Communications to the Editor

Chem. Pharm. Bull. 36(4)1615—1617(1988)

STRUCTURE AND STEREOCHEMISTRY OF BRYOPHYLLIN-A, A NOVEL POTENT CYTOTOXIC BUFADIENOLIDE ORTHOACETATE FROM BRYOPHYLLUM PINNATUM

Takashi Yamagishi, ^a Xiu-Zhen Yan, ^a Rong-Yang Wu, ^b Donald R. McPhail, ^c Andrew T. McPhail^c and Kuo-Hsiung Lee^{*, a}

Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, ^a Chapel Hill, NC 27599, U.S.A., Institute of Botany, Academia Sinica, ^b Nankang, Taipei, Taiwan, R.O.C., and Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, ^c Durham, NC 27706, U.S.A.

Bryophyllin-A, a novel bufadienolide 1,3,5-orthoacetate with potent cytotoxicity, and the known bersaldegenin-3-acetate have been isolated from Bryophyllum pinnatum and their structures have been established from spectral data and single-crystal X-ray analyses.

KEYWORDS—— bryophyllin-A; bufadienolide; <u>Bryophyllum pinnatum</u>; Crassulaceae; cytotoxicity; antitumor activity; X-ray analysis

As a result of our continuing searches among Chinese medicinal plants for novel potent antitumor agents, 1)2) the methanolic extract of the whole plant of Bryophyllum pinnatum (Crassulaceae), 3) known as "Luo Di Sheng Ken" in Taiwan, was found to show potent cytotoxicity in vitro against tumor culture cells. 4) Bioassay-directed fractionation of the aforementioned cytotoxic extract led to the isolation of bryophyllin-A (1; 0.0001% yield) and the known bersaldegenin-3-acetate (2; 0.000026% yield) after purification by repeated silica gel

column chromatography (CHCl $_3$ -MeOH) and reversed phase HPLC (Nucleosil 7C $_{18}$ 10 X 300 mm, MeOH: $\rm H_2O=4:1$). Bersaldegenin-3-acetate was isolated from Bersama abyssinica (Melianthaceae). The $^{1}\rm H-NMR$ and physical data for 2 were in accord with those reported in ref. 5.

Bryophyllin-A(1) was crystallized from methanol as colorless rhombic prisms, $C_{26}H_{32}O_8$, m/z 472.2119 (M⁺), mp 267-270°C (dec.), [°]D° -14.4° (c 0.50, CHCl3), UV λ_{max} (MeOH): 298nm (5800), IR ν_{max} (CHCl3): 3450(OH), 1705(C=O) and 1120(C-O) cm⁻¹. The ¹H-NMR spectrum (400 MHz, CDCl3-CD3OD=10:1) revealed the presence of a α -pyrone [δ 7.72(1H, dd, J=9.7 and 2.5Hz, H-22), 7.22 (1H, d, J=2.5Hz, H-21), 6.27 (1H, d, J= 9.7Hz, H-23)], a orthoacetate [δ 5.13 (1H, d, J=4Hz, H-1), 4.36 (1H, br.s, H-3), and 1.42(3H, s, Me-25)], an aldehyde [δ 10.31(1H, s, H-19)], and one secondary hydroxy [δ 4.21 (1H, m, W1/2=25 Hz, H-11)] groups.

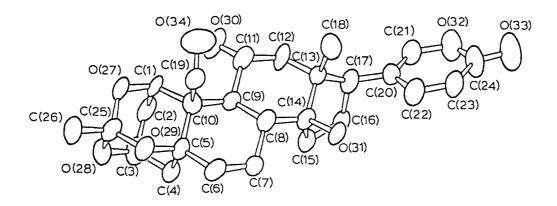


Fig. 1. Structure and Solid-State Conformation of Bryophyllin-A(1) Hydrogen atoms have been omitted for clarity.

Single-crystal X-ray analyses established the complete structures and stereochemistries of ${\bf 1}$ and ${\bf 2.}^{9}$) A view of the solid-state conformation of ${\bf 1}$ is provided in Fig. 1.

Other related bufadienolides, such as hellebrigenin-3-acetate and -3,5-diacetate from Bersama abyssinica by Kupchan et al., also demonstrated cytotoxic (KB cells) and antitumor (Walker 256 carcinosarcoma) activity. Daigremontianin and bersaldegenin-1,3,5-orthoacetate isolated from Kalanchoe daigremontiana, was found to have positive inotropic and sedative activity. Bryophyllin-A demonstrated remarkable cytotoxicity in KB cells (ED₅₀= 14ng/ml) and potent cytotoxicity in human lung carcinoma A-549 (ED₅₀= 10ng/ml) and colon HCT-8 tumor (ED₅₀= 30ng/ml) cells.

ACKNOWLEDGEMENT We thank the National Cancer Institute for a grant (K. H. L.) and Dr. D. L. Harris for the measurement of NMR spectra.

REFERENCES AND NOTES

- 1) K. H. Lee, in "Advances in Chinese Medicinal Materials Research," eds. H. M. Chang, H. W. Yeung, and A. Koo, World Scientific Publ. Co., Singapore, p.353 (1985).
- 2) K. H. Lee, <u>Kaohsiung J. Med. Sci.</u>, 3, 234 (1987).
- 3) The sample was collected in the spring of 1987 in Taipei, Taiwan. A voucher specimen of this plant is kept at the Institute of Botany, Academia Sinica, Taipei, Taiwan.
- 4) In vitro activity was assayed by Dr. Y. C. Cheng and Mr. M. Fisher of the Cancer Research Center, and Dr. J. J. Chang of the School of Medicine, UNC-CH, according to literature methods (R.I. Geran, N. H. Greenberg, M. M. MacDonald, A.M. Schumacher, and B. J. Abbott, Cancer Chemother. Rep., Part 3, 1 (1972); K. H. Lee, Y. M. Lin, T. S. Wu, D. C. Zhang, T. Yamagishi, T. Hayashi, I. H. Hall, J. J. Chang, R. Y. Wu, and T. H. Yang, Planta Medica, in press.)
- 5) S. M. Kupchan and J. Ognyanov, Tetrahedron, 21, 1709 (1969).
- 6) H. Wagner, M. Fisher, and H. Lotter, Z. Naturforsch., 40b, 1226 (1985).
- 7) S. M. Kupchan, R. J. Hemingway, and J. C. Hemingway, <u>J. Org. Chem.</u>, **34**, 3894 (1969).
- 8) H. Wagner, H. Lotter, and M. Fisher, <u>Helv</u>. <u>Chim</u>. <u>Acta</u>, **69**, 359 (1986) and literature cited therein.
- 9) Crystal data (1), $C_{26}H_{32}O_8$, $\underline{M}=472.54$, orthorhombic, space group $\underline{P}2_12_12_1$, $\underline{a}=$ 14.778(7), \underline{b} =16.362(5), \underline{c} = 9.092(4) \underline{A} , \underline{U} = 2198. $4\underline{A}^3$, \underline{Z} = 4, \underline{D}_{calc} = 1.428 g cm⁻³, $\mu(Cu-\underline{K}\alpha)$ = 8.3 cm⁻¹, sample dimensions: 0.18 χ 0.24 χ 0.05 mm; (2) $C_{26}H_{34}O_{8}$, $\underline{M}=474.56$, orthorhombic, space group $\underline{P}2_{1}2_{1}2_{1}$, $\underline{a}=14.307(2)$, $\underline{b}=1.00$ 14.794(1), $\underline{c} = 11.014(3)A$, $\underline{U} = 2331.2A^3$, $\underline{Z} = 4$, $\underline{D}_{calc} = 1.352g$ cm⁻³, $\mu(Cu - \underline{K}\alpha) =$ 7.8 cm $^{-1}$, sample dimensions: 0.16 χ 0.18 χ 0.40 mm. One octant of intensity data for each crystal [1731(1) and 2360(2) reflections to 57° and 67° , respectively] was recorded on an Enraf-Nonius CAD-4 diffractometer $\,$ (Cu-K α radiation, incident-beam graphite monochromator; $\omega-2$ θ scans). Data were corrected for the usual Lorentz and polarization effects. Both crystal structures were solved by direct methods [MULTAN 11/82 for (1); RANTAN for (2). Full-matrix least-squares refinement (Enraf-Nonius SDP) of non-hydrogen atom positional and thermal parameters, with hydrogen atoms included at their calculated positions, converged to \underline{R} = 0.060 (\underline{R}_w =0.073) and \underline{R} = 0.044 (\underline{R}_w = 0.057), respectively, over 1044 (1) and 1286 (2) reflections with $\underline{I} > 3.0 \, \sigma$ (\underline{I}) and $\underline{\mathbf{w}} = 1/\sigma^2([\underline{\mathbf{F}}_{\mathbf{O}}]).$

(Received February 15, 1988)