Chem. Pharm. Bull. 36(7)2647—2651(1988)

Infrared Spectra of Conjugated Amides: Reassignment of the C=O and C=C Absorptions

NORIO NAKAMURA, FUMIYUKI KIUCHI, and YOSHISUKE TSUDA*

Faculty of Pharmaceutical Sciences, Kanazawa University, 13–1, Takara-machi, Kanazawa 920, Japan

(Received December 9, 1987)

Inspections of the infrared spectra of more than twenty tertiary and secondary amides and acid-induced shift experiments clarified that, in open chain amides, the carbonyl absorption shifts to lower frequency by $10-20\,\mathrm{cm}^{-1}$ when a conjugation is introduced and that, among the plural absorptions at $1600-1700\,\mathrm{cm}^{-1}$ in conjugated amides, the lowest absorption (usually the most intense one) should be attributable to the C=O and the higher absorptions are assignable to the C=C.

Keywords—conjugated amide; piperamide; IR; carbonyl absorption; acid-induced shift

Conjugated amides show several infrared (IR) absorption bands in the $1600-1700\,\mathrm{cm^{-1}}$ region; usually two in monoene-amides and three in diene-amides. Frequently the lower frequency band(s) was assigned to the C=C and the higher frequency band to the C=O stretching absorptions.¹⁾ This assignment follows the literature,²⁾ which states that the carbonyl absorption frequency of amides is slightly raised by conjugation with a double bond as opposed to the more usual lowering.

Fujii et al.³⁾ showed that, in six-membered lactams, the above assignment is incorrect, proving that the carbonyl frequency is slightly $(10-20\,\mathrm{cm}^{-1})$ lowered by conjugation with a double bond, contrary to what has been proposed in the literature. This may also hold for open chain amides such as piperamides,⁴⁾ in which the assignment has been done according to the literature.²⁾ For example, among three absorptions at 1650, 1625, and 1600 cm⁻¹ in piperylin (7) those at 1650 and 1625 cm⁻¹ were assigned to the C=O and the C=C, respectively.^{1a)}

Since many kinds of open chain amides, conjugated or unconjugated, are in our hands as pepper constituents,⁴⁾ we have examined their IR spectra focusing on the above point. The structures of the amides used in this work are listed in Table I and Chart 1, and their IR absorptions in the 1600—1700 cm⁻¹ region are listed in Table II. They can be classified into the following four groups.

Saturated amides (group 1) exhibit only one absorption at ca. $1620 \, \text{cm}^{-1}$ which is obviously attributable to the C = O.

Monoene-amides (group 2) exhibit two absorption bands at 1655 and 1600 cm⁻¹ when they are tertiary, and at 1675—1665 and 1640—1620 cm⁻¹ together with the amide-II band at ca. 1510 cm⁻¹ when they are secondary. This is consistent with the generally accepted fact that a secondary amide absorbs at slightly higher frequency than a tertiary amide does. Of the above two absorptions, that at the lower frequency was more intense.

In diene-amides (group 3), tertiary amides exhibit three absorptions at ca. 1650, 1625, and 1590 cm⁻¹, the band at the lowest frequency being the most intense. Secondary amides also exhibit three absorptions at 1665—1650, 1630—1625, 1620—1610 cm⁻¹ together with the amide II band at 1505 cm⁻¹. Again the absorption at the lowest frequency is the most intense.

TABLE I. Structures of Piperamides 1-23

	Piperamide ^{a)}	m		uble b	ond config.	-NRR′
1	A5:0	5				Piperidino
2	B5:0	5				Isobutylamino
3	C5:0	5				Pyrrolidino
4	C5:1 $(2E)$	5	2E			Pyrrolidino
5	A5:2 (E,E)	5	2 <i>E</i> ,	4E		Piperidino
6	B5:2 (E,E)	5	2 <i>E</i> ,	4E		Isobutylamino
7	C5:2(E,E)	5	2 <i>E</i> ,	4E		Pyrrolidino
8	C7:0	7				Pyrrolidino
9	C7:1 (6 <i>E</i>)	7			6 <i>E</i>	Pyrrolidino
10	$C7:2\ (2E,6E)$	7	2 <i>E</i> ,		6 <i>E</i>	Pyrrolidino
11	A7:3(E,E,E)	7	2E,	4 <i>E</i> ,	6E	Piperidino
12	C9:0	7				Pyrrolidino
13	A9:1 (8E)	9			8E	Piperidino
14	C9:1 (8 <i>E</i>)	9			8 <i>E</i>	Pyrrolidino
15	A9:2 $(2E,8E)$	9	2 <i>E</i> ,		8 <i>E</i>	Piperidino
16	B9:2 $(2E,4E)$	9	2 <i>E</i> ,	4E		Isobutylamino
17	B9:2 $(2E, 8E)$	9	2E,		8E	Isobutylamino
18	$C9:2\ (2E,8E)$	9	2E,		8 <i>E</i>	Pyrrolidino
19	A9:3 $(2E, 4E, 8E)$	9	2 <i>E</i> ,	4 <i>E</i> ,	8E	Piperidino
20	B9:3 $(2E, 4E, 8E)$	9	2 <i>E</i> ,	4E,	8E	Isobutylamino
21	C9:3 $(2E, 4E, 8E)$	9	2 <i>E</i> ,	4 <i>E</i> ,	8 <i>E</i>	Pyrrolidino
22	B11:3 $(2E, 4E, 10E)$	11	2 <i>E</i> ,	4 <i>E</i> ,	10 <i>E</i>	Isobutylamino
23	B13:3 $(2E, 4E, 12E)$	13	2E,	4 <i>E</i> ,	12 <i>E</i>	Isobutylamino

a) The following systematic nomenclature is adopted, i.e., "piperamide-A, -B, or -C m:n," where A, B, and C indicate piperidin-, N-isobutyl-, and pyrrolidin-amide, respectively, m indicates the number of carbon atoms between nitrogen and the aromatic nucleus, and n is the number of double bonds. For details, see ref. 4.

Chart 1

When the number of conjugations increases (group 4), the most intense band shifts to lower frequency, and a new additional absorption appears in the higher frequency region. Thus, piperamide-A7:3 (E, E, E) (piperettine) (11) exhibits four bands, the absorption at 1575 cm⁻¹ being the most intense.

In all groups the most intense absorption appeared at the lowest frequency, which shifted successively to lower frequency with increase of conjugation; this implies that this absorption is attributable to the C=O. This assignment was confirmed by the following experiments, proposed by Fujii *et al.*³⁾

Piperamide-C9:2 (2E, 8E) (18) (a group 2 amide) shows two peaks at 1655 and 1600 cm⁻¹. On addition of an equimolar amount of monochloroacetic acid, the intensity of the latter band markedly decreased and a new absorption at 1570 cm⁻¹ appeared, while the former band was almost unchanged. On increase of the amount of the acid the band at

	TABLE II.	IR Absorption	n Frequencies	of Amides	in the	Carbonyl Region	
--	-----------	---------------	---------------	-----------	--------	-----------------	--

	Compound ^{a)}	A '1		Absorption frequency (cm ⁻¹)		
Group			Amide	CHCl ₃	KBr	
1	PA-A5:0	1	tert	1620	1640 ^{b)}	
	PA-A9:1 (8 <i>E</i>)	13	tert	1620	$1640^{b)}$	
	PA-C5:0	3	tert	1615	1640 ^{b)}	
	PA-C7:0	8	tert	1620	$1635^{b)}$	
	PA-C7:1 (6E)	9	tert	1620	1635 ^{b)}	
	PA-C9:0	12	tert	1620	1640^{b}	
	PA-C9:1 (8 <i>E</i>)	14	tert	1620	1635 ^{b)} .	
	PA-B5:0	2	sec	1660		
2.	$PA-A9:2\ (2E,8E)$	15 ⁵⁾	tert	1655, 1600		
	PA-C5:1 (2E)	4	tert	1655, 1600		
	PA-C7: 2 $(2E,6E)$	10	tert	1655, 1600		
	$PA-C9:2\ (2E,8E)$	18	tert	1655, 1600		
		25 ^{1c)}	tert	1655, 1605°)		
	PA-B9: 2(2E,8E)	17 ⁵⁾	sec	1675, 1640		
	α-Sanshool	26 ⁶)	sec		1668, 1626 ^{c)}	
	β -Sanshool	27 ⁶⁾	sec		1667, 1623 ^{c)}	
3	PA-A9:3 (2E,4E,8E)	19 ⁷⁾	tert		1650, 1625, 1590°)	
	PA-C9: 3 $(2E, 4E, 8E)$	21	tert	1650, 1625, 1590	1650, 1625, 1590	
	•	24	tert	1650, 1620, 1600	•	
	PA-B9: 2 (2E,4E)	16 ⁸⁾	sec		1660, 1630, 1618°)	
	PA-B9: 3 (2E, 4E, 8E)	20	sec		1660, 1630, 1615	
	PA-B11:3 (2E,4E,10E)	22	sec		1655, 1625, 1610	
	PA-B13:3 (2E,4E,12E)	23	sec	1665, 1630, 1615	1650, 1625, 1610	
4	PA-A5:2(E,E)	5	tert	1635, 1615, 1585	1635, 1610, 1585	
	PA-C5: 2 (E,E)	7	tert	1635, 1615, 1585	1640, 1615, 1590	
	PA-A7:3 (E,E,E)	11	tert	1630, 1615, 1590, 1575	1625, 1600, 1585, 1570	
	PA-B5: 2 (E,E)	6	sec	1655, 1610	1655, 1610	

a) PA = piperamide. For structures, see Table I. b) Liquid film. c) Data from the reference cited.

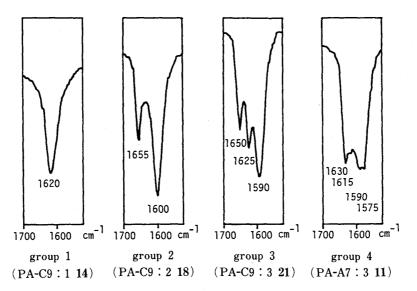


Fig. 1. Carbonyl Region Frequencies of Amides in Chloroform Solution

 $1600\,\mathrm{cm^{-1}}$ was diminished and only the band at $1570\,\mathrm{cm^{-1}}$ remained. Therefore the band at $1600\,\mathrm{cm^{-1}}$ should be attributable to the carbonyl and the new band at $1570\,\mathrm{cm^{-1}}$ to the association band between the carbonyl and monochloroacetic acid. Piperamide-C9:3 (2E,

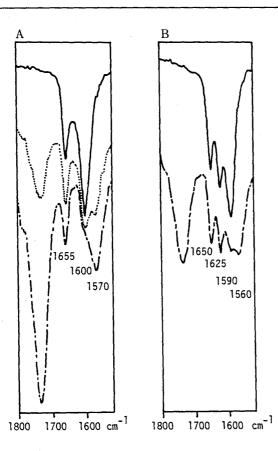


Fig. 2. Effect of Monochloroacetic Acid on the CO and Related Absorptions of Conjugated Amides

- (A) Piperamide-C9: 1(8E) (18): ——, 18 in 0.02 M solution in CHCl₃; ——, 18 + equimolar of CH₂Cl-COOH in CHCl₃; ———, 18 + excess CH₂ClCOOH in CHCl₃.
- (B) Piperamide-C9: 3 (2E,4E,8E) (21): ——, 21 in 0.02 M solution in CHCl₃; —-—, 21 + excess CH₂Cl-COOH in CHCl₃.

4E, 8E) (21) (a group 3 amide), in a similar experiment, showed a decrease of the intensity of the lowest absorption at $1590 \,\mathrm{cm}^{-1}$ and the appearance of a new association band at $1560 \,\mathrm{cm}^{-1}$. For the amide of group 4, piperamide-A7: 3 (E, E, E) (piperettine) (11), the lowest absorption at $1575 \,\mathrm{cm}^{-1}$ was decreased and a new absorption at $1555 \,\mathrm{cm}^{-1}$ due to the association appeared.

In conclusion, in open chain amides the carbonyl absorption shifts to lower frequency by $10-20\,\mathrm{cm^{-1}}$ when a conjugation is introduced, as suggested³⁾ in cyclic amides. Among the plural absorptions at $1600-1700\,\mathrm{cm^{-1}}$ in conjugated amides, the lowest absorption (usually the most intense one) should be attributable to the C=O and the higher absorptions are assignable to the C=C.

Experimental

General—Melting points were taken on a Yanagimoto micro hot-stage apparatus, and are uncorrected. Proton nuclear magnetic resonance (1 H-NMR) spectra were measured in CDCl₃ solution with tetramethylsilane as an internal standard on a JEOL FX-100 spectrometer, and are given in δ . Mass spectra (MS) and high-resolution mass spectra (HRMS) were obtained on a Hitachi M-80 machine at an ionization voltage of 20 or 70 eV, respectively.

Infrared (IR) Spectra—Unless otherwise noted, IR spectra were taken in CHCl₃ solution at a concentration of 0.1—0.3 M on a JASCO A-202 spectrometer and are given in cm⁻¹.

Chemicals—Unless otherwise mentioned, all chemicals were of spectro-grade, purchased from Nakarai Chemicals Ltd.

Piperamides—Unless otherwise noted, piperamides were obtained from pepper and purified as described in a previous paper.⁴⁾

Piperamide-A5:0 (Tetrahydropiperine) (1)—Piperine (5) was hydrogenated in ethanol over 5% Pd–C under a pressure of hydrogen at $4.5 \,\mathrm{kg/cm^2}$ for 3 h to give 1, as an oil. $^1\mathrm{H}\text{-NMR}$: 1.36—1.76 (10H), 2.33 (2H, m, COCH₂), 2.56 (2H, m, ArCH₂), 3.28—3.62 (4H, CH₂NCH₂), 5.92 (2H, s, OCH₂O), 6.54—6.76 (3H, ArH). MS m/z (%): 289 (M⁺, 84), 204 (40), 154 (38), 148 (37), 141 (40), 140 (70), 135 (39), 127 (100), 126 (18), 112 (35), 86 (24), 85 (19), 84 (50), 70 (19). HRMS: m/z Calcd for $C_{17}H_{23}NO_3$ (M⁺): 289.1676. Found: 289.1671.

Piperamide-C5:0 (Tetrahydropiperylin) (3)—Piperylin (7) was hydrogenated as described above to give 3 as an

oil. 1 H-NMR: 1.44—2.12 (8H), 2.27 (2H, m, COCH₂), 2.56 (2H, m, ArCH₂), 3.31—3.58 (4H, CH₂NCH₂), 5.94 (2H, s, OCH₂O), 6.56—6.76 (3H, ArH). MS m/z (%): 275 (M⁺, 56), 204 (17), 148 (27), 140 (19), 135 (34), 127 (36), 126 (62), 113 (100), 99 (15), 98 (19), 85 (18), 70 (19). HRMS: m/z Calcd for $C_{16}H_{21}NO_{3}$ (M⁺): 275.1519. Found: 275.1514.

Piperamide-C7: 0 (8)—Piperamide-C7: 2 (**10**) was hydrogenated as described above to give **8** as an oil. 1 H-NMR: 1.28—2.06 (12H), 2.29 (2H, m, COCH₂), 2.56 (2H, m, ArCH₂), 3.35—3.58 (4H, CH₂NCH₂), 5.96 (2H, s, OCH₂O), 6.57—6.81 (3H, ArH). MS m/z (%): 303 (M⁺, 26), 168 (29), 135 (27), 126 (56), 113 (100), 70 (11). HRMS: m/z Calcd for C₁₈H₂₅NO₃ (M⁺): 303.1833. Found: 303.1836.

Piperamide-C9: 0 (12)—Piperamide-C9: 3 (21) was hydrogenated as described above to give 12, as an oil. 1 H-NMR: 1.24—2.03 (16H), 2.26 (2H, m, COCH₂), 2.52 (2H, m, ArCH₂), 3.32—3.56 (4H, CH₂NCH₂), 5.93 (2H, s, OCH₂O), 6.54—6.77 (3H, ArH). MS m/z (%): 331 (M⁺, 30), 196 (20), 135 (31), 126 (61), 113 (100), 70 (12). HRMS: m/z Calcd for $C_{20}H_{29}NO_{3}$ (M⁺): 331.2145. Found: 331.2129.

Piperamide-B5:2 (*E,E*) (**Piperlonguminine**) (6)—Piperine (5) was hydrolyzed with 10% ethanolic NaOH to piperic acid, mp 220—222 °C (lit. mp 216 °C). ¹a) A mixture of piperic acid (182 mg) and triethylamine (170 mg, 2 eq) in CH₂Cl₂ was stirred for 15 min at 0 °C, then methanesulfonyl chloride (105 mg, 1.5 eq) was added and the whole was stirred for a further 30 min. Isobutylamine (90 mg, 1.5 eq) was added to the mixture and stirring was continued for 1 h at 0 °C and 1 h at room temperature. The reaction mixture was taken up in CH₂Cl₂, and washed with 5% HCl, saturated aqueous NaHCO₃, and water. The organic layer, on concentration after drying, gave 6 (127 mg), mp 170—172 °C (lit. mp 166—168 °C), ⁹⁾ as yellow needles from ethanol. ¹H-NMR: 0.93 [6H, d, J=6.0 Hz, (CH₃)₂], 1.82 (1H, m, CH), 3.16 (2H, t, J=6.0 Hz, NCH₂), 5.58 (1H, br s, NH), 5.88 (1H, d, J=15.0 Hz, =CHCO), 5.92 (2H, s, OCH₂O), 6.59—6.96 (5H, ArH, 2 × = CH-), 7.12—7.45 (1H, -CH=C-CO). MS m/z (%): 273 (M⁺, 72), 216 (20), 201 (100), 174 (27), 173 (72), 172 (27), 171 (15), 143 (25), 115 (57), 96 (24).

Piperamide-B5: 0 (2) — Piperamide-B5: 2 (6) was hydrogenated as described for 1 to give 2, as colorless prisms, mp 61—62 °C (from hexane–benzene). 1 H-NMR: 0.90 [6H, d, J=6.6 Hz, (CH₃)₂], 1.48—1.90 (5H, 2 × CH₂, CH), 2.18 (2H, m, COCH₂), 2.55 (2H, m, ArCH₂), 3.07 (2H, t, J=6.6 Hz, NCH₂), 5.74 (1H, br s, NH), 5.92 (2H, s, OCH₂O), 6.52—6.74 (3H, ArH). MS m/z (%): 277 (M⁺, 86), 204 (55), 148 (67), 142 (24), 135 (92), 128 (47), 115 (100), 86 (31), 74 (26), 72 (27), 60 (78), 57 (24). HRMS: m/z Calcd for C₁₆H₂₃NO₃ (M⁺): 277.1677. Found: 277.1677.

Acknowledgement The authors thank Prof. T. Fujii of our Faculty for valuable discussions.

References and Notes

- 1) a) R. Grewe, W. Freist, H. Newmann, and S. Kersten, *Chem. Ber.*, 103, 3752 (1970); b) O. P. Vig, R. C. Aggarwal, C. Shekher, and S. D. Sharma, *Indian J. Chem.*, 17B, 560 (1979); c) R. Inatani, N. Nakatani, and H. Fuwa, *Agric. Biol. Chem.*, 45, 667 (1981).
- 2) a) L. J. Bellamy, "The Infra-red Spectra of Complex Molecules," 2nd ed., Methuen, London, 1958, pp. 213—215; b) K. Nakanishi, P. H. Solomon, and N. Furutani, "Infrared Absorption Spectroscopy—Practical—," Qualitative Data Part, 19th ed., Nankodo, Tokyo, 1983, p. 46.
- 3) T. Fujii, Y. Takai, M. Ohba, H. Kogen, and M. Ohki, Chem. Pharm. Bull., 33, 2697 (1985).
- 4) F. Kiuchi, N. Nakamura, Y. Tsuda, K. Kondo, and H. Yoshimura, Chem. Pharm. Bull., 36, 2452 (1988).
- 5) These were recently synthesized in our laboratory. Details to be published.
- 6) L. Crombie and J. L. Tayler, J. Chem. Soc., 1957, 2760.
- 7) W. Tabuneng, H. Bando, and T. Amiya, Chem. Pharm. Bull., 31, 3562 (1983).
- 8) B. G. Pring, J. Chem. Soc., Perkin Trans. 1, 1982, 1493.
- 9) A. Chatterjee and C. P. Dutta, Tetrahedron, 23, 1769 (1967).