Chem. Pharm. Bull. 36(8)3173-3175(1988)

Antifungal Activity against Plant-Pathogenic Fungi and Phytogrowth-Inhibitory Activity of 3,3'-Dihydroxy- α , β -diethyldiphenylethane

Yoshihiko Inamori, *,a Hiroshi Tsujibo, a Masafumi Ogawa, a Yasuyoshi Miki b and Shoji Takemura b

Osaka University of Pharmaceutical Sciences, Kawai, Matsubara-shi, Osaka 580, Japan and Faculty of Pharmaceutical Sciences, Kinki University, Kowakae, Higashiosaka-shi, Osaka 577, Japan

(Received January 18, 1988)

3,3'-Dihydroxy- α,β -diethyldiphenylethane (I), an isomer of hexestrol (IV), showed antifungal activity against plant-pathogenic fungi and phytogrowth-inhibitory activity. First, compound I had antifungal activity against all plant-pathogenic fungi examined. The antifungal spectrum of I was similar to those of IV, diethylstilbestrol (III) and 3,3'-dihydroxy- α,β -diethylstilbene (II). However, compound I, unlike II, III and IV, showed antifungal activity against *Ceratocystis fimbriata* IFO-4864. Next, compound I strongly inhibited the growth of roots of two plant species even at the low concentration of 50 ppm. The inhibitory effect of I was as strong as that of sodium 2,4-dichlorophenoxyacetate used as a standard.

It is noteworthy that compound I, in spite of the loss of hormonal side effect, retained the above-mentioned activities.

Keywords—3,3'-dihydroxy- α , β -diethyldiphenylethane; 3,3'-dihydroxy- α , β -diethylstilbene; diethylstilbestrol; hexestrol; oxystilbene-related compound; phytogrowth-inhibitory activity; antifungal activity; hormonal side effect; sodium 2,4-dichlorophenoxyacetate

Nonsteroidal estrogens, diethylstilbestrol (III, Chart $1)^{1-3}$) and hexestrol (IV, Chart $1)^{2,4}$) have been reported to have coronary vasodilator action, phytogrowth-inhibitory activity, ichthyotoxicity, antifungal activity and hypotensive effect by the authors. It was also found that in spite of the loss of hormonal side effect,⁵⁾ the above-mentioned activities of 3,3'-dihydroxy- α,β -diethylstilbene (II, Chart 1),^{3,6)} an isomer of III, were fully retained. Recently, we reported that 3,3'-dihydroxy- α,β -diethyldiphenylethane (I, Chart 1),⁷⁾ the dihydrocompound of II, had rather strong coronary vasodilator action on the isolated guinea-pig heart. Compound I like II, showed no hormonal side effect. In this respect, the above-mentioned activities of I and II are noteworthy. However, no work has been done on other biological activities of I except for coronary vasodilator action.

In this work, the antifungal activity against plant-pathogenic fungi and the phytogrowth-inhibitory activity of I were investigated. The results are presented here.

Chart 1

Materials and Methods

Chemicals—3,3'-Dihydroxy- α , β -diethyldiphenylethane (I) was used for the biological activity tests. I was synthesized by the reduction of II [I: mp 100—101 °C (dec.)]. Sodium 2,4-dichlorophenoxyacetate was used as a standard for the phytogrowth-inhibitory activity test.

Organisms—The plant-pathogenic fungi used were: Boryotinia fuckeliana IFO-9760, Pyrenophora graminea IFO-6633, Rhizoctonia solani IFO-30464, Cochliobolus miyabeanus IFO-4870, Ceratocystis fimbriata IFO-4864, Fusarium oxysporum f. sp. lycopersici IFO-6531 and Aureobasidium pullulans IFO-4464. The plants used were Brassica rapa L. and Raphanus sativus L. var. raphanistroides MAKINO.

Biological Activity Tests—1) Antifungal activity test: Antifungal activity was tested by the agar dilution method. The media used were potato sucrose agar in all cases except for Fusarium oxysporum f. sp. lycopersici IFO-6531 (potato dextrose agar: Eiken Chemical Co., Ltd.). The test fungi were applied to media containing various concentrations of I. The plates were incubated at 27 °C for 5 d and the growth was observed with the naked eye. 2) Phytogrowth-inhibitory activity test⁸): Aliquots (1 ml) of acetone solution of I and sodium 2,4-dichlorophenoxyacetate were each diluted in 100 ml of sterilized agar (0.8%, Difco Chemical Co., Ltd.) to the concentration of 50 ppm. The agar containing chemicals or acetone alone (control) was poured into a 500-ml sterilized beaker covered with aluminum foil. Then, 20 seeds of each plant sterilized with 70% EtOH and 1% NaClO were put on the agar and left for 7 d under 9000 lux illumination. The lengths of the roots were measured and averaged. The phytogrowth-inhibitory activity was expressed as the ratio of the length of roots to that of the control (1.00).

Results

Antifungal Activity of 3,3'-Dihydroxy- α , β -diethyldiphenylethane (I) against Plant-Pathogenic Fungi

The antifungal activity of I against plant-pathogenic fungi was examined by the agar dilution method. The results are summarized in Table I. Compound I showed antifungal activity against all the plant-pathogenic fungi examined. The antifungal spectrum of I was similar to those of compounds II—IV, but compound I, unlike II—IV, had antifungal activity

TABLE I.	Antifungal Activity of 3,3'-Dihydroxy- α , β -diethyldiphenylethane (I)
	against Plant-Pathogenic Fungi	

	Antifungal activity (µg/ml)					
Fungi	I	II ³⁾	III ³⁾	IV ⁴⁾		
Fusarium oxysporum f. sp. lycopersici IFO-6531	10.0	4.0	7.0	5.0		
Botryotinia fuckeliana IFO-9760	10.0	4.0	50.0	10.0		
Pyrenophora graminea IFO-6633	10.0	4.0	10.0	10.0		
Aureobasidium pullulans IFO-4464	30.0	25.0	25.0	20.0		
Cochliobolus miyabeanus IFO-4870	10.0	25.0	50.0	25.0		
Rhizoctonia solani IFO-30464	20.0	25.0	50.0	1000.0		
Ceratocystis fimbriata IFO-4864	40.0	1000.0	>1000.0	1000.0		

Culture conditions: 27 °C, 5 d. Media: potato sucrose agar (Fusarium oxysporum f. sp. lycopersici IFO-6531, potato dextrose agar). Method: agar dilution method.

TABLE II. Phytogrowth-Inhibitory Activity of 3,3'-Dihydroxy- α , β -diethyldiphenylethane (I)

Plant	Growth $(ratio)^{a}$					
Plant	I	II ³⁾	III ³⁾	IV ⁴⁾	2,4-D ^{b)}	
Brassica rapa L.	0.03	0.46	0.43	0.49	0.06	
Raphanus satvus L. var. raphanistroides Makino	0.16	0.83	0.65	0.41	0.10	

a) Growth in control experiments after 7d was taken as 1.00. Concentration: 50 ppm. Quantity of light: 9000 lux. Experimental size: 20 seeds/group, 2 groups. b) Sodium 2,4-dichlorophenoxyacetate.

against Ceratocystis fimbriata IFO-4864.

Phytogrowth-Inhibitory Activity of I

The inhibitory effect of I on two plant species was investigated according to the previous paper. 8) As shown in Table II, compound I showed strong phytogrowth-inhibitory activity even at the low concentration of 50 ppm. The effect of I was much stronger than those of compounds II—IV. The inhibitory activity of I on both plants was as strong as that of sodium 2,4-dichlorophenoxyacetate used as a standard.

Discussion

Like other oxystilbene-related compounds already tested, $^{1-4,6,7,9,10)}$ 3,3'-dihydroxy- α , β -diethyldiphenylethane (I) was found to have antifungal activity against plant-pathogenic fungi and phytogrowth-inhibitory activity.

Antifungal Activity on Plant-Pathogenic Fungi

Like compounds II—IV, I showed antifungal activity against all the plant-pathogenic fungi tested (Table I). In addition to I—IV, 3,4-O-isopropylidene-3,3',4,5'-tetrahydroxy-stilbene,¹⁰⁾ having phenolic hydroxyl groups on the stilbene skeleton, shows antifungal activity against plant-pathogenic fungi. Several papers have also appeared on phytolexin which is an oxystilbene compound, in common with I—IV. The findings suggest that antifugal activity against plant-pathogenic fungi might be a common biological activity of oxystilbene-related compounds. Further studies on the antifungal activity of other oxystilbene-related compounds against fungi seem to be desirable.

Phytogrowth-Inhibitory Activity

The inhibitory activity of I was as strong as that of sodium 2,4-dichlorophenoxyacetate used as a standard (Table II). In this respect, the inhibitory activity of I of plant growth is of considerable interest. Growth inhibition of both plants was also found in 3,3',4,5'-tetrahydroxystilbene⁹⁾ and 3,3',4,5'-tetrahydroxybibenzyl.⁹⁾ The results indicate that oxystilbene-related compounds generally have phytogrowth-inhibitory activities. This consideration is supported by the fact that plant growth inhibitors, batatasin III¹¹⁾ and lunularin,¹²⁾ having the same basic skeleton as I were isolated from higher plants. Further studies on the phytogrowth-inhibitory activity of many oxystilbene-related compounds are in progress.

Like II,⁵⁾ compound I had no hormonal side effect. In this respect, the above-mentioned biological activities of I are noteworthy.

References and Notes

- 1) Y. Inamori, M. Kubo, M. Ogawa, M. Moriwaki, H. Tsujibo, K. Baba and M. Kozawa, *Chem. Pharm. Bull.*, 33, 420 (1985).
- 2) Y. Inamori, M. Kubo, M. Ogawa, M. Moriwaki, H. Tsujibo, K. Baba and M. Kozawa, *Chem. Pharm. Bull.*, 33, 4478 (1085).
- 3) Y. Inamori, M. Kubo, M. Ogawa, H. Tsujibo, Y. Miki and S. Takemura, Chem. Pharm. Bull., 35, 3502 (1987).
- 4) Y. Inamori, T. Kobayashi, M. Ogawa and H. Tsujibo, Chem. Pharm. Bull., 36, 815 (1988).
- 5) D. Adam and H. Schonenberger, Arzneim.-Forsch., 16, 738 (1966).
- 6) Y. Inamori, M. Kubo, H. Tsujibo, M. Ogawa, Y. Saito, Y. Miki and S. Takemura, *Chem. Pharm. Bull.*, 35, 887 (1987).
- 7) Y. Inamori, H. Tsujibo, H. Hachiken, Y. Miki and S. Takemura, Chem. Pharm. Bull., 36, 1252 (1988).
- 8) Y. Inamori, M. Kubo, H. Tsujibo, M. Ogawa, K. Baba, M. Kozawa and E. Fujita, *Chem. Pharm. Bull.*, 34, 3928 (1986).
- 9) Y. Inamori, Y. Kato, M. Kubo, M. Yasuda, K. Baba and M. Kozawa, Chem. Pharm. Bull., 32, 213 (1984).
- 10) Y. Inamori, M. Kubo, Y. Kato, M. Yasuda, H. Tsujibo, K. Baba and M. Kozawa, *Chem. Pharm. Bull.*, 33, 2904 (1985).
- 11) Y. Hashimoto, K. Hasegawa and A. Kawarada, Planta (Berl.), 108, 369 (1972).
- 12) J. Gorham, Phytochemistry, 16, 249 (1977).