 g, yield 92%) as a colorless oil. $[\alpha]_D^{20} - 13.0^{\circ}$ (c = 0.4, CHCl₃). IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 1050, 3400. ¹H-NMR (CDCl₃): 3.45—4.5 (9H, m), 4.7 (1H, br s, 1H), 5.65 (1H, br s). ¹³C-NMR (CDCl₃): 60.52 (t), 64.08 (t), 69.54 (d), 77.53 (d), 77.68 (d), 103.16 (d), 126.41 (d), 128.26 (d), 129.48 (d), 136.34 (s). MS m/z: 240 (M⁺).

3,4-O-Benzylidene-1-O-methoxymethyl-D-ribitol (6)——A solution of 5 (940 mg, 3.92 mmol), N,N-diethylaniline (820 mg, 5.49 mmol), and chloromethyl methyl ether (410 mg, 5.1 mmol) in CH₂Cl₂ (15 ml) was kept at -10--20°C for 32 h. After dilution with AcOEt, the mixture was washed with 10% aqueous HCl, saturated aqueous NaHCO₁, and saturated aqueous NaCl. Drying followed by evaporation and column chromatography (silica gel, AcOEt: CHCl₃ = 1:2) afforded 6 (620 mg, yield 53%), 7 (142 mg, yield 10.5%) and 8 (56 mg, yield 5%). 6: mp 37 °C. $[\alpha]_{D}^{20}$ -33.6° (c=1, CHCl₃). IR ν_{max}^{film} cm⁻¹: 1030, 3450. ¹H-NMR (CDCl₃): 3.38 (3H, s, OCH₃), 3.4—4.6 (9H, m), 4.66 (2H, s, OCH₂O), 5.77 (1H, s, CHPh), 7.38 (5H, s, aromatic protons). ¹³C-NMR (CDCl₃): 55.26 (q), 60.43 (t), 68.61 (d), 70.61 (t), 77.14 (d), 78.26 (d), 97.02 (t), 103.11 (d), 126.31 (d), 128.16 (d), 129.33 (d), 136.49 (s). MS m/z: 284 (M⁺). 7: Oil. [α]_D²⁰ – 11.9 ° (c = 0.8, CHCl₃). IR ν $_{\text{max}}^{\text{film}}$ cm⁻¹: 1030, 3500. ¹H-NMR (CDCl₃): 3.38 (6H, s, 2 × OCH₃), 3.38 (1H, OH), 3.58—4.63 (7H, m), 4.68 (2H, s, OCH₂O), 4.69 (2H, s, OCH₂O), 5.81 (1H, s, CHPh), 7.38 (5H, m, aromatic protons). ¹³C-NMR (CDCl₃): 55.11 (q), 55.41 (q), 65.93 (t), 68.32 (d), 69.83 (t), 76.55 (d), 77.58 (d), 96.58 (t), 96.83 (t), 103.41 (d), 126.36 (d), 128.06 (d), 129.18 (d), 136.69 (s). MS m/z: 327 (M⁺ – 1), 310 (M⁺ – 18). 8: Oil. [α]_D²⁰ – 4.2° $(c = 0.7, \text{CHCl}_3)$. IR $v_{\text{max}}^{\text{film}} \text{ cm}^{-1}$:1050, 3450. ¹H-NMR (CDCl₃): 1.96 (2H, br s, 2×OH), 3.41 (3H, s, OCH₃), 3.66— $4.86\ (7H,m),\ 4.71\ (2H,s,OCH_2O),\ 5.80\ (1H,s,C\underline{H}Ph),\ 7.39\ (5H,s,aromatic protons).\ ^{13}C-NMR\ (CDCl_3):\ 55.75\ (q),\ (2H,s,CHPh),\ (2H,s,CHPh),$ 64.27 (t), 65.93 (t), 69.0 (d), 75.68 (d), 78.50 (d), 96.78 (t), 103.45 (d), 126.36 (d), 128.20 (d), 129.37 (d), 136.49 (s). MS m/z: 284 (M⁺).

3,4-O-Benzylidene-2,5-di-O-methanesulfonyl-1-O-methoxymethyl-D-ribitol (9)—A mixture of 6 (930 mg, 3.28 mmol) and methanesulfonyl chloride (976 mg, 8.53 mmol) in pyridine (15 ml) was stirred at 0 °C for 15 h. After dilution with ethyl acetate, the mixture was washed with 10% aqueous HCl, saturated aqueous NaHCO₃, and saturated aqueous NaCl. Drying followed by evaporation and column chromatography (silica gel, AcOEt:CHCl₃=1:4) gave 9 (1.44 g, yield quant.) as crystals. Recrystallization from AcOEt-hexane gave an analytically pure sample, mp 65 °C, $[\alpha]_D^{20} + 35.6$ ° $(c=0.5, CHCl_3)$. IR v_{max}^{nujol} cm⁻¹: 1170, 1360, 1380. ¹H-NMR (CDCl₃): 2.97 (3H, s, SO₂CH₃), 3.09 (3H, s, SO₂CH₃), 3.34 (3H, s, OCH₃), 3.66—4.23 (2H, m, CH₂OCH₂O), 4.3—4.85 (4H, m, 2 × CH, CH₂OSO₂CH₃), 4.63 (2H, s, OCH₂O), 3.98 (1H, s, CHPh), 7.43 (5H, m, aromatic protons). ¹³C-

NMR (CDCl₃): 37.28 (q), 38.94 (q), 55.41 (q), 66.32 (t), 67.32 (t), 67.98 (t), 75.48 (d), 77.53 (d), 96.34 (t), 103.50 (d), 126.31 (d), 128.26 (d), 129.62 (d), 135.52 (s). *Anal.* Calcd for $C_{16}H_{24}O_{10}S_2$: C, 43.64; H, 5.49. Found: C, 43.39;H, 5.45.

5-Azido-3,4-*O*-benzylidene-5-deoxy-2-*O*-methanesulfonyl-1-*O*-methoxymethyl-D-ribitol (10) — A mixture of **9** (1.3 g, 2.95 mmol) and sodium azide (384 mg, 5.9 mmol) in DMF (15 ml) was stirred at 110-120 °C for 2.5 h. After dilution with AcOEt-benzene (4:1), the mixture was washed with H_2O and saturated aqueous NaCl (×5). Drying followed by evaporation and column chromatography (silica gel, AcOEt: CHCl₃ = 1:10) gave **10** (788 mg, yield 69%) as a slightly yellow oil. $[\alpha]_D^{20}$ + 52.2 ° (c = 1.2, CHCl₃). IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 1180, 1350, 2055. ¹H-NMR (CDCl₃): 3.09 (3H, s, OSO₂CH₃), 3.34 (3H, s, OCH₃), 3.54—3.71 (2H, m, N₃CH₂), 3.71—4.09 (2H, m, CH₂OCH₂O), 4.26—4.51 (2H, m, 2xCH), 4.63 (2H, s, OCH₂O), 4.98 (1H, m, CHOSO₂), 5.83 (1H, s, CHPh), 7.40 (5H, m, aromatic protons). ¹³C-NMR (CDCl₃): 39.18 (q), 50.48 (t), 55.50 (q), 66.52 (t), 75.68 (d), 78.26 (d), 96.49 (t), 103.41 (d), 126.36, 128.35, 129.57, 135.81 (s). MS m/z: 387 (M⁺).

(2*R*,3*S*,4*R*)-3,4-Benzylidenedioxy-2-(methoxymethoxy)methylpyrrolidine (11)—A solution of 10 (600 mg, 1.55 mmol) in EtOH (10 ml) in the presence of palladium black (150 mg) was stirred under hydrogen at atmospheric pressure for 15 h and then filtered. The filtrate was concentrated *in vacuo* to give an oily residue, which was dissolved in AcOEt, and washed with 10% aqueous NaOH and saturated aqueous NaCl. Drying followed by evaporation and column chromatography of the residue (silica gel, AcOEt) gave 11 (301 mg, yield 73%) as a colorless oil. [α]_D²⁰ – 76.1° (c=0.5, CHCl₃). ¹H-NMR (CDCl₃): 2.14 (1H, s, NH), 2.72 (1H, dd, J=3.4, 13 Hz, H-5), 3.01 (1H, m, CHCH₂OCH₂), 3.30 (1H, d, J=13 Hz, H-5), 3.36 (3H, s, OCH₃), 3.45—4.07 (2H, m, CH₂OCH₂O), 4.66 (2H, s, OCH₂O), 4.50—4.85 (2H, m, 2 × CH), 5.68 (1H, s, CHPh), 7.40 (5H, m, aromatic protons). ¹³C-NMR (CDCl₃): 52.73 (t), 55.02 (q), 63.15 (d), 65.54 (t), 81.77 (d), 82.55 (d), 96.39 (t), 104.23 (d), 126.36, 128.11, 129.33, 135.73 (s). MS m/z: 264 (M⁺).

(2R, 3S, 4R)-3,4-Dihydroxymethyl-2-hydroxymethylpyrrolidine Hydrochloride (Hydrochloride of 2)——A mixture of 11 (30 mg, 0.11 mmol), 10% aqueous HCl (2 ml), and MeOH (2 ml) was stirred at 70 °C for 2 h. After removal of the methanol in vacuo, the aqueous layer was washed with ether (\times 2), then evaporated in vacuo to dryness. The residue was crystallized from methanol—ether to give hydrochloride of 2 (16 mg, yield 83%) as needles, mp 154—155 °C. Spectroscopic data and the [α]_D value were identical with those of an authentic sample.

(2R, 3S, 4R)-3,4-Dibenzyloxy-2-hydroxymethyl-N-benzylpyrrolidine (15)——A mixture of 11 (640 mg, 2.42 mmol) and benzyl bromide (0.57 ml, 4.84 mmol) in acetone (15 ml) was stirred in the presence of anhydrous K₂CO₃ (2 g) at room temperature for 2 h and filtered. The filtrate was concentrated in vacuo and the residue was chromatographed (silica gel, AcOEt: hexane = 1:4) to afford (2R,3S,4R)-3,4-benzylidenedioxy-2-(methoxymethoxy)methyl-Nbenzylpyrrolidine (12, 816 mg, yield 95%) as a colorless oil. $[\alpha]_D^{20} - 30.0^{\circ} (c = 0.5, \text{CHCl}_3)$. ¹H-NMR (CDCl₃): 2.10 (1H, dd, J = 11.1, 4Hz, H-5), 2.4—2.7 (1H, m, CHCH₂OCH₂O), 3.22 (1H, d, J = 11 Hz, H-5), 3.25, 4.20 (2H, AB, $J = 13.4 \text{ Hz}, \text{ CH}_2\text{Ph}), 3.32 \text{ (3H, s, OCH}_3), 3.71 - 4.1 \text{ (2H, m, CHCH}_2\text{O)}, 4.5 - 4.85 \text{ (2H, m, 2 × CH)}, 4.63 \text{ (2H, s, m, 2 × CH)}$ OCH₂O), 5.73 (1H, s, CHPh), 7.1—7.7 (5H, m, aromatic protons). ¹³C-NMR (CDCl₃): 54.87 (q), 57.36 (t), 58.87 (t), 66.18 (t), 66.76 (d), 78.39 (d), 81.04 (d), 96.39 (t), 104.87 (d), 126.50, 126.94, 127.81, 129.13, 136.93 (s), 138.29 (s). A mixture of 12 (800 mg, 2.25 mmol) in MeOH (6 ml) and 10% aqueous HCl (6 ml) was stirred at 40 °C for 2 h. After removal of the methanol in vacuo, the aqueous layer was basified with 10% aqueous NaOH, and extracted with AcOEt (×3). The organic layer was washed with saturated aqueous NaCl. Drying followed by evaporation and column chromatography (silica gel, AcOEt) gave (2R,3S,4R)-3,4-dihydroxy-2-(methoxymethoxy)methyl-Nbenzylpyrrolidine (13, 384 mg, yield 64%) as a colorless oil. $[\alpha]_D^{20} - 18.2^{\circ} (c = 0.4, \text{CHCl}_3)$. IR $v_{\text{max}}^{\text{film}} \text{cm}^{-1}$: 1035, 1100, 3450. ¹H-NMR (CDCl₃): 2.44(1H, dd, J = 4, 11.4 Hz, H-5), 2.7—3.0(4H, m, H-2, 2×OH, H-5), 3.39(3H, s, OCH₃), 3.50, 3.88 (2H, AB, J = 13.7 Hz, CH₂Ph), 3.5—3.62 (2H, m, CH₂OCH₂O), 3.85—4.02 (1H, m, CH), 4.12—4.32 (1H, m, CH), 4.61, 4.69 (2H, AB, J = 6.5 Hz, CH₂OCH₂O), 7.29 (5H, s, aromatic protons). ¹³C-NMR (CDCl₃): 55.54, 57.34, 58.36, 63.42, 65.31, 70.57, 73.09, 96.63, 126.88, 128.40, 128.00, 138.01. MS m/z: 267 (M⁺). A solution of 13 (370 mg, 1.39 mmol) in THF (10 ml) was added to a suspension of sodium hydride (166 mg, 60% oil suspension, washed with hexane, 4.16 mmol) in DMF (10 ml) at 0 °C. The mixture was stirred at room temperature for 40 min, then benzyl bromide (0.5 ml, 4.16 mmol) was added, and the mixture was stirred at room temperature for 4 h. After dilution with AcOEt-benzene, the mixture was washed with H_2O (\times 3) and saturated aqueous NaCl (\times 3). Drying followed by evaporation and column chromatography of the residue (silica gel, AcOEt:hexane=1:4) afforded (2R,3S,4R)-3,4-dibenzyloxy-2-(methoxymethoxy)methyl-N-benzylpyrrolidine (14, 570 mg, yield 92%) as a colorless oil. $[\alpha]_D^{20} - 35.2^{\circ} (c = 1.6, \text{CHCl}_3)$. H-NMR (CDCl₃): 2.61 (2H, dd, J = 5.7, 11.4 Hz, H-5), 2.98—3.38 (2H, m, H-5, H-2), 3.38 (3H, s, OCH₃), 3.66, 4.10 (2H, AB, J = 13.7 Hz, CH₂Ph), 3.75—4.14 (4H, m, 2 × CH, CHC $\underline{\text{H}}_2$ O), 4.55—4.92 (6H, m, 2 × CH₂Ph, OCH₂O), 7.35 (15H, s, aromatic protons). ¹³C-NMR (CDCl₃): 54.53 (t), 54.92 (q), 59.50 (t), 63.88 (d), 67.88 (t), 71.29 (t), 72.51 (t), 77.04 (d), 78.50 (d), 96.58 (t), 126.5, 127.14, 127.38, 127.92, 128.40, 138.19 (s), 138.25 (s), 138.65 (s). A mixture of **14** (550 mg, 1.23 mmol) in MeOH (6 ml) and 10% aqueous HCl (3 ml) was stirred at 70 °C for 2 h. After removal of the methanol in vacuo, the aqueous layer was basified with 10% aqueous NaOH followed by extraction with AcOEt. Drying followed by evaporation and column chromatography of the residue (silica gel, AcOEt: hexane = 1:1) afforded 15 (477 mg, yield 96%) as a colorless oil. $[\alpha]_D^{20} - 56.0^{\circ} (c = 1.5, \text{CHCl}_3)$, (lit. [$\alpha]_D^{20}$ -58.3° (c=1.6 CHCl₃)). IR $v_{\text{max}}^{\text{film}}$ cm⁻¹: 690, 730, 1020, 1130, 1340, 3450. ¹H-NMR (CDCl₃): 2.44 (1H, dd, J=4, 11 Hz, H-5), 2.9—3.3 (3H, m, OH, H-5, H-2), 3.59, 3.91 (2H, AB, J = 13.7 Hz, CH₂Ph), 3.6—3.8 (2H, m, CH₂OH), 3.95—4.12 (2H, m, 2 × CH), 4.32—4.7 (4H, m, 2 × C \underline{H}_2 Ph), 7.29 (5H, s, aromatic protons). ¹³C-NMR (CDCl₃): 53.94 (t), 58.18 (t), 60.04 (t), 63.45 (d), 71.0 (t), 71.58 (d), 75.38 (d), 78.94 (d), 126.6, 127.0, 127.2, 127.8, 128.0, 128.31, 137.5 (s), 138.1 (s). MS m/z: 401 (M $^+$).

Acknowledgments We are grateful to Prof. T. Hino (Chiba University) and to Prof. K. Koga (University of Tokyo) for spectral measurements. Partial financial support by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (No 62570957) and the Japan Research Foundation for Optically Active Compounds is gratefully acknowledged.

References and Notes

- 1) N. Ikota and A. Hanaki, Chem. Pharm. Bull., 34, 2140 (1987).
- 2) N. Ikota and A. Hanaki; Heterocycles, 26, 2369 (1987).
- 3) A. M. Sepulchre, A. Gateau, A. Goudemer, and S. D. Gero, Chem. Commun., 1970, 759.
- 4) H. Zinner, H. Voight, and J. Voight, Carbohydr. Res., 7, 38 (1968).
- 5) N. Bagget, J. G. Buchanan, M. Y. Fatah, K. J. MuCullough, and J. M. Webber, Chem. Commun., 1985, 1836.
- 6) The synthesis of (2R,3S,4R)-dihydroxyproline from Zinner's lactone has been reported. J. C. Dho, G. W. J. Fleet, J. M. Peach, K. Prout, and P. W. Smith, *Tetrahedron Lett.*, 27, 3203 (1986).
- 7) Melting points were measured on a hot stage apparatus and are uncorrected. Infrared (IR) spectra measurements were performed with a JASCO IRA-1 grating infrared spectrometer. Proton nuclear magnetic resonance (¹H-NMR) spectra and carbon-13 nuclear magnetic resonance (¹3C-NMR) spectra were measured with a JNM-FX-100 (100 MHz) spectrometer. Data are recorded in parts per million (ppm) downfield from internal tetramethylsilane. The following abbreviations are used: singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). Optical rotations were determined with a JASCO DIP-SL. Mass spectra (MS) were recorded with a JEOL JMS-01 5G-Z mass spectrometer. The organic solvents were dried over MgSO₄ before vacuum evaporation.