Communications to the Editor

Chem. Pharm. Bull. 36(8)3202—3205(1988)

THE STRUCTURE OF ACRIMARINES,
THE FIRST NATURALLY OCCURRING ACRIDONE-COUMARIN DIMERS¹⁾

Motoharu Ju-ichi, *, a Mami Inoue, a Ichiro Kajiura, b Mitsuo Omura, c Chihiro Ito, d and Hiroshi Furukawa *, d

Faculty of Pharmaceutical Sciences, Mukogawa Women's University, a Nishinomiya 663, National Institute of Agrobiological Resources, b

Tsukuba, Ibaragi 305, Okitsu Branch, Fruit Tree Research Station, Ministry of Agriculture, Forestry and Fisheries, Shimizu 424-02, and Faculty of Pharmacy, Meijo University, Nagoya 468, Japan

The structures of acrimarine-A (1), -B (2), and -C (3), novel acridone alkaloids carrying a coumarin unit, from Citrus funadoko Hort. ex. Y. Tanaka, have been elucidated by spectral experiments. KEYWORDS—Citrus; Rutaceae; acridone; coumarin; acrimarine; dimer

The root of <u>Citrus</u> plants contain many kinds of coumarins. We previously showed some plants of this genus also contained acridone alkaloids as well as coumarins. In our continuing phytochemical studies of <u>Citrus</u> plants, we have isolated three novel acridone-coumarin dimers, named acrimarine-A (1), -B (2), and -C (3), from the root of <u>C. funadoko</u> Hort. ex. Y.Tanaka (Funadoko, Rutaceae). This is the first occurrence of acridone-coumarin dimers in nature, and we report here the structural elucidation of these novel alkaloids.

The acetone extract of the seedling roots of \underline{C} . $\underline{funadoko}$ was fractionated by a combination of silica gel column and preparative thin layer chromatographies to give new alkaloids, acrimarines, along with acridones and coumarins.

Acrimarine-A (1), $C_{31}H_{29}NO_8$ [m/z 543.1874 (M⁺ found); 543.1890, calcd] was obtained as a pale yellow oil, $[\alpha]_D$ -9.76° (c = 0.082, CHCl₃) (yield: 0.0016% from dried root); UV λ_{max} (MeOH) nm: 205, 259 (sh.), 276, 295 (sh.), 332; IR max (CHCl₃) cm⁻¹: 3400 (br), 1730, 1620, 1595. The NMR spectra of 1 in H-H and H-C COSY revealed the presence of three methoxy, one N-methyl, and two allyl methyl (8 1.65, 1.81) groups (Table I). The observation of a strongly hydrogen-bonded proton signal at δ_H 15.08, a lower N-methyl proton signal at δ_H 3.95, and a carbonyl carbon signal at δ_C 180.4 in 1H - or ^{13}C -NMR spectra, together with UV absorptions and a strong IR band at ν_{max} 1620 cm⁻¹ suggested the presence of 1-hydroxy-N-methyl-9-acridone system in this alkaloid. Additionally, a coumarin nucleus in the molecule was shown by the appearance of AB-type proton signals [δ_H 6.22 and 7.64 (J = 9.4 Hz)], a lactone carbonyl carbon signal (δ_C 161.3), and IR bands at ν_{max} 1730 and 1595 cm⁻¹. In the aromatic proton region of the ν_{max} 1740 and 1595 cm⁻¹. In the aromatic proton region of the ν_{max} 1750 and 1595 cm⁻¹. In the aromatic proton region of the ν_{max} 1750 and 1750 cm⁻¹ and 8.17 (J = 9.2 Hz)] and three 1H singlets (ν_{max} 6.35, 6.78, 7.62) were observed. The lower field doublet at ν_{max} 8.17 was characteristic to H-8 in the acridone, ν_{max} 3 and 3 singlet at ν_{max} 5.53 and 5.97 (each 1H doublet,

coupled to each other, J = 7.8 Hz) accompanied with two allyl methyls ($\delta_{\rm H}$ 1.65, 1.81) indicated the presence of a prenyl group connected with two aryl moieties. The mass spectrum also supported this structural feature in showing two prominent ions at m/z 242 ($\rm C_{15}^{\rm H}_{14}^{\rm O}_{\rm 3}$, 29%) and 301 ($\rm C_{16}^{\rm H}_{15}^{\rm NO}_{\rm 5}$, 100%) corresponding to coumarin and acridone units, respectively, and together they comprise the molecular ion (m/z 543). In NOE experiments, irradiation of the doublet at $\delta_{\rm H}$ 5.53 (H-1'') gave an enhancement of 7% of the singlet at $\delta_{\rm H}$ 7.62 (H-5'), as well as the doublet at $\delta_{\rm H}$ 5.97 (H-2''), and on irradiation of the doublet at $\delta_{\rm H}$ 5.97

HOWER 2
$$R_1$$
 R_2 R_3 R_4 R_5 R_6 R_6 R_6 R_8 R_8 R_8 R_9 $R_$

Table I. 1 H- and 13 C-NMR Spectra of Acrimarine-A (1), -B (2), and -C (3)

	1_		2		3			1		2		3	
	δ _H	δc	δ _H	о́С	δ _H	°с		δ _H	°С	ο̈́Η	°C	о̀н	δ _C
1-он	15.08	162.7		161.4	14.5	163.7	2'		161.3		161.9		161.5
2		109.1		111.5	6.34	93.0	3'	6.22 đ	113.0	6.20 d	112.2	6.23 đ	113.1
3		161.3		163.7		162.9		(9.4)		(9.4)		(9.4)	
3-OMe			3.85	55.9	3.90	56.1	4'	7.64 d	143.9	7.66 d	144.4	7.66 d	143.8
4	6.35	92.3	6.19	87.3		105.3		(9.4)		(9.4)		(9.4)	
4a		146.1		140.9		139.4	4'a		112.3		112.2		112.1
5		136.9		133.6	ĺ	132.4		7.62	128.6	7.56	128.3	7.48	127.3
5-OMe	3.75	61.3	4.01*	61.0	3.84	60.8	6'		129.4		130.8		129.1
6		157.6		154.7*		152.4	7'		159.8		160.9		160.7
6-OMe	4.00	56.3	4.00*	55.7			7'-OMe	3.92	56.2*	3.75	56.2	3.76	56.1
7	6.94 d	107.3	6.90 đ	107.3	6.84 d	112.1	8'	6.78	99.0	6.68	98.4	6.73	99.2
	(9.2)		(9.1)		(9.1)		8'a		154.4		154.4*		154.7
8	8.17 d	123.2	8.06 d	122.3	7.95 đ	122.7							
	(9.2)		(9.1)		(9.1)		1''	5.53 d	34.0	5.71	32.7	5.67	34.1
8a		117.5		115.2		113.9		(7.8)		(9.4)		(7.4)	
9		180.4		181.0		181.3	2''	5.97 d	123.0	5.96 d	124.4	5.76 d	123.1
9a		104.8		104.3		104.2		(7.8)		(9.4)		(7.4)	
10a		138.4		134.9		135.6	3''		136.9		132.8		136.2
N-Me	3.95	40.0					3''-Me	1.65	18.4	1.70	18.1	1.64	18.3
N-H		ĺ	8.45		9.05		l I	1.81	25.8	1.79	26.0	1.82	25.9

Values are in ppm. Figures in parentheses are coupling constant (J) in Hz. All spectra were recorded in CDCl3. * Values with this superscript can be interchanged.

(H-2'') gave 6 and 7% enhancements of the signals at $\delta_{\rm H}$ 5.53 (H-1'') and 7.62 (H-5'), respectively. These data indicated the location of the prenyl moiety in coumarin unit at C-6'. Further, irradiation of the N-methyl ($\delta_{_{\rm H}}$ 3.95) and O-methyl ($\delta_{_{\rm H}}$ 3.92 and 4.00) signals showed 8, 9, and 11% enhancements of the signals at $\delta_{\rm H}$ 6.35 (H-4), 6.78 (H-8'), and 6.94 (H-7), respectively, indicating the location of the prenyl group in the acridone skeleton at C-2 (not C-4) and two methoxyls at C-7' and C-6. No NOE enhancement at any aromatic protons was observed on irradiation of the methoxy protons at $\boldsymbol{\delta}_{H}$ 3.75 (C-5). The above data were in accordance with the structure 1 for acrimarine-A. In agreement with this proposition, we applied the ${}^{1}\mathrm{H}{}^{-13}\mathrm{C}$ long-range COSY to 1. As shown in formula 1 the H-bonded proton signal at $\delta_{\rm H}$ 15.08 showed long-range correlation with the carbon signals at δ_{C} 162.7 (C-1), 109.1 (C-2), and 104.8 (C-9a). Further, the proton signal at $\delta_{\rm H}$ 5.53 (H-1'') was correlated with carbon signals at $\delta_{\rm C}$ 162.7 (C-1), 109.1 (C-2), 161.3 (C-3), 128.6 (C-5'), and 129.4 (C-6'). Other long-range correlations observed were shown by arrows in formula 1. On the basis of these results, the structure of acrimarine-A was confirmed as 1.6) Structural components of acrimarine-A (1) are the previously known acridone, grandisine-II $(4)^{7}$ and a coumarin, suberosin (6), 8) both were isolated from the same plant. 9)

Acrimarine-B (2), yellow prisms from acetone, m.p. 288-290°C, $[\alpha]_D$ -7.14° (c = 0.056, CHCl₃) (yield: 0.0041%); UV λ_{max} nm: 204, 224, 252 (sh.), 274, 288 (sh.), 330; IR v_{max} cm⁻¹: 3410, 1720, 1635, 1615, 1605. The MS showed the molecular ion at m/z 543 analyzing for $C_{31}H_{29}NO_8$ [m/z 543.1874 (M⁺ found); 543.1891 calcd], isomeric with $\frac{1}{2}$, and displayed important fragments at m/z 242 ($C_{15}H_{14}O_{3}$, 12%) and 301 $(C_{16}H_{15}NO_5, 25\%)$, 10) the same as those in 1. The ¹H-NMR features were also similar to those of 1, and indicated a lower field singlet at $\delta_{\rm H}$ 14.3, characteristic of an H-bonded OH attached to C-1 in the 9-acridone, ortho-coupled proton doublet [$\delta_{\rm H}$ 6.90, 8.06, J = 9.1 Hz] assignable to H-7 and H-8, three singlets [$\delta_{\rm H}$ 6.19 (H-4 or H-2), 7.56 (H-5'), and 6.68 (H-8')], two AB-type signals [$\delta_{\rm H}$ 6.20, 7.66 (each 1H d, J = 9.4 Hz) and $\delta_{\rm H}$ 5.71, 5.96 (each 1H d, J = 9.4 Hz)] due to H-3' and H-4' in the coumarin, and H-1'' and -2'' in a prenyl moity, respectively, two allyl methyls ($\delta_{\rm H}$ 1.70, 1.79), and four methoxy ($\delta_{\rm H}$ 3.75, 3.85, 4.00, 4.01) groups. However, the ¹³C-NMR spectrum lacked the signal owing to an N-methyl group, and the $^{\rm 1}{\rm H-NMR}$ spectrum showed a singlet at $\delta_{\rm H}$ 8.45 assignable to N-H group. In NOE experiments, irradiation of the N-H proton signal ($\delta_{_{\rm H}}$ 8.45) induced 11% enhancements of the aromatic proton singlet at $\delta_{\rm H}$ 6.19 (H-4) indicating the location of the prenylcoumarin moiety at C-2. Further irradiation of methoxy signals at $\delta_{_{\rm H}}$ 4.01 (and 4.00), 3.85, and 3.75 gave 12, 17, and 21% enhancements of the aromatic proton signals at $\delta_{\rm H}$ 6.90 (d, H-7), 6.19 (s, H-4), and 6.68 (s, H-8'), respectively. The results of the ${}^{1}\text{H}-{}^{13}\text{C}$ long-range COSY spectrum (arrows in formula 2) established the structure of acrimarine-B as $\frac{2}{2}$ corresponding to a dimer of suberosin (6) and des-N-methyl analogue of citpressine-II (5a) 11) which also occurred in the same plant. 9)

Acrimarine-C (3), a pale yellow oil, $[\alpha]_D$ -6.17° (c = 0.081, CHCl $_3$) (yield: 0.0023%), UV $\lambda_{\rm max}$ nm: 209, 256, 266, 284 (sh.), 328, IR $\nu_{\rm max}$ cm $^{-1}$: 3380, 1725, 1640, 1620, 1610, gave a molecular ion at m/z 529 which analyzed for ${\rm C}_{30}{\rm H}_{27}{\rm NO}_8$ [m/z 529.1711 (M $^+$ found); 529.1734 calcd], a difference of CH $_2$ compared with 1 or 2. The characteristic mass fragments appeared at m/z 242 (C $_{15}{\rm H}_{14}{\rm O}_3$, 37%) and 287 (C $_{15}{\rm H}_{13}{\rm NO}_5$, 100%) shifted 14 mass unit compared with those of 1 or 2. The $^1{\rm H-NMR}$

signal pattern resembled that of 2 (Table I), except for a lack of one methoxy group, indicating the presence of suberosin (6) and citpressine (5) units in acrimarine-C, similar to 2. In NOE experiments, irradiation of methoxy protons at $\delta_{\rm H}$ 3.76 and 3.90 resulted in 11 and 15% increases of the signals at $\delta_{\rm H}$ 6.73 (H-8') and 6.34 (H-2 or 4), respectively. However, no NOE enhancement was observed on irradiation of a methoxy signal at $\delta_{_{\mbox{\scriptsize H}}}$ 3.84. A characteristically different feature from 1 or 2 in the NOE experiments appeared on irradiation of the N-H proton ($\delta_{_{\mathbf{H}}}$ 9.05) and a doublet at $\delta_{\rm H}$ 5.67 (H-1''). On irradiation of the N-H singlet ($\delta_{\rm H}$ 9.05) gave 8 and 7% increases of a pair of doublets at $\delta_{\rm H}$ 5.67 (H-1'') and 5.76 (H-2''), respectively. Inversely, 4 and 6% increases of the N-H singlet appeared in each case to be an irradiated pair of doublets at $\delta_{\rm H}$ 5.67 (H-1'') and 5.76 (H-2''), respectively. These data indicated the location of subcrosin ($\stackrel{\circ}{0}$) unit at C-4 in the acridone nucleus. In order to confirm this, LSPD and $^{1}\mathrm{H}^{-13}\mathrm{C}$ long-range COSY experiments were carried out. As shown in formula 3, an observation of correlation between the H-bonded proton at $\delta_{\rm H}$ 14.5 and carbon at $\delta_{\rm C}$ 93.0 bearing a proton with δ_{μ} 6.34 strongly supported the location of suberosin (6) unit at C-4 as 3. In LSPD experiment, the double-doublet at $\delta_{\rm C}$ 93.0 collapsed to a doublet on irradiation of the H-bonded proton at $\delta_{\rm H}$ 14.5. Other results of the ${}^{1}{\rm H-}^{13}{\rm c}$ long-range COSY (arrows in formula 3) also supported the structure 360 of acrimarine-C corresponding to the dimer between suberosin (6), a common structural component of acrimarines, and the des-N-methylated analogue of citpressine-I (5b).¹¹⁾

Since the first isolation of acridone alkaloids from natural sources, many monomeric and binary acridones have been found. However, the isolation of the acrimarines represents the first example of acridone-coumarin dimers from natural sources.

REFERENCES AND NOTES

- 1) Part XI on "Constituents of Domestic <u>Citrus</u> Plants." Part X: M. Ju-ichi, H. Kaga, M. Muraguchi, M. Inoue, I. Kajiura, M. Omura, and H. Furukawa, <u>Heterocycles</u> (submitted). This work is presented at the 16th International Symposium on the Chemistry of Natural Products, Kyoto, May 29, 1988.
- 2) R. D. H. Murray, J. Mendez, and S. A. Brown, "The Natural Coumarins," John Wiley & Sons, Inc., New York, 1982.
- 3) M. Ju-ichi, M. Inoue, K. Sakiyama, M. Yoneda, and H. Furukawa, <u>Heterocycles</u>, 26, 2077 (1987) and references cited therein.
- 4) All $^{1}\text{H}-$ (400 MHz) and $^{13}\text{C-NMR}$ (100 MHz) spectra were measured in CDCl $_{3}$. The $^{1}\text{H}-^{13}\text{C}$ long-range COSY spectra were record at J_{HC} = 5 Hz.
- 5) C. S. Oh and C. V. Greco, <u>J. Heterocycl. Chem.</u>, <u>7</u>, 261 (1970).
- 6) The absolute stereochemistry is not assigned.
- 7) T.-S. Wu, C.-S. Kuoh, and H. Furukawa, Phytochemistry, 22, 1494 (1983).
- 8) M. Murayama, E. Seto, T. Okubo, I. Morita, I. Dobashi, and M. Maehara, Chem. Pharm. Bull., 20, 741 (1972).
- 9) Our unpublished data.
- 10) The base peak appeared at m/z 500 (M^+ C_3H_8) in MS of acrimarine-B (2).
- 11) T.-S. Wu, C.-S. Kuoh, and H. Furukawa, Chem. Pharm. Bull., 31, 895 (1983).
- 12) M. F. Grundon, Nat. Prod. Rep., 4, 232 (1987) and references cited therein.

(Received May 27, 1988)