Communications to the Editor

Chem. Pharm. Bull. 36(3)1237—1240(1988)

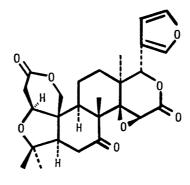
NEW 5β-H LIMONOIDS FROM EVODIA RUTAECARPA BENTHAM

Tohru Sugimoto, ^a Akira Ueno, ^{*,a} Shigetoshi Kadota, ^b
Chengbin Cui, ^b and Tohru Kikuchi ^{*,b}

School of Pharmaceutical Science, University of Shizuoka, a 2-2-1 Oshika, Shizuoka 422, Japan and Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, b 2630 Sugitani, Toyama 930-01, Japan

Two new 5 β -H limonoids, 6 α -acetoxy-5-epilimonin (1) and 6 β -acetoxy-5-epilimonin (2), were isolated from the fruit of Evodia rutaecarpa BENTHAM (Rutaceae), together with limonin (3) and evodol (4), and their structures were determined based on the 1 H- and 13 C-NMR spectral data.

KEYWORDS —— limonoid; Evodia rutaecarpa; Rutaceae; 6α -acetoxy-5-epilimonin; 6β -acetoxy-5-epilimonin; limonin; evodol; NMR


In the course of our study on the biologically active compounds of Rutaceous plants, we have isolated two new minor limonoids, 6α -acetoxy-5-epilimonin (1) and 6β -acetoxy-5-epilimonin (2), from the fruit of Evodia rutaecarpa BENTHAM and found that they have an uncommon 5β -H configuration. Recently, Nakatani et al. have reported the isolation and structure determination of graucin A, a new bitter limonoid having the 5β -H configuration, from the roots of E. grauca MIQ. This report prompted us to publish the results of our structure elucidation of 1 and 2.

The MeOH extract of Evodiae fruit was separated into the AcOEt-soluble part and the $\rm H_2O$ -soluble one. The former was further fractionated by a combination of silica gel chromatography and HPLC to give new limonoids, 6α -acetoxy-5-epilimonin (1) and 6β -acetoxy-5-epilimonin (2), along with known limonoids limonin (3) and evodol(4).

 $_{6\alpha-\text{Acetoxy-5-epilimonin}(1),C_{28}H_{32}O_{10},\text{was obtained as colorless rods(from MeOH),}}$ mp 256-258°C, [$_{\alpha}$] $_{D}^{20}$ -93.5°(CHCl $_{3}$), UV $_{\text{max}}^{\text{MeOH}}$ nm: 208 (log $_{\epsilon}$ = 3.76), IR $_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 1770

 $\frac{1}{2}$: $R = \alpha - OAc$

 $2: R = \beta - OAc$

3

OH OH

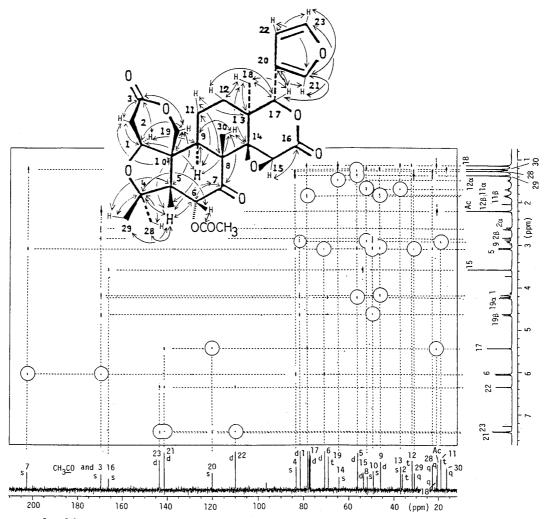


Fig. 1. $^{1}\text{H-}^{13}\text{C}$ Long-Range Correlation Spectrum of 6α -Acetoxy-5-epilimonin (1) in CDCl $_{3}$ (Sample: 11 mg, 12 h run, J_{CH} = 10 Hz)

and 1750, CD: $[\theta]_{287}^{\text{MeOH}}$ -4000, $[\theta]_{227}^{\text{MeOH}}$ -19000 (c=0.0009). The EIMS of 1 showed the M⁺ peak at m/z 528 and fragment ion peaks at m/z 513 (M-CH₃)⁺,453 (M-CH₃-CH₃COOH)⁺. Detailed analysis of the $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ spectra of 1 in $^{1}\text{H-}$ decoupling experiments and $^{1}\text{H-}^{13}\text{C}$ COSY suggested the presence of four tert-methyl groups (δ H 1.14, 1.22, 1.27, and 1.37), a cyclohexanone, an acetoxyl group (δ H 2.21), a β -substituted furan (δ H 6.35, 7.40, and 7.42), a lactone (δ H 2.61, 2.85, 4.23, and 4.64), and an epoxy-lactone (δ H 3.58 and 5.44). This indicates that 1 may be a compound closely related to limonin (see also Table I).

Treatment of $\frac{1}{2}$ with KHCO $_3$ in MeOH gave a diosphenol (4), which was identical with evodol (4) by the $^1\text{H-NMR}$ comparison.

Next, we applied the $^1\text{H}-^{13}\text{C}$ long-range COSY to 1 in order to confirm the structure. As shown in Fig. 1, the carbon signal at δ 169.2 (CH $_3$ COO) showed long-range correlation with the $^1\text{H}-\text{signal}$ at δ 6.05 (6-H), while the signal at δ 202.5 (7-C) with those at δ 1.22 (30-H $_3$),3.08 (5-H),and 6.05 (6-H). Also, the methyl carbon signals at δ 20.7, 22.6, and 30.7 are correlated with the $^1\text{H}-\text{signals}$ at δ 5.44 (17-H), at δ 1.37 (29-H $_3$) and 3.08 (5-H), and at δ 1.27 (28-H $_3$) and 3.08 (5-H),respectively.

Table I. 13 C-NMR Spectral Data of 6α -Acetoxy-5-epilimonin (1), 6β -Acetoxy-5-epilimonin (2), and Limonin (3) (δ in CDCl₃)

Compd 13C	Ţ	2	3		į	2	3
1	81.2 d	78.3 d	79.1 d	15	53.3 d	55.9 d	53.9 d
2	36.0 t	35.1 t	35.7 t	16	165.9 s	165.9 s	166.6 s
3	169.3 s	169.5 s	169.1 s	17	7 7. 9 d	77.9 d	77.8 d
4	83.0 s	82.5 s	80.3 s	18	20.7 q	20.7 q	20.7 q
5	55.9 d	56.5 d	60.5 d	19	68.9 t	70.7 t	65.4 t
6	70.4 d	73.9 d	36.4 t	20	119.9 s	119.9 s	120.0 s
7	202.5 s	202.9 s	206.2 s	21	141.1 d	141.3 d	141.1 d
8	51.7 s	48.1 s	51.3 s	22	109.7 d	109.3 d	109.7 d
9	45.8 d	39.8 d	48.1 d	23	143.3 d	143.4 d	143.2 d
10	49.1 s	48.6 s	45.9 s	28	22.6 q	22.1 q	30.2 q
11	18.9 t	17.1 t	18.9 t	29	30.7 q	29.7 q	21.4 q
12	31.8 t	26.9 t	30.8 t	30	16.3 q	17.0 q	17.6 q
13	36.8 s	38.9 s	37.9 s	<u>с</u> н ₃ соо	20.4 q	20.3 q	
14	64.2 s	68.3 s	65.7 s	сн ₃ соо	169.2 s	169.8 s	

The many carbon signals were determined by the off-resonance and are indicated as s, d, t, and q. Assignments were done by the use of $^{1}\mathrm{H}^{-13}\mathrm{C}$ COSY and long-range COSY.

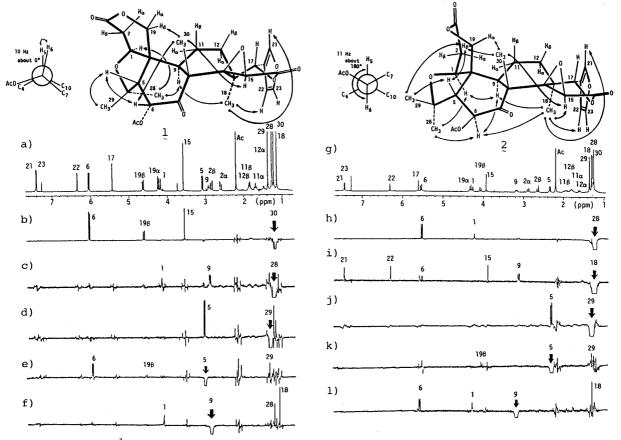


Fig. 2. Normal $^1\text{H-NMR}$ and NOE Difference Spectra of $6\alpha\text{-Acetoxy-5-epilimonin}$ (1) (a-f) and $6\beta\text{-Acetoxy-5-epilimonin}$ (2) (g-1) in CDCl₃

Therefore, those carbons at δ 20.7, 22.6, and 30.7 in the spectrum of 1 were assigned to 18-, 28-, 3 and 29-C, 5 respectively. Some other significant long-range correlations observed are also shown by arrows in Fig. 1.

From the above observation together with the $^1\text{H-NMR}$ data it appears that 1 is a limonoid having 6-acetoxyl group.

The relative stereochemistry of 1 was determined on the basis of the coupling constants of each proton and the results of NOE experiments. Irradiation at the 30-H₃ and 28-H₃ enhanced the signal intensity of the 6-, 15-, and 19 β -protons and the 1- and 9-protons, respectively, and irradiation at the 29-H₃ and 5-H enhanced the signal intensity of the 5-proton and the 6- and 29-protons, respectively(Fig.2,a-e). Also there were NOEs between the 9-H and the 18-H₃, 28-H₃, and 1-H. In view of the coupling constant of 6-H (10 Hz), it appears that the B-ring has a half-chair conformation in which the dihedral angle between 5-H and 6-H is almost 0° (Fig. 2).

 6β -Acetoxy-5-epilimonin (2), 6) $C_{28}^H{_{32}}^O{_{10}}$, was obtained as colorless crystals (from MeOH), mp 229-231°C, $[\alpha]_D^{20}$ +41° (CHCl $_3$), UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 206 (logε=3.78), IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 1770 and 1750, CD: $[\theta]_{303}^{\rm MeOH}$ +11000, $[\theta]_{295}^{\rm MeOH}$ +12000, $[\theta]_{230}^{\rm MeOH}$ -11500 (c= 0.0006). This compound was considered to be the 6-epimer of 1 from comparisons of the 1 H- and 13 C-NMR spectral data with those of 1. This was supported by the NOE experiments, in which NOEs appeared between the 28-H $_3$ and the 6-H as well as between the 29-H $_3$ and the 5-H, as shown in Fig. 2 (h and j). The coupling constant of 6-H (11 Hz) in 2 suggested that the B-ring has a boat conformation in which the dihedral angle between 5-H and 6-H is about 180° (Fig. 2).

It should be noted that the 5β -H limonoids are rare in nature and only a few 5β -H-6-oxo compounds have been reported so far. Our present result provided the first example of 5β -H-6-acetoxy limonoids, which are not enolizable at the 5-position. They are of interest from the biogenetic view point.

REFERENCES AND NOTES

- 1) This work was presented at the 34th Annual Meeting of Japanese Society of Pharmacognosy of Japan, Osaka, October 1987, Abstr., p. 134.
- 2) N. Nakatani, H. Takao, T. Iwashita, and T. Hase, Bull. Chem. Soc. Jpn., 60, 2503 (1987).
- 3) D. H. R. Barton, S. K. Pradhan, S. Sternhell, and J. F. Templeton, J. Chem. Soc., 255 (1961); S. Arnott, A. W. Davie, J. M. Robertson, G. A. Sim, and D. G. Watson, J. Chem. Soc., 4183 (1961).
- 4) Y. Hirose, Chem. Pharm. Bull., 11, 535 (1963).
- 5) Assignments were confirmed by the NOE experiments.
- 6) 2: $^{1}\text{H-NMR}$ (CDCl₃) δ : 1.25 (3H,s, 30-H₃), 1.28 (3H,s, 28-H₃), 1.31 (3H,s, 18-H₃), 1.36 (3H,s, 29-H₃), 1.60 (1H,ddd, J=15, 9, 2 Hz, 12-H α), 1.78 (1H,dddd, J=15, 9, 4.5, 2 Hz, 11-H α), 1.83 (1H,ddd, J=15, 6, 2 Hz, 12-H β), 1.94 (1H,dddd, J=15, 12.5, 6, 2 Hz, 11-H β), 2.21 (3H, s, CH₃CO), 2.34 (1H,d, J=11 Hz, 5-H), 2.64 (1H,dd, J=16, 3 Hz, 2-H β), 2.89 (1H,dd, J=16, 3 Hz, 2-H α), 3.18 (1H,dd, J=12.5, 4.5 Hz, 9-H), 3.93 (1H,s, 15-H), 4.07 (1H,d, J=12 Hz, 19-H β), 4.26 (1H, t, J=3 Hz, 1-H), 4.32 (1H, d, J=12 Hz, 19-H α), 5.54 (1H,d, J=11 Hz, 6-H), 5.61 (1H,s, 17-H), 6.31 (1H,dd, J=1.8, 0.Hz, 22-H), 7.43 (1H,t, J=1.8 Hz, 23-H), 7.45 (1H,dd, J=1.8, 0.8 Hz, 21-H).
- 7) R. D. Benett and S. Hasegawa, Tetrahedron, 37, 17 (1981).

(Received December 25, 1987)