Communications to the Editor

Chem. Pharm. Bull. 36(7)2724—2725(1988)

FACILE SYNTHESIS OF ZYMOSTEROL AND RELATED COMPOUNDS

Noriko Ogihara and Masuo Morisaki*
Kyoritsu College of Pharmacy, Shibakoen, Minato-ku, Tokyo 105, Japan

Facile preparations of cholesta-8,24-dien-3 β -ol, zymosterol ($\underline{1}$) and the related 7,24-diene ($\underline{2}$), 5,7,24-triene ($\underline{3}$) and 8,14,24-triene ($\underline{4}$), all of which are potential intermediates of cholesterol or ergosterol biosynthesis, are described.

KEYWORDS — zymosterol; cholesta-8,24-dien-3 β -ol; cholesterol biosynthesis; GC-MS; cholesta-5,7,24-trien-3 β -ol; cholesta-7,24-diene-3 β -ol

One of the key intermediates in the biosynthesis of cholesterol (in mammals) and ergosterol (in yeast and fungi) is zymosterol, cholesta-8,24-dien-3 β -ol. 1) The only available standard sample of zymosterol has been from minor yeast sterols, 2) until the very recent report 3) of a chemical synthesis of zymosterol, which has prompted us to report our own efforts in this area. Described here is a facile way to prepare zymosterol (1), cholesta-7,24-dien-3 β -ol (2), cholesta-5,7,24-trien-3 β -ol (3) and cholesta-8,14,24-trien-3 β -ol (4), all of which are potential precursors of cholesterol or ergosterol.

5-Cholene-3 β ,24-diol 3-tetrahydropyranyl ether($\underline{5}$) $\underline{4}$) is oxidized with pyridinium chlorochromate to give the 24-aldehyde, which is treated with ethylene glycol in refluxing benzene in the presence of p-toluenesulfonic acid. The resultant 3-hydroxy-24-acetal is converted into the acetate($\underline{6}$), mp 124-126°C in 75% overall yield from $\underline{5}$. Successive treatment of $\underline{6}$ with N-bromosuccinimide in refluxing carbon tetrachloride, tetra-n-butylammonium bromide in tetrahydrofuran, and tetra-n-butylammonium fluoride $\underline{5}$ gives the 5,7-diene ($\underline{7}$, 43% yield), the common synthetic progenitor of all the targeted sterols. Catalytic hydrogenation of the 5,7-diene ($\underline{7}$) with Raney-Ni W4 in ethanol affords the 7-ene ($\underline{8}$). Refluxing $\underline{7}$ with benzene in the presence of p-toluenesulfonic acid affords the 8,14-diene ($\underline{9}$) in 55% yield, after basic hydrolysis. Similar catalytic hydrogenation of

the 8,14-dien- 3β -ol($\underline{9}$) gives a mixture (ca.1:1) of the 8(9)-ene ($\mathbf{10}$, 1 H-NMR 0.61 ppm, 13-Me) and the 8(14)-ene (11, 0.69 ppm). 6)

Deacetalization of the corresponding acetates of 10 plus 11 with d.HCl in acetone followed by Wittig reaction with isopropylidene triphenylphosphorane in tetrahydrofuran yields, after saponification, a mixture (ca.l:1) of zymosterol(1) Recrystallization of this material and the 8(14),24-diene (12) in 40% yield. from methanol gave zymosterol, mp 109-111°C (lit. 2a,3) mp 110-112°C). same manner, deacetalization of 7, 8, and 9 followed by Wittig reaction gives the 5,7,24-triene (3), 7,24-diene (2) and 8,14,24-triene (4), respectively.

These sterols in biological systems are identified by HPLC and/or GC-MS. relevant data to use for that purpose are listed in Table I. A characteristic fragment ion of \triangle^{24} steroid trimethylsilyl (TMS) ether is m/z 343 due to the loss of the side chain together with two hydrogen atoms from the steroid nucleus, 7) as exemplified by the mass spectra of the 7,24-diene(2) and desmosterol TMS ethers. However, in the mass spectra of the TMS ethers of 1, 3 and 4, the corresponding peak $(m/z,341 \text{ in } \underline{3} \text{ and } \underline{4})$ almost completely disappears. Thus, fragmentations induced by the 24-double bond are highly dependent on the position of the nuclear double bond.

	HPLC ^{a)} t _R (min)	GC ^{b)} RRT	Prominent mass fragment ions(%) ^{C)}
Cholesterol	15.8 min	1.00	458(42), 368(75), 329(85), 129(100)
Desmosterol	13.6	1.09	456(28), 366(26), 343(64), 69(100)
$Zymosterol(\underline{1})$	12.2	1.13	456(100), 441(42), 351(28)
7,24-Diene(<u>2</u>)	13.2	1.25	456(33), 441(30), 343(100)
8(14),24-Diene(<u>12</u>)	11.7	1.10	456(45), 441(26), 343(44), 69(100)
5,7,24-Triene(<u>3</u>)	11.2	1.19	454(69), 364(32), 349(100), 323(68)
8,14,24-Triene(4)	9.8	1.10	454(100), 439(29), 369(27), 349(31)

Table I

REFERENCES AND NOTES

- 1) G. J. Schroepfer, Jr., Annu. Rev. Biochem., <u>51</u>, 555(1982).
- 2) a) U. F. Taylor, A. Kisic, R. A. Pascal, Jr., A. Izumi, M. Tsuda and G. J. Schroepfer, Jr., J. Lipid Res., 22, 171(1981); b) N. Ariga, H. Hatanaka, J. Nagai and H. Katsuki, J. Biochem., 83, 1109(1978).

 3) R. E. Dolle, S. J. Schmidt and L. I. Kruse, J. Chem. Soc., Chem. Commun., 1988,
- 19.
- 4) M. Morisaki, M. Shibata, C. Duque, N. Imamura and N. Ikekawa, Chem. Pharm. Bull., 28, 606(1980).
- 5) M. P. Rappapold, J. Hoogendorf and L. F. Pauli, "Vitamin D. Chemical Biological and Clinical Endocrinology of Calcium Metabolism," Walter de Gruyter and Co., Berlin, 1982, p. 1133.
- 6) Catalytic hydrogenation of the 8,14-dienic steroids over Raney-Ni was reported to give the 8(14)-olefin, a 8(9)-olefin, or their mixture. a) M. A. Apfel, J. Org. Chem., 44, 643(1979); b) P. J. Hylands, J. M. Midgley, C. Smith, A. F. A. Wallis and W. B. Whalley, J. Chem. Soc., Perkin Trans. 1, 1977, 817; c) D. H. R. Barton and J. D. Cox, J. Chem. Soc., 1949, 214.

 7) S. G. Wyllie and C. Djerassi, J. Org. Chem., 33, 305(1968); I. J. Massey and C. Djerassi, J. Org. Chem., 44, 2448(1979).

(Received May 2, 1988)

a) Shim-pack CLC-ODS, 0.15m x 6.0 ; methano1, 1.0 ml/min; UV detector, 210 nm.

b) As the TMS ether; capillary column, Ultra 1(methyl silicon); 260°C.c) As the TMS ether; 70 eV.