Chem. Pharm. Bull. 36(6)2079-2083(1988)

Studies on the Diterpenoids of *Rabdosia longituba* (MIQ.) HARA: Structure of a New Bitter Diterpenoid, Rabdolongin A, and the Absolute Stereochemistry of Rabdolongin B (= Maoecrystal D)

Yoshio Takeda,*,a Teruyoshi Ichihara and Hideaki Otsukab

Faculty of Pharmaceutical Sciences, The University of Tokushima,^a
Tokushima 770, Japan and Institute of Pharmaceutical Sciences,
Hiroshima University School of Medicine,^b
Minami-ku, Hiroshima 734, Japan

(Received October 28, 1987)

From the dried aerial parts of *Rabdosia longituba* (Miq.) HARA, a new bitter diterpenoid, rabdolongin A (1), was isolated and its structure was elucidated on the basis of spectroscopic and chemical evidence. The absolute stereochemistry of rabdolongin B (=maoecrystal D) (6) was chemically established by correlation with trichokaurin (8) possessing known absolute stereochemistry.

Keywords——Rabdosia longituba; Labiatae; rabdolongin A; rabdolongin B; ent-kaurenoid; structure elucidation

Many diterpenoids have been isolated from the plants of the genus Rabdosia (Labiatae). From Rabdosia longituba (MIQ.) HARA (Japanese name: akichôji), several biologically active diterpenoids such as longikaurins, oridonin, lasiokaurin, isodocarpin, and nodosin have already been isolated. In a continuation of our studies on biologically active diterpenoids from the Rabdosia plants, we examined the constituents of the aerial parts of R. longituba (MIQ.) HARA collected in the suburbs of Hiroshima city, Japan, and isolated a new diterpenoid, rabdolongin A (1), together with rabdolongin B (=maoecrystal D) (6), so trichokaurin (8), odonicin (9), and rabdosianin B (10). This paper deals with the structure elucidation of the new diterpene, rabdolongin A (1), and the chemical confirmation of the structure of rabdolongin B (=maoecrystal D) (6).

Rabdolongin A (1), mp 134—137 °C (from MeOH), $[\alpha]_D - 75.5$ ° (MeOH) was obtained as colorless prisms. The molecular formula was determined as $C_{24}H_{34}O_8 \cdot 1/2H_2O$ on the basis of the elemental analysis and high-resolution mass spectrum (High-MS). This compound did not show any absorption maximum above 220 nm in the ultraviolet (UV) spectrum. In addition to two tertiary methyl groups $[\delta_H 1.20 \text{ and } 1.25 \text{ (each 3H, s)}; \delta_C 21.7 \text{ and } 28.7]$ and two acetyl groups $[\delta_H 2.13 \text{ and } 2.19 \text{ (each 3H, s)}; \delta_C 22.3, 23.6, 171.5 \text{ and } 171.7]$, rabdolongin A (1) contains an *exo*-methylene group $[\delta_H (C_5D_5N) 5.09 \text{ (H}_d) \text{ and } 5.21 \text{ (H}_c) \text{ (each 1H, br s)}; \delta_C (C_5D_5N) 109.1 \text{ (t)}$ and 160.1 (s)], three hydroxy groups $[\nu_{\text{max}} 3360 \text{ cm}^{-1}; \delta_H 6.27 \text{ (1H, br d, } J=8 \text{ Hz)}, 7.07 \text{ (1H, br d, } J=6 \text{ Hz)}$ and 7.78 (1H, m), disappeared on addition of D_2O], an

2080 Vol. 36 (1988)

oxygenated methylene group $[\delta_H 4.11 (2H, s) (H_e); \delta_C 66.5 (t)]$ and a ketalic carbon $(\delta_C 96.1)$ as partial structures as judged from the infrared (IR) spectrum, and proton and carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) spectra. The ¹H-NMR spectrum of 1 showed the presence of two methine protons [δ_H 3.72 (1H, t, J=3 Hz, on addition of D_2O) (H_e) and 3.77 (1H, t, J=3 Hz, on addition of D_2O) (H_f)] on the carbons having a hydroxy group and two methine protons $[\delta_H 5.90 (1H, d, J=7 Hz) (H_b)$ and $6.20 (1H, t, J=2 Hz) (H_a)]$ on the carbons having an acetoxyl group. The 13 C-NMR signals at $\delta_{\rm C}$ 77.2, 75.7, 75.1 and 68.1 ppm support the presence of four secondary carbinyl carbons. The presence of two secondary hydroxy groups was confirmed by the fact that rabdolongin A (1) gave the diacetate (2) [mp 206—209 °C (from MeOH); $\delta_{\rm H}$ (CDCl₃) 2.21 (3H, s), 2.08 (3H, s), 2.06 (6H, s), 4.61 (1H, t, J=3 Hz) and 4.76 (1H, t, J=2.5 Hz)]. The ¹³C-NMR spectrum of 1 further showed signals due to four methylenes, three methines and three quaternary carbons in addition to the signals mentioned above. Consideration of the structures of diterpenoids isolated so far from the genus Rabdosia¹⁾ in relation to the above-mentioned spectral data suggests that rabdolongin A (1) has a pentacyclic ent-7 β ,20-epoxykaur-16-en-7 α -ol (7) nucleus as the basic skeleton, as in the case of trichokaurin (8) which was isolated at the same time. The locations of two secondary hydroxy groups and two secondary acetoxyl groups were elucidated on the basis of the results of spin-spin decoupling experiments and nuclear Overhauser effect (NOE) experiments in the ¹H-NMR spectrum. On irradiation at the frequency of H_a, the signal of H_c became sharp and the signal of H_d collapsed to a singlet. When the frequency of H_c was irradiated, the signal of H_a changed to a doublet (J=2 Hz) and the signal of H_d became sharp. Both signals due to H_e and H_a became sharp on irradiation at the frequency of H_d. When the frequency of either H_c or H_d was irradiated, the signal H_i became sharp. On the other hand, the signals of H_c and H_d changed to a doublet $(J=2\,\mathrm{Hz})$ and a doublet (J=2 Hz), respectively, on irradiation at the frequency of H_i . On the basis of these findings, H_c and H_d were assigned as 17-H₂ and H_i was assigned as 13-H. Accordingly, an acetoxyl group is located at C-15. The acetoxyl group was presumed to take β configuration since the proton signal $[\delta_{\rm H}({\rm CDCl_3})]$ 5.65 (1H, t, J=2 Hz) is very similar to that $[\delta_{\rm H} ({\rm CDCl_3}) 5.62 (1{\rm H}, {\rm t}, J=2{\rm Hz})]$ of trichokaurin (8). The presumption was confirmed by the following chemical reactions. Lithium aluminum hydride reduction of rabdolongin A (1) gave the deacetylated compound (4), which was then subjected to the conditions for the garryfoline-cuauchichicine rearrangement¹⁰⁾ to give the dihydroketone (5), indicating the β configuration of the acetoxyl group at C-15. Compound 5 showed a negative Cotton effect in the optical rotatory dispersion (ORD) spectrum. Thus, the absolute stereochemistry was

verified to be as shown. On irradiation at the frequency of H_b , the signal of H_i [δ_H 2.65 (1H, d, J=7 Hz), 5-H] collapsed to a singlet. On the other hand, the signal of H_b collapsed to a singlet on irradiation at the frequency of H_i . When the signals at $\delta 1.25$ (18- H_3) and 1.20 (19- H_3) were irradiated, respectively, NOE's for H_i (11.6%) and H_b (14.6%), and NOE for H_b (19.4%) were observed. On the basis of the results, H_b was assigned as 6α-H. Consequently, another acetoxyl group is located at C-6 β . The remaining two secondary hydroxy groups were deduced to be located at C-1 β and C-3 β based on the following discussion. On irradiation at δ 1.20 and 1.25, NOE's for H_f (9.6 and 7.6%, respectively) were observed, indicating the location of a β -axial hydroxy group at C-3. NOE (13%) was observed for H_g when the frequency of H_e (20- H_2) was irradiated, suggesting the location of a β -axial hydroxy group at C-1 β . The arrangement of two secondary hydroxy groups in a 1,3-diaxial relationship was confirmed by the fact that treatment of rabdolongin A (1) with 2,2-dimethoxypropane in the presence of a catalytic amount of p-toluenesulfonic acid in N,N-dimethylformamide gave an acetonide (3) $[\delta_H 1.44 \text{ and } 1.57 \text{ (each 3H, s)}]$. On the basis of these findings, the structure of rabdolongin A should be represented as $ent-7\beta$, 20-epoxy- 1α , 3α , 6α , 7α , 15α -pentahydroxykaur-16-ene 6,15-diacetate (1).

Rabdolongin B (=maoecrystal D) (6),^{5,6)} mp 185—187°C (MeOH), $[\alpha]_D$ +14.3° (MeOH) was obtained as colorless prisms. The molecular formula was determined as $C_{24}H_{32}O_7$ on the basis of the elemental analysis and High-MS, and was 2 mass units less than that of trichokaurin (8). In addition to two tertiary methyl groups $[\delta_H 0.90 \text{ and } 0.95 \text{ (each 3H,}]$ s); $\delta_{\rm C}$ 21.1 and 29.5] and two acetyl groups [$\delta_{\rm H}$ 2.14 and 2.33 (each 3H, s)]; $\delta_{\rm C}$ 21.9 23.0 170.5 and 170.7], rabdolongin B (6) contains a hydroxy group [ν_{max} 3380 cm⁻¹; δ_{H} 8.57 (1H, s)], an exo-methylene group [δ_H 5.16 (2H, m), H_c and H_d; δ_C 109.6 (t) and 158.6 (s)], an oxygenated methylene group [$\delta_{\rm H}$ 4.17 (1H, dd, J = 10 and 1.5 Hz), H_f and 4.63 (1H, dd, J = 10 and 1 Hz), H_e ; δ_C 64.8], two secondary carbinyl functional groups having an acetyl group on them [δ_H 5.69 (1H, d, J = 9.5 Hz), H_b and 6.17 (1H, t, J = 2.5 Hz), H_a; δ_C 73.9 and 75.2], a ketal (δ_C 96.2), and an isolated ketone ($\delta_{\rm C}$ 212.2) as partial structures. The ¹³C-NMR spectrum of 6 showed, in addition to the above-mentioned signals, signals due to five methylenes, three methines and three quaternary carbons. Based on the findings mentioned above, rabdolongin B (6) was presumed to have the structure which corresponds to the 1-dehydro derivative of trichokaurin (8). Jones oxidation of trichokaurin (8) gave rabdolongin B (6). Thus, the structure of rabdolongin B was determined as ent- 7β , 20-epoxy- 6α , 7α , 15α -trihydroxy-kaur-16-en-1-one 6,15-diacetate (6).

Experimental

Melting points were obtained on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi 215 spectrometer. 1 H- and 13 C-NMR spectra were taken with a JEOL JNM FX 200 spectrometer (1 H, 200 MHz; 13 C, 50.1 MHz). Tetramethylsilane was used as the internal standard and chemical shifts were given in δ (ppm) values. MS were determined with a JEOL D-300 spectrometer. Optical rotations were measured with a Union Giken PM-201 digital polarimeter. ORD spectra were taken with a JASCO ORD/UV-5 spectrophotometer. Kiesel gel 60 (0.063—0.200 mm, Merck) was used for column chromatography and precoated silica gel plates F_{254} (0.25 mm and 0.5 mm in thickness) were used for thin layer and preparative layer chromatography, respectively. Extracts were dried over anhydrous magnesium sulfate.

Isolation of Diterpenoids from *Rabdosia longituba*——Dried aerial parts of *R. longituba* (MIQ.) HARA (3.4 kg) were extracted with MeOH (80 l) at room temperature for 2 weeks. The methanolic extract was concentrated *in vacuo* to give a residue which was partitioned between 90% MeOH (2.5 l) and *n*-hexane (2.3 l × 3). The 90% methanolic layer was concentrated under reduced pressure. The residue was suspended in water (900 ml) and extracted with AcOEt (900 ml × 3). The AcOEt extract was washed with water, dried and evaporated under reduced pressure to give a residue (61 g), which was chromatographed on a silica gel (1.5 kg) column. Elution was carried out with CHCl₃—Me₂CO with increasing Me₂CO content: CHCl₃ (8 l), CHCl₃—Me₂CO (19:1) (10 l), CHCl₃—Me₂CO (9:1) (8 l), CHCl₃—Me₂CO (8:2) (8.8 l), CHCl₃—Me₂CO (7:3) (9.2 l) and Me₂CO (5 l) were passed successively, and 500 ml fractions were collected.

Fractions 19—21 were combined and evaporated under reduced pressure to give a residue (8.18 g) which was separated by a repeated silica gel chromatography (solvent: $CHCl_3-Me_2CO$; *n*-hexane-AcOEt) to give rabdolongin B (= maoecrystal D) (6)^{5,6)} (96.5 mg), trichokaurin (8)⁷⁾ (542 mg), odonicin (9)⁸⁾ (2.043 g) and rabdosianin B (10)⁹⁾ (6.5 mg).

Fractions 22—24 were combined and evaporated under reduced pressure to give a residue (9.848 g), which was separated by repeated silica gel chromatography (solvent: $CHCl_3-Me_2CO$; *n*-hexane-AcOEt) to give further **8** (1.053 g), **9** (1.187 g) and **10** (26.6 mg).

Fractions 53—67 were combined and evaporated under reduced pressure to give a residue (2.20 g) which was separated by repeated silica gel chromatography (solvents: Et₂O, CHCl₃-Me₂CO) to give a new compound, named rabdolongin A (1) (90.8 mg).

Among the isolated compounds, trichokaurin (8), odonicin (9), and rabdosianin B (10) were identified on the basis of comparisons of the spectral data with those reported. $^{7-9}$

The physical properties of rabdolongins A (1) and B (= maoecrystal D) (6)^{5,6)} are as follows:

Rabdolongin A (1): mp 134—137 °C, $[\alpha]_{2}^{23}$ —75.5 ° (c=1.02, MeOH). IR $v_{\text{max}}^{\text{KBr}}$: 3360, 1730, 1365, 1250, 1040 cm $^{-1}$. 1 H-NMR δ ($C_{5}D_{5}N$): 1.20 and 1.25 (each 3H, s, tert-Me₂), 2.13 and 2.19 (each 3H, s, OAc₂), 2.58 (1H, br d, J=9 Hz, 13-H; H_j), 2.65 (1H, d, J=7 Hz, 5-H; H_j), 3.21 (1H, dd, J=12, 6 Hz, 9-H), 3.74 (2H, m, δ 3.72, t, J=3 Hz, 1-H; H_g and 3.77, t, J=3 Hz, 3-H; H_f on addition of D₂O), 4.11 (2H, s, 20-H₂; H_e), 5.09 (1H, br s, 17-H₁; H_d), 5.21 (1H, br s, 17-H₁; H_c), 5.90 (1H, d, J=7 Hz, 6-H; H_b), 6.20 (1H, t, J=2 Hz, 15-H; H_a), 6.27 (1H, br d, J=8 Hz, OH), 7.07 (1H, br d, J=6 Hz, OH), 7.78 (1H, m, OH); δ (CDCl₃): 0.97 and 1.14 (each 3H, s, tert. Me₂), 2.08 and 2.19 (each 3H, s, OAc₂), 2.24 (1H, d, J=7 Hz), 2.56—2.75 (2H, m), 2.97 (1H, m, OH), 3.56 (1H, m, changed to br t, J=3 Hz, on addition of D₂O), 3.70 (1H, m, changed to br t, J=3 Hz, on addition of D₂O), 3.70 (1H, m, changed to br t, J=3 Hz, on addition of D₂O), 3.72 (1H, s, OH), 3.90 (1H, dd, J=9.5, 1.5 Hz), 3.96 (1H, dd, J=9.5, 1 Hz), 4.91 (1H, br s), 5.05 (1H, dd, J=2.5, 1 Hz), 5.25 (1H, d, J=7 Hz), 5.65 (1H, t, J=2 Hz). 13 C-NMR δ (C_{5} D₅N): 15.6 (t), 21.7 (q), 22.3 (q), 23.6 (q), 28.1 (t), 28.7 (q), 31.6 (t), 32.1 (t), 37.3 (d), 39.2 (s), 39.6 (d), 41.7 (s), 45.9 (d), 51.6 (s), 66.5 (t), 68.1 (d), 75.1 (d), 75.7 (d), 77.2 (d), 96.1 (s), 109.1 (t), 160.1 (s), 171.5 (s), 171.7 (s). MS m/z: Found 450.2249 (M) $^+$. Calcd for C_{24} H₃₄O₈: 450.2254. Anal. Calcd for C_{24} H₃₄O₈: 1/2H₂O: C, 62.73; H, 7.68. Found: C, 62.98; H, 7.83.

Rabdolongin B (maoecrystal D) (6): mp 185—187 °C, $[\alpha]_D^{1.9} + 14.3$ ° (c = 0.91, MeOH). IR ν_{max}^{KBr} : 3380, 1740, 1695, 1655, 1380, 1245, 1060 cm⁻¹. ¹H-NMR δ (C_5D_5N): 0.90 and 0.95 (each 3H, s, tert. Me₂), 2.14 and 2.33 (each 3H, s, OAc₂), 2.57 (1H, br dd, J = 9, 4Hz, 13-H; H_j), 2.74 (1H, dd, J = 11, 6.5 Hz, 9-H; H_i), 2.82 (1H, br d, J = 9.5 Hz, 5-H; H_g), 4.17 (1H, dd, J = 10, 1.5 Hz, 20-H₁; H_f), 4.63 (1H, dd, J = 10, 1 Hz, 20-H₁; H_e), 5.16 (2H, m, 17-H₂; H_e and H_d), 5.69 (1H, d, J = 9.5 Hz, 6-H; H_b), 6.17 (1H, t, J = 2.5 Hz, 15-H; H_a), 8.57 (1H, s, OH); δ (CDCl₃): 0.92 and 0.98 (each 3H, s, tert-Me₂), 2.08 and 2.24 (each 3H, s, OAc₂), 3.46 (1H, s, OH), 3.96 (1H, dd, J = 10.5, 2 Hz), 4.37 (1H, dd, J = 10.5, 1 Hz), 4.89 (1H, br t, J = 2 Hz), 5.09 (1H, br t, J = 2 Hz), 5.12 (1H, d, J = 9.5 Hz), 5.67 (1H, t, J = 2.5 Hz). ¹³C-NMR δ (C_5D_5N): 17.8 (t), 21.1 (q), 21.9 (q), 23.0 (q), 27.0 (t), 29.5 (q), 32.2 (t), 32.7 (s), 35.6 (t), 35.9 (d), 38.5 (t), 42.7 (d), 49.0 (s), 52.1 (s), 54.2 (d), 64.8 (t), 73.9 (d), 75.2 (d), 96.2 (s), 109.6 (t), 158.6 (s), 170.5 (s), 170.7 (s), 212.2 (s). MS m/z: Found 432.2164 (M)⁺. Calcd for $C_{24}H_{32}O_7$: 432.2149. Anal. Calcd for $C_{24}H_{32}O_7$: C, 66.65; H, 7.46. Found: C, 66.76; H, 7.61. This compound was identical with an authentic sample of maoecrystal D⁵⁾ on the basis of mixed melting point determination and comparisons of IR and ¹H-NMR spectra.

Rabdolongin A Diacetate (2)——Rabdolongin A (1) (6.0 mg) was dissolved in a mixture of acetic anhydride (0.3 ml) and anhydrous pyridine (0.3 ml) and the solution was warmed at 50 °C for 50 h. After addition of excess MeOH, the mixture was concentrated under reduced pressure to give a residue (5.8 mg), which was purified by preparative layer chromatography (solvent: CHCl₃–Me₂CO 19:1; developed three times) to give the diacetate (2) (2.8 mg) as colorless needles, mp 206—209 °C (from MeOH). IR $v_{\text{max}}^{\text{CHCl}_3}$: 3550—3400, 1730, 1660, 1380, 1260—1200, 1060, 1020 cm⁻¹. ¹H-NMR δ (CDCl₃): 0.87 and 1.22 (each 3H, s, *tert*-Me₂), 2.06 (6H, s, OAc₂), 2.08 and 2.21 (each 3H, s, OAc₂), 2.33 (1H, d, J = 7 Hz), 2.62 (2H, m), 3.73 (1H, s, OH), 3.98 (2H), 4.61 (1H, t, J = 3 Hz), 4.76 (1H, t, J = 2.5 Hz), 4.96 (1H, br t, J = 1.5 Hz), 5.06 (1H, dd, J = 2.5, 0.5 Hz), 5.21 (1H, d, J = 7 Hz), 5.65 (1H, t, J = 2 Hz). MS m/z: Found 534.2455 (M)⁺. Calcd for C₂₈H₃₈O₁₀: 534.2465.

Reductive Deacetylation of Rabdolongin A (1)—A solution of rabdolongin A (1) (43.5 mg) dissolved in anhydrous tetrahydrofuran (10 ml) was added dropwise to a suspension of lithium aluminum hydride (45 mg) in anhydrous tetrahydrofuran (5 ml) under stirring. After refluxing for 3 h, the mixture was cooled and treated with AcOEt (10 ml) and water (5 ml), successively. The resulting precipitates were removed by filtration and washed with AcOEt (10 ml × 2). The filtrate and washings were combined and washed with 1 n hydrochloric acid (50 ml) and saturated sodium chloride aqueous solution (50 ml × 3), successively. The organic phase was dried and evaporated under reduced pressure to give a residue (21.2 mg), which was recrystallized from MeOH to give dideacetylrabdolongin A (4) as colorless needles, mp 252—254 °C. IR v_{max}^{KBr} : 3500—3150, 1650, 1445, 1290, 1130, 1065, 900 cm⁻¹. ¹H-NMR δ (C₅D₅N): 1.19 and 1.52 (each 3H, s, tert-Me₂), 2.65 (1H, d, J=5.5 Hz, 5-H), 2.70 (1H, m, 13-H), 3.28 (1H, dd, J=12, 5.5 Hz, 9-H), 3.80 [2H, m, changed to δ 3.76 (1H, t, J=3 Hz) and 3.83 (1H, t, J=3 Hz) on addition of D₂O], 4.09 (1H, dd, J=9.5, 2 Hz, 20-H₁), 4.23 (1H, dd, J=9.5, 1 Hz, 20-H₁), 4.42 (1H, t, J=5.5 Hz, changed to d, J=5.5 Hz on addition of D₂O, 6-H), 5.20 (1H, br s, 17-H₁), 5.26 (1H, m, 15-H), 5.50 (1H, br s, 17-H₁), 6.19 (1H, d, J=6.5 Hz, OH), 7.07 (1H, d, J=6 Hz, OH), 7.29 (1H, d, J=3.5 Hz, OH), 7.94 (1H, br s, OH), 8.07 (1H, d, J=6.5 Hz,

OH). MS m/z: Found 366.2026 (M)⁺. Calcd for $C_{20}H_{30}O_6$: 366.2043.

Acid Treatment of Dideacetylrabdolongin A (4) — Dideacetylrabdolongin A (4) (14.1 mg) was dissolved in MeOH (3 ml). Concentrated hydrochloric acid (10 drops) was added to the solution and the mixture was stirred for 7 d at room temperature. After addition of water (30 ml), the reaction mixture was neutralized with a small amount of sodium hydrogen carbonate and extracted with AcOEt (30 ml × 3). After being washed with saturated sodium chloride aqueous solution, the AcOEt extract was dried and evaporated under reduced pressure to give a residue (12.5 mg), which crystallized on addition of CHCl₃. After being washed with CHCl₃, the dihydroketone (5) (11.9 mg) was collected by filtration. mp 239—242 °C, $[\alpha]_D^{27}$ –83.8 ° (c=0.37, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$: 3550—3150, 1710, 1455, 1075 cm⁻¹. ¹H-NMR δ (C_5D_5 N): 1.02 (1.65H, d, J=6.5 Hz), 1.105 (1.35H, d, J=7.5 Hz), 1.114 (3H, s), 1.51 (1.65H, s), 1.53 (1.35H, s), 3.67 (1H, m, changed to t, J=2 Hz, on addition of D_2O), 3.82 (1H, m, changed to t, J=3 Hz, on addition of D_2O), 4.01 (0.55H, dd, J=10, 1.5 Hz), 4.02 (0.45H, dd, J=10, 2 Hz), 4.12 (0.55H, dd, J=10, 1 Hz), 4.13 (0.45H, dd, J=10, 1 Hz), 4.32 (0.55H, t, J=5 Hz, changed to d, J=5 Hz, on addition of D_2O), 4.38 (0.45H, t, J=5 Hz, changed to d, J=5 Hz, on addition of D_2O), 6.05 (1H, m, OH), 6.87 (0.55H, d, J=11 Hz, OH), 7.03 (0.45H, d, J=10.5 Hz, OH), 7.26 (1H, m, OH). ORD λ_{max} (MeOH) nm (ϕ): 316 (-4199), 283 (1228). MS m/z: Found 366.2050 (M) *. Calcd for $C_{20}H_{30}O_6$: 366.2043. This sample was found to be a mixture of 16R and 16S isomers in a 55: 45 ratio as judged from the ¹H-NMR spectrum.

Rabdolongin A Acetonide (3)—Rabdolongin A (1) (12.0 mg) was dissolved in anhydrous N,N-dimethylformamide (1 ml). 2,2-Dimethoxypropane (1 ml) and p-toluenesulfonic acid (1 mg) were added to the solution and the mixture was heated at 80 °C for 3 h. The reaction mixture was concentrated under reduced pressure to give a residue which was dissolved in AcOEt (30 ml). The solution was washed with 5% sodium hydrogen carbonate aqueous solution and then with water. The dried AcOEt extract was concentrated under reduced pressure to give a residue (25.2 mg), which was purified by preparative layer chromatography (solvent: CHCl₃–Me₂CO 19:1) to give the acetonide (3) (8.9 mg) as an amorphous powder. IR $v_{\text{max}}^{\text{CHCl}_3}$: 3530, 1730, 1660, 1380, 1260—1190, 1115, 1045 cm⁻¹. ¹H-NMR δ (CDCl₃): 0.99 and 1.05 (each 3H, s, tert-Me₂), 1.44 and 1.57 (each 3H, s, acetonide Me₂), 2.08 and 2.19 (each 3H, s, OAc₂), 2.43 (1H, d, J=8.5 Hz), 3.57 (1H, s, OH), 3.69 (1H, br d, J=5 Hz), 3.77 (1H, m, $W_{1/2}$ =8 Hz), 3.90 (2H, s), 4.91 (1H, br t, J=1 Hz), 5.06 (1H, dd, J=2.5, 1 Hz), 5.25 (1H, d, J=8.5 Hz), 5.63 (1H, t, J=2.5 Hz). MS m/z: Found 490.2584 (M)⁺. Calcd for C₂₇H₃₈O₈: 490.2567.

Jones Oxidation of Trichokaurin (8)—Trichokaurin (8) (43.2 mg) was dissolved in Me_2CO (10 ml). The solution was stirred with Jones reagent (0.3 ml) for 5 min under ice cooling. After being neutralized with 5% sodium hydrogen carbonate aqueous solution, the reaction mixture was concentrated under reduced pressure. The residue was suspended in H_2O (30 ml) and the mixture was extracted with AcOEt (30 ml × 2). After being washed with saturated sodium chloride aqueous solution, the AcOEt extract was dried and evaporated under reduced pressure to give rabdolongin B (6) (42 mg) as colorless prisms, mp 179—182 °C. This compound was identical with the compound of natural origin on the basis of mixed melting point determination and comparisons of IR and ¹H-NMR spectra.

Acknowledgements The authors wish to thank Professor T. Seki, Miyajima Natural Botanical Garden, Faculty of Sciences, Hiroshima University for identification of the plant material, Mr. Sun Han-dong, Yunnan Institute of Botany, Academia Sinica, for the generous gift of an authentic sample of maoecrystal D, and the staff of the Analytical Centre of the Faculty of Pharmaceutical Sciences, The University of Tokushima, for elemental analyses and for measurements of NMR and MS.

References and Notes

- E. Fujita and M. Node, "Progress in the Chemistry of Organic Natural Products," Vol. 46, ed. by W. Herz, H. Griesebach, G. W. Kirby and Ch. Tamm, Springer Verlag, Vienna and New York, 1984, p. 77.
- 2) H. Hara, J. Jap. Bot., 47, 193 (1972).
- 3) a) T. Fujita, Y. Takeda and T. Shingu, J. Chem. Soc. Chem. Comm., 1980, 205; b) Idem, Heterocycles, 16, 227 (1981).
- 4) T. Isobe, T. Kamikawa and T. Kubota, Nippon Kagaku Kaishi, 1972, 2143.
- 5) C. Li, J. Zhou and H. Sun, Acta Bot. Yunnanica, 7, 115 (1985).
- 6) Previously, rabdolongin B was erroneously reported as a new compound. Y. Takeda, T. Ichihara and H. Otsuka, Abstract Papers of 31st Symposium on Aromatics, Terpenes and Essential Oils, September, 1987, Kyoto, p. 256.
- 7) E. Fujita, T. Fujita and M. Shibuya, Tetrahedron, 25, 2517 (1969).
- 8) E. Fujita, M. Taoka, Y. Nagao and T. Fujita, J. Chem. Soc., Perkin Trans. 1, 1973, 1760.
- 9) M. Ochi, M. Okamura, H. Katsuki, I. Miura, I. Kubo and T. Kubota, Bull. Chem. Soc. Jpn., 54, 2786 (1981).
- a) C. Djerassi, C. R. Smith, A. E. Lipmann, S. K. Figdor and J. Herran, J. Am. Chem. Soc., 77, 4801 (1955); b)
 Idem, ibid., 77, 6633 (1955); c) M. F. Barnes and J. MacMillan, J. Chem. Soc. (C), 1967, 361.