Chem. Pharm. Bull. 36(6)2244-2247(1988)

Site-Selectivity in the Reaction of 3-Substituted Pyridine 1-Oxides with Phosphoryl Chloride

HIROSHI YAMANAKA,* TOMIO ARAKI, and TAKAO SAKAMOTO

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

(Received November 2, 1987)

Site-selectivity in the reaction of 3-substituted pyridine 1-oxide with phosphoryl chloride was investigated. When a strongly electron-withdrawing group (e.g. CN, CONRR', COOR, or NO₂) was substituted at the 3-position, the reaction of 3-substituted pyridine 1-oxides with phosphoryl chloride yielded 3-substituted 2-chloropyridines as the main products.

Keywords—site-selectivity; 3-substituted pyridine 1-oxide; phosphoryl chloride; 3-substituted 2-chloropyridine; chlorination

In the previous paper,¹⁾ we have reported that the reaction of some pyridine 1-oxides, which contain a 3-substituent having lone-pair electrons conjugated with the π -electrons of the pyridine ring, with trimethylsilyl cyanide proceeds site-selectively. For example, the reaction of 3-halopyridine 1-oxides with trimethylsilyl cyanide in acetonitrile in the presence of triethylamine gave 3-halo-2-pyridinecarbonitriles predominantly. The reaction of pyridine 1-oxides with phosphoryl chloride, like the reaction with trimethylsilyl cyanide, is considered to proceed through an ionic addition–elimination mechanism. Therefore, our interest was focussed next on the reaction of 3-substituted pyridine 1-oxides with phosphoryl chloride, in the anticipation of synthetically utilizable site-selectivity.

Prior to our present investigation, the following results have been reported in the literature.

- 1) The reaction of 3-methylpyridine 1-oxide with phosphoryl chloride gave a mixture of 2-chloro-3-methylpyridine, 2-chloro-5-methylpyridine, and 4-chloro-3-methylpyridine.²⁾
- 2) 3-Carbamoylpyridine 1-oxide was transformed into 2-chloro-3-pyridinecarbonitrile exclusively by the reaction of phosphoryl chloride and phosphorus pentachloride, although the yield of the product was unsatisfactory (35—39%).³⁾
- 3) The reaction of 3-nitropyridine l-oxide with phosphoryl chloride⁴⁾ gave 2-chloro-3-nitropyridine (30%) together with a small amount (8.4%) of 2-chloro-5-nitropyridine.⁵⁾

In order to observe the substituent effect in the reaction of 3-substituted pyridine 1-oxides with phosphoryl chloride, the reaction conditions were arranged as follows. 3-Substituted pyridine 1-oxides (1a—1) (10 mmol) were heated with excess phosphoryl chloride (10 ml) at 110 °C for 2 h, and the ratio of the crude products was analyzed with the aid of gaschromatography (GC). Structural identification of the products was done by proton nuclear magnetic resonance (1H-NMR) spectroscopy and by GC using products isolated from the reaction mixture or authentic synthetic specimens.

Based on the results shown in Table I, it is concluded that the reaction of 3-substituted pyridine 1-oxides with phosphoryl chloride can be adopted for the synthesis of 2-chloropyridines which have an electron-withdrawing group at the 3-position, although the substituent effect in the chlorination is different from that in the cyanation with trimethylsilyl cyanide.

For example, ethyl 2-chloro-3-pyridinecarboxylate (2f) was isolated in a pure state by

TABLE I. Reaction of 3-Substituted Pyridine 1-Oxides with Phosphoryl Chloride

$$\begin{array}{c|ccccc}
R & POCl_3 & R & + & R & + & R \\
\downarrow & & & & & \\
0 & & & & & \\
1a-1 & & & & & \\
\end{array}$$

$$\begin{array}{c|cccccc}
R & + & & & & \\
Cl & & & & & \\
R & + & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
R & + & & & \\
& & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
R & + & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
R & + & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
Aa-1 & & & & \\
\end{array}$$

Substrate	Yield	Product ratio (%) of determined by GC		
1	(%)	2	3	4
(R=H)	82	70	NAME AND ADDRESS OF THE ADDRESS OF T	30
(R=CN)	83	88	10	2
$(R = CONH_2)$	$69^{a)}$	86	12	2
$\mathbf{I} (\mathbf{R} = \mathbf{CONEt}_2)$	93	80	20	0
e (R = COOH)	$75^{(b)}$	86	14	0
R = COOEt	93	80	20	0
$\mathbf{g} (\mathbf{R} = \mathbf{NO}_2)$	68	73	27	0
$\mathbf{n} (\mathbf{R} = \mathbf{Cl})$	74	47	38	15
(R = Br)	77	46	46	8
(R = Me)	77	30	27	43
k (R = Ph)	84	32	46	22
$(R = NMe_2)$	80	34	47	19

a) Products were chloropyridine-3-carbonitriles. b) Products were isolated as ethyl chloropyridine-3-carboxylates.

simple column chromatography of the product derived from 3-ethoxycarbonylpyridine 1-oxide (1f). Furthermore, the reaction of 3-carbamoylpyridine 1-oxide (1c) with phosphoryl chloride alone gave 2-chloro-3-pyridinecarbonitrile (2b) in 59% yield.⁶⁾ In this case, recrystallization after decolorization through a short alumina column is enough for removal of the by-products (3b and 4b).

Experimental

All melting points and boiling points are uncorrected. Gas-chromatograms were obtained with a Shimadzu GC-4CM using a column packed with SE-30. 1 H-NMR spectra were taken at 60 MHz with a JEOL JNM-PMX 60 spectrometer. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). The following abbreviations are used: s=singlet, d=doublet, dd=doublet, and m=multiplet.

Starting pyridine 1-oxides were synthesized according to the literature¹⁾ and references cited therein.

General Procedure for the Reaction of 3-Substituted Pyridine 1-Oxides with Phosphoryl Chloride—A pyridine 1-oxide (10 mmol) was carefully added to $POCl_3$ (10 ml), and the mixture was heated at $110 \,^{\circ}$ C for 2 h. After evaporation of the excess $POCl_3$, the residue was poured onto ice, made alkaline with aqueous NH_3 , and extracted with CH_2Cl_2 . The CH_2Cl_2 extract was purified by silica gel column chromatography.

Preparation of 2-Chloro-3-pyridinecarbonitrile (2b)—A mixture of 3-carbamoylpyridine 1-oxide (1c) (27.6 g, 0.2 mol) and POCl₃ (200 ml) was refluxed for 3.5 h. After evaporation of the excess POCl₃, the residue was poured onto ice, made alkaline with K_2CO_3 , and extracted with CHCl₃. The CHCl₃ extract was purified by alumina column chromatography using C_6H_6 as an eluent. The C_6H_6 eluate gave colorless prisms which were recrystallized from cyclohexane. Yield 16.2 g (59%).

Preparation of Ethyl 2-Chloro-3-pyridinecarboxylate (2f)—A mixture of 3-ethoxycarbonylpyridine 1-oxide (1f) (33.4 g, 0.2 mol) and $POCl_3$ (200 ml) was refluxed for 5 h. After evaporation of the excess $POCl_3$, the residue was poured onto ice, made alkaline with K_2CO_3 , and extracted with $CHCl_3$. The $CHCl_3$ extract was purified by silica gel column chromatography using hexane– Et_3N (9:1 v/v) as an eluent. The first eluate gave a mixture of ethyl 6-chloro-3-pyridinecarboxylate (3f) and impurities. The second eluate gave 2f as a colorless liquid. Yield 17.8 g (48%).

2-Chloro-*N*,*N*-diethyl-3- (2d) and 2-Chloro-*N*,*N*-diethyl-5-pyridinecarboxamide (3d)—3-(*N*,*N*-Diethyl-carbamoyl)pyridine 1-oxide (1d) (1.94 g, 10 mmol) was treated according to the general procedure. The first eluate

2246 Vol. 36 (1988)

with hexane– Et_3N (9:1 v/v) gave **3d** as a colorless liquid. Yield 380 mg (18%). The second eluate gave **2d** as a colorless liquid. Yield 500 mg (24%).

3-(N,N-Diethylcarbamoyl)-4-nitropyridine 1-Oxide—A solution of ethyl chloroformate (10.8 g, 100 mmol) in dry tetrahydrofuran (150 ml) was added dropwise at $-15\,^{\circ}$ C to a mixture of 4-nitro-3-carboxypyridine 1-oxide (9.2 g, 50 mmol), Et₃N (10.1 g, 100 mmol), and dry dioxane (130 ml), and the mixture was stirred at $-15\,^{\circ}$ C for 3 h. Then, excess Et₂NH (21 ml) was added at 0 $^{\circ}$ C, and the mixture was stirred at 0 $^{\circ}$ C for 30 min. After removal of the solvent, the residue was extracted with acetone. The acetone extract gave a yellow solid (1.8 g), which was used in the next step without further purification.

4-Chloro-N,N-diethyl-3-pyridinecarboxamide (4d)—A mixture of 3-(N,N-diethylcarbamoyl)-4-nitropyridine 1-oxide (478 mg, 2 mmol) and AcCl (15 ml) was refluxed for 1 h. After evaporation of the excess AcCl, CHCl₃ (5 ml) and PCl₃ (550 mg, 4 mmol) were added to the residue. The mixture was refluxed for 2 h, made alkaline with 3 N Na₂CO₃, and extracted with CHCl₃. The CHCl₃ extract was distilled *in vacuo* to give a colorless liquid. Yield 400 mg (94%).

Ethyl 2-Chloro-5-pyridinecarboxylate (3f)—A mixture of 2-oxo-1,2-dihydro-5-pyridinecarboxylic acid (1.39 g, 10 mmol) and POCl₃ (10 ml) was refluxed for 30 min. After evaporation of the excess POCl₃, dry EtOH (10 ml) was added to the residue, and the mixture was stirred at room temperature overnight. After evaporation of the EtOH, the residue was made alkaline with K_2CO_3 and extracted with CHCl₃. The CHCl₃ extract was purified by silica gel column chromatography using C_6H_6 -AcOEt (9:1 v/v) as an eluent to give a colorless liquid. Yield 1.3 g (70%).

2-Chloro-3- (2k), 2-Chloro-5- (3k), and 4-Chloro-3-phenylpyridine (4k)—3-Phenylpyridine 1-oxide (1k) (1.71 g, 10 mmol) was treated according to the general procedure. The first eluate with hexane—Et₃N (9:1 v/v) gave 3k as a colorless solid. Yield 600 mg (31%). The second eluate gave 2k as a colorless solid. Yield 420 mg (22%). The third eluate gave 4k as a colorless liquid. Yield 240 mg (13%).

2-Chloro-3- (21), 2-Chloro-5- (31), and 4-Chloro-3-(N,N-dimethylamino)pyridine (41)—N,N-Dimethylamino-pyridine 1-oxide (11) (1.37 g, 10 mmol) was treated according to the general procedure. The first eluate with C_6H_6 gave 41 as a colorless liquid. Yield 150 mg (10%). The second eluate gave 31 as colorless scales, which were recrystal-

TABLE II. Physical Constants and Spectral Data for Chloropyridines

Ma	mp or bp/mmHg (°C)	1 H-NMR δ (ppm) (CDCl ₃)			
No.	(Lit. mp or bp/mmHg)	ring protons			
2b	105 (105—106 ³)	7.43 (1H, dd, $J=5$, 8), 8.03 (1H, dd, $J=2$, 8), 8.57 (1H, dd, $J=2$, 5)			
	115—116 (117—118 ⁷⁾)				
3b	. ,	7.85 (1H, d, $J=6$), 7.97 (1H, dd, $J=2$, 6), 8.74 (1H, d, $J=2$)			
4b	$101 - 102 (102^8)$	7.85 (1H, d, $J=6$), 8.83 (1H, d, $J=6$), 8.93 (1H, s)			
2d	120—125/2	7.21 (1H, dd, $J=4$, 6), 7.50 (1H, dd, $J=2$, 6), 8.32 (1H, dd, $J=2$, 4).			
3d	130—135/2	7.28 (1H, d, $J=4$), 7.64 (1H, dd, $J=2$, 4), 8.32 (1H, d, $J=2$)			
4d	140/1	7.30 (1H, d, $J=5$), 8.36 (1H, s), 8.40 (1H, d, $J=5$)			
2f	120—125/15 (78/0.19)	7.24 (1H, dd, $J=5$, 8), 8.08 (1H, dd, $J=2$, 8), 8.43 (1H, dd, $J=2$, 5)			
3f	150/18	7.38 (1H, d, $J=8$), 8.20 (1H, dd, $J=2$, 8), 8.92 (1H, d, $J=2$)			
4f	130—135/15 (85/1 ¹⁰)	7.35 (1H, d, $J=5$), 8.55 (1H, d, $J=5$), 8.99 (1H, s)			
2g	99—101 (96—98 ⁴)	7.67 (1H, dd, $J=5$, 8), 8.16 (1H, dd, $J=2$, 8), 8.65 (1H, dd, $J=2$, 5)			
3g	108—109 (110 ⁵)	7.60 (1H, d, $J=8$), 8.50 (1H, dd, $J=2$, 8), 9.29 (1H, d, $J=2$)			
4g	154—155 (156 ¹¹⁾)	7.56 (1H, d, $J=4$), 8.69 (1H, d, $J=4$), 9.13 (1H, s)			
2h	45—46 (46—47 ¹²)	7.29 (1H, dd, $J=4$, 8), 7.80 (1H, dd, $J=2$, 8), 8.37 (1H, dd, $J=2$, 4)			
3h	58—59 (60 ¹³)	7.28 (1H, d, $J=8$), 7.82 (1H, dd, $J=2$, 8), 8.47 (1H, d, $J=2$)			
4h	90/15 (22—23 ¹⁴)	7.34 (1H, d, $J=3$), 8.36 (1H, d, $J=3$), 8.56 (1H, s)			
2i	54—55 (55—56 ¹⁵)	7.13 (1H, dd, $J=5$, 8), 7.97 (1H, dd, $J=2$, 8), 8.40 (1H, dd, $J=2$, 5)			
3i	69 (67—69 ¹⁵⁾)	7.23 (1H, d, $J=8$), 7.79 (1H, dd, $J=2$, 8), 8.49 (1H, d, $J=2$)			
4i	115/20 (196—19816)	7.33 (1H, d, $J=5$), 8.37 (1H, d, $J=5$), 8.73 (1H, s)			
2j	193 (192—193 ¹⁷⁾)	7.22 (1H, dd, $J=3$, 8), 7.57 (1H, dd, $J=2$, 8), 8.27 (1H, dd, $J=2$, 3)			
3j	115/30 (56/2.5 ¹⁴)	7.20 (1H, d, $J=8$), 7.50 (1H, dd, $J=2$, 8), 8.24 (1H, d, $J=2$)			
4j	100—105/115 (159—160 ¹⁸)	7.28 (1H, d, $J=5$), 8.37 (1H, d, $J=5$), 8.46 (1H, s)			
2k	46—47	7.20 (1H, dd, $J=5$, 7), 7.57 (1H, dd, $J=2$, 7), 8.21 (1H, dd, $J=2$, 5)			
	110—115/3				
3k	62—63	7.1—8.0 (6H, m), 7.78 (1H, dd, $J=3$, 7), 8.53 (1H, d, $J=3$)			
	120—125/3				
4k	120—125/3	7.37 (1H, d, $J=4$), 7.40 (5H, s), 8.38 (1H, d, $J=4$), 8.47 (1H, s)			
21	109/20	7.17 (1H, dd, $J=4$, 8), 7.38 (1H, dd, $J=2$, 8), 8.07 (1H, dd, $J=2$, 4)			
31	46—47	6.8 - 7.2 (2H, m), 7.76 (1H, d, $J = 2$)			
41	120—125/5	7.18 (1H, d, $J=4$), 8.10 (1H, d, $J=4$), 8.27 (1H, s)			

	Formulae	Analyses (%)						
No.		Calcd			Found			
		C	Н	N	С	Н	N	
2d	$C_{10}H_{13}ClN_2O$	56.47	6.16	13.17	56.68	6.02	13.26	
3d	$C_{10}H_{13}CIN_2O$	56.47	6.16	13.17	56.65	6.08	13.22	
4 d	$C_{16}H_{16}CIN_5O_8^{a}$	43.50	3.65	15.85	43.40	3.68	15.59	
3f	$C_8H_8CINO_2$	51.77	4.34	. 7.55	. 51.77	4.32	7.52	
2k	$C_{11}H_8ClN$	69.67	4.25	7.39	69.68	4.16	7.49	
3k	$C_{11}H_8ClN$	69.67	4.25	7.39	69.80	4.16	7.36	
4k	$C_{17}H_{11}ClN_4O_7^{\ b)}$	48.76	2.65	13.38	48.82	2.86	13.36	
21	$C_7H_9ClN_2$	53.68	5.79	17.89	53.68	5.57	18.10	
31	$C_7H_9ClN_2$	53.68	5.79	17.89	53.79	5.91	17.77	
41	$C_{13}H_{12}ClN_5O_7^{c)}$	40.48	3.14	18.16	40.37	3.12	17.97	

TABLE III. Analytical Data for Chloropyridines

lized from hexane-ether. Yield $170 \,\mathrm{mg}$ (11%). The third eluate gave 21 as a colorless liquid. Yield $30 \,\mathrm{mg}$ (2%).

2-Chloro-3-(N,N-dimethyamino)pyridine (2l)—Acetic acid (0.5 ml) was added to a mixture of 3-amino-2-chloropyridine (640 mg, 5 mmol), 30% formaldehyde (4 ml), and NaBH₃CN (950 mg, 15 mmol) in MeCN (20 ml) during 30 min with stirring at room temperature. After 2 h, AcOH (0.5 ml) was added to the mixture during 30 min, and the mixture was stirred for 2 h. Then, 30% formaldehyde (4 ml) and NaBH₃CN (320 mg, 5 mmol) were added, and NaBH₃CN (320 mg, 5 mmol) was added twice at intervals of 30 min. The whole mixture was made alkaline with 1 N KOH and extracted with ether. The ethereal extract was washed with brine and dried over K₂CO₃. The residue obtained from the ethereal extract was purified by silica gel column chromatography using hexane–Et₃N (9:1 v/v) to give a colorless liquid. Yield 270 mg (35%).

References and Notes

- 1) T. Sakamoto, S. Kaneda, S. Nishimura, and H. Yamanaka, Chem. Pharm. Bull., 33, 565 (1985).
- 2) Y. Suzuki, Pharm. Bull. (Tokyo), 5, 78 (1957).
- 3) a) E. C. Taylor and A. J. Crovetti, J. Org. Chem., 19, 1633 (1954); b) Idem, "Organic Syntheses," Coll. Vol. 4, ed. by N. Rabjohn, John Wiley & Sons, New York, 1963, p. 166.
- 4) E. Ochiai and Ch. Kaneko, Chem. Pharm. Bull., 8, 28 (1960).
- 5) E. C. Taylor and J. S. Driscoll, J. Org. Chem., 25, 1716 (1960).
- 6) It has been reported that treatment of 3-carbamoylpyridine 1-oxide with phosphorus pentachloride and phosphoryl chloride gave 2b in 35—39% yield.⁵⁾ However, the use of phosphoryl chloride alone gave a better result in our laboratory.
- 7) H. S. Forrest and J. Walker, J. Chem. Soc., 1948, 1939.
- 8) T. Wieland and H. Biener, Chem. Ber., 96, 266 (1963).
- 9) H. Sliwa and P. Maitte, Compt. Rend., 259, 2255 (1964).
- 10) G. L. Lhommet and H. Sliwa, Bull. Soc. Chim. France, 1972, 1435.
- 11) E. Koenigs and A. Flude, Ber., 60, 2107 (1927).
- 12) H. Meyer and R. Graf, Ber., 61, 2212 (1928).
- 13) H. Meyer and R. Graf, Ber., 61, 2214 (1928).
- 14) E. Koenigs, M. Mields, and H. Gurlt, Ber., 57, 1180 (1924).
- 15) H. J. den Hertog and N. A. I. M. Boelrijk, Rec. Trav. Chim. Pay Bas, 70, 578 (1951).
- 16) Z. Talik and T. Talik, Rocz. Chem., 36 417 (1962) [Chem. Abstr., 58, 5629c (1963)].
- 17) O. Seide, Ber., 57, 1805 (1924).
- 18) D. Jerchel, H. Fisher, and K. Thomas, Chem. Ber., 89, 2921 (1956).

a) Picrate, mp 144—145°C (yellow needles from ether). b) Picrate, mp 145—147°C (yellow needles from ether). c) Picrate, mp 164—165°C (dec.) (yellow needles from ether).