Communications to the Editor

Chem. Pharm. Bull. 36(3)1249—1251(1988)

ARYL BIS(2-0X0-3-BENZOXAZOLINYL)PHOSPHINATE AND TRIS(2-0X0-3-BENZOXAZOLINYL)PHOSPHINE OXIDE: NEW CONDENSING REAGENTS
FOR BETA-LACTAM FORMATION FROM BETA-AMINO ACIDS

Tomohisa Nagamatsu and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University,

5-1, Oe-honmachi, Kumamoto 862, Japan

Beta-lactam compounds including the penam, a basic skeleton of penicillins, are conveniently prepared by the dehydration of β -amino acids using new condensing reagents which are titled.

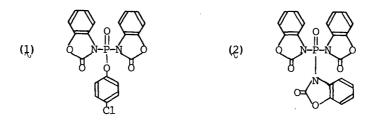
KEYWORDS —— β -lactam; β -amino acid; penam; condensing reagent; 2-benzoxazolinone; 4-chlorophenyl bis(2-oxo-3-benzoxazolinyl)phosphinate; tris(2-oxo-3-benzoxazolinyl)phosphine oxide

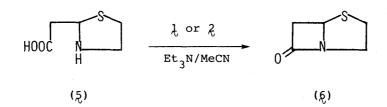
Among the synthetic methods for β -lactam compounds of biological interests, intramolecular cyclization of β -amino acids is a versatile and fundamental methodology. Several condensing reagents have been reported such as DCC, he had perfectly phases 2-halo-1-methylpyridinium iodide, and bis(5-nitro-2-pyridyl)trichloroethyl phosphate. Some of these are highly effective for β -lactam formation only in a limited number of cases.

Recent work on the use of 2-oxazolone heterocycle in the synthesis revealed that phosphorus compounds activated by such a simple heterocycle were highly promising for β -lactam formation from a wide variety of β -amino acids. Such desirable results prompted us to examine the compounds activated by the 2-benzoxazolinone moiety, aryl bis(2-oxo-3-benzoxazolinyl)phosphinate (1) and tris(2-oxo-3-benzoxazolinyl)phosphine oxide (2), as condensing reagents for β -lactam formation via intramolecular dehydration of β -amino acids.

As in the preparation of the bis-benzoxazolide 1 (mp 168°C) originally developed for the phosphorylation of alcohols, 7) tris-compound 2 (mp 252°C) was easily obtained in 78% yield on treatment of commercially available 2-benzoxazolinone with phosphoryl chloride in the presence of triethylamine. 8) These reagents are readily purified by chromatography on silica gel and/or recrystallization from methylene chloride-cyclohexane, and are stable enough on prolonged storage in a desiccator.

When N-substituted and non-substituted β -amino acids were treated with reagent 1 or 2 in the presence of triethylamine in boiling acetonitrile, monocyclic β -lactams were equally formed in high yields as indicated in Table I. A typical reaction procedure is as follows. A mixture of N-benzyl- β -alanine (1 mmol), the




Table I. Preparation of Monocyclic β -Lactams from β -Amino Acids^{a)}

β-Amino acid	R^1	R^2	R ³	β-Lactam (4)	Isolated Į	yield ⋛
રૃક	Н	Н	CH ₂ Ph	4 ₹	85 %	88 %
ЯŖ	CH ₃	Н	CH ₂ Ph	₹k	85	87
રૃદ	н	CH ₃	CH ₂ Ph	4 8	82	80
, 3 <u>д</u> (s)	Н	COOCH ₃	CH ₂ Ph	4d (s)	63	76
дę (s)	H	CH ₂ COOCH ₃	CH ₂ Ph	4£ (S)	75	78
₹£	H	CH ₃	CH ₂ CH ₂ Ph	₽ŧ	77	78
ત્રૈક્ષ	H	СН ₃	n-Pro	4 .8	70	74
Ąķ	Ħ	CH ₃	n-Bu	4.h	67	75
Įį.	CH ₃	н	Н	4i	68	71
Ąį	Н	CH ₃	H	Ąį	76	67
₹ķ	H	Ph	H	4 K	76	72

a) All $\beta\text{--lactam}$ compounds described here gave spectral data identical with those of the authentic samples.

reagent 1 (1 mmol) and triethylamine (2 mmol) was heated in acetonitrile (100 ml) under reflux for 6 h. Evaporation of the solvent in vacuo, followed by chromatographic purification on silica gel (methylene chloride-ethyl acetate) gave N-benzyl-2-acetidinone (4a) in 85% yield. The use of three eq of triethylamine is preferable in the dehydration with tris-reagent 2 which gives slightly higher yield.

This method was used to synthesize the basic skeleton of penicillin-type β -lactams, 4-thia-1-azabicyclo[3.2.0]heptan-7-one (penam) (β), for which efficient reagents had not been reported except tris(2-oxo-3-oxazoliny1)phosphine oxide quite recently developed. Thus, the suspension of 2-thiazolidineacetic acid (β) hydrochloride (1 mmol) and the reagent 2 (1 mmol) in acetonitrile (100 ml) was heated for 6 h in the presence of triethylamine (3.5 mmol). The usual workup as above afforded the desired β -lactam compound β in 41% yield. The reagent

1 gave 23% yield of the penam g under the same conditions, while the versatile reagent $Ph_3P/(2-PyS)_2$ was not so effective, yielding the penam only in 8% yield. The mono-benzoxazolide, diphenyl 2-oxo-3-benzoxazolinylphosphonate, had limited use only due to the remarkable dependency on the structural features of g-amino acids, and was found completely ineffective for the formation of the penam.

Thus, the condensing reagents described here provide highly promising methods for synthesis of β -lactam compounds from β -amino acids. Applications to the synthesis of penams and cephams are currently under investigation.

REFERENCES AND NOTES

- 1) J. C. Sheehan and E. J. Corey, Org. React., 9, 388 (1957).
- 2) D. G. Melillo, I. Shinkai, T. Liu, K. Ryan, and M. Sletzinger, <u>Tetrahedron Lett.</u>, 1980, 2783; T. Kametani, S. Huang, S. Yokohama, Y. Suzuki, and M. Ihara, <u>J. Am. Chem. Soc.</u>, 102, 2060 (1980).
- 3) S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, <u>J. Am. Chem. Soc.</u>, 103, 2406 (1981).
- 4) H. Huang, N. Iwasawa, and T. Mukaiyama, Chem. Lett., 1984, 1465.
- 5) S. Kim, S. B. Chang, and P. H. Lee, Tetrahedron Lett., 28, 2735 (1987).
- 6) T. Kunieda, T. Nagamatsu, T. Higuchi, and M. Hirobe, submitted for publication.
- 7) T. Nagamatsu and T. Kunieda, Tetrahedron Lett., 28, 2375 (1987).
- 8) $^{1}\text{H-NMR}$ (60 MHz, CDCl₃): δ 7.15 7.43 (9H, m), 7.58 7.83 (3H, m).
- 9) T. Chiba, J. Sakaki, T. Takahashi, and C. Kaneko, Chem. Lett., 1985, 659; T. Chiba, J. Sakaki, T. Takahashi, K. Aoki, A. Kamiyama, C. Kaneko, and M. Sato, J. Chem. Soc., Perkin Trans. 1, 1987, 1845.
- 10) Y. Watanabe and T. Mukaiyama, Chem. Lett., 1981, 443.

(Received January 19, 1988)