Communications to the Editor

Chem. Pharm. Bull. 36(8)3223-3225(1988)

RABDOSIIN, A NEW ROSMARINIC ACID DIMER WITH A LIGNAN SKELETON, FROM ${
m RABDOSIA\ JAPONICA}$

Isao Agata, a Tsutomu Hatano, b Sansei Nishibe, a and Takuo Okuda*, b

Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University, a Ishikari-Tobetsu, Hokkaido 061-02, Japan and Faculty of Pharmaceutical Sciences, Okayama University, b Tsushima, Okayama 700, Japan

A rosmarinic acid dimer named rabdosiin $(\underline{1})$ was isolated from the stem of <u>Rabdosia japonica</u> Hara (Labiatae). Its structure was determined including the absolute configurations at four asymmetric centers.

KEYWORDS — rabdosiin; caffeetannin; rosmarinic acid; rosmarinic acid dimer; caffeic acid tetramer; lignan; stereostructure; synthesis; Rabdosia japonica; Labiatae

The aboveground part of Rabdosia japonica Hara (Labiatae) has been used as a common household medicine, "enmeiso," for gastrointestinal disorders in Japan, and the isolation of several diterpenoids, steroids, triterpenoids and flavonoids 1) from this plant have been reported. We have isolated from this plant a new rosmarinic acid dimer, rabdosiin $(\underline{1})$, which has a lignan skeleton and is a tetramer of caffeic acid. Here we report the determination of the structure which has the absolute configuration of $\underline{1}$. We also describe the synthesis of a lignan $(\underline{3})$ derived from rabdosiin $(\underline{1})$.

This dimer, named rabdosiin $(\underline{1})$ was isolated from the ethyl acetate-soluble portion obtained from the aqueous acetone homogenate of the powdered stem by column chromatography over Sephadex LH-20 and Toyopearl HW-40 (fine grade).

Rabdosiin $(\underline{1})$, $[\alpha]_D^{25}$ -78° (c=3.5, MeOH), forms a light brown amorphous powder. The positive and negative fast atom bombardment (FAB) mass spectra of $\underline{1}$ showed $[M+H]^+$ and $[M-H]^-$ ions at m/z 719 and 717, and the analytical data indicate the molecular formula $C_36H_{30}O_{16}$ for $\underline{1}$. The 1H -NMR spectrum [500 MHz, in $(CD_3)_2CO$] shows three protons $[\delta 6.38 (1H, d, J=2 Hz), 6.41 (1H, dd, J=2, 8.5 Hz)]$ and 6.66 (1H, d, J=8.5 Hz)] of a 3,4-dihydroxyphenyl group, three singlets $[\delta 6.56, 6.92$ and 7.62 (1H each)] in the nearby field, and two aliphatic methine protons which couple with each other $[\delta 3.93 (1H, d, J=1.5 Hz)]$ and $[\delta 6.66 (1H, d, J=2, 8.5 Hz)]$ and $[\delta 6.61 (1H, dd, J=2, 8.5]]$ and $[\delta 6.61 (1H, dd, J=2, 8.5]]$

(an ABX system), 6.64 (1H, dd, J=2, 8 Hz), 6.74 (1H, d, J=8 Hz), 6.85 (1H, d, J=2 Hz) (another ABX system), 3.01-3.05 (4H, m), 5.03 (1H, dd, J=5.5, 6 Hz), 5.07 (1H, dd, J=5.5, 7 Hz) (two -CH₂-CH- systems)]. The protons at δ 6.56 and 6.92 are attributed to a 2,3,5,6-tetrasubstituted benzene moiety, and that at δ 7.62 to the β -proton of the caffeoyl group. These NMR data and UV peaks (MeOH) at 254, 284, 318 (sh) and 346 nm (log ϵ : 4.20, 4.00, 3.9 and 4.02) indicate the presence of the 1,2-dihydro-6,7-dihydroxy-1-(3,4-dihydroxyphenyl)-naphthalene structure.

Methylation of $\underline{1}$ with (CH₃)₂SO₄ and K₂CO₃ afforded the decamethyl derivative ($\underline{2}$) [α]_D²⁵ -88° (c=8.9, CHCl₃). Treatment of $\underline{2}$ with 1N NaOH gave the hydrolysate ($\underline{3}$) [α]_D²⁵ -202° (c=1.1, CHCl₃), and (\underline{R})-3-(3,4-dimethoxyphenyl)lactic acid ($\underline{4}$), [α]_D²⁵ +31° (c=1, CHCl₃).

The $^{1}\text{H-NMR}$ spectrum [500 MHz, in $(\text{CD}_{3})_{2}\text{CO}$] of $\underline{3}$ also shows the presence of a 1,2-dihydronaphthalene moiety [δ 4.68 (1H, broad s, H-1), 3.98 (1H, d, J=1.5 Hz, H-2), 7.70 (1H, s, H-4), 7.10 (1H, s, H-5), 6.88 (1H, s, H-8)], a 3,4disubstituted phenyl group [δ 6.79 (1H, d, J=2 Hz, H-2'), 6.74 (1H, d, J=8.5 Hz, H-5'), 6.46 (1H, dd, J=2, 8.5 Hz, H-6')], and four methoxyl groups [8 3.71, 3.72, 3.79 and 3.85 (3H each, s)]. The orientation of the bond C-2—H-2 is assigned to be quasi-equatorial on the basis of the singlet of H-4, which should be a doublet induced by the allyl coupling with H-2 if the orientation of the bond C-2 — H-2 were quasi-axial. According to rotating frame Overhauser enhancement spectroscopy (ROESY) of 3, a nuclear Overhauser effect (NOE) is present between H-2 and H-2', and between H-8 and H-1. It is absent between H-8 and H-6, and between H-8 and H-2. The coupling constant between H-1 and H-2 (1.5 Hz) indicates that the dihedral angle of the C-1—H-1 bond and the C-2—H-2 bond should be <u>ca</u>. 80°. This is caused by the <u>quasi</u>-equatorial orientation of the bond C-1—H-1.

Hydrogenation of $\underline{3}$ over 5% Pd-C afforded a dihydro derivative ($\underline{5}$). The circular dichroism (CD) spectrum of $\underline{5}$ (in MeOH) shows the first positive couplet, [θ] +13600 (289 nm) and -7200 (273 nm), and the second positive couplet, [θ] +45900 (207 nm) and -29700 (200 nm) (lowest wavelength measured),

which are analogous to the reported data of the 1-aryltetralin lignans having 1α -substituents.²⁾ Therefore, the absolute configurations at C-1 and C-2 in $\underline{1}$ should be \underline{R} and \underline{S} , respectively.

The hydrolysate $(\underline{3})$ was synthesized as follows. The ferric chloride-catalyzed condensation of methyl caffeate $(\underline{6})$, which was carried out in a way analogous to that of condensation of ferulic acid, $^3)$ gave the dimeric compound $(\underline{7})$ which yielded the hexamethyl derivative $(\underline{8})$ with dimethyl sulfate. Hydrolysis of $\underline{8}$ with 1N NaOH gave a product which was identified as $\underline{3}$ by IR, UV and NMR spectra. Therefore, the structure of rabdosiin was established to be $\underline{1}$.

Rabdosiin is the first example of a caffeic acid tetramer having a lignan skeleton which is biogenetically produced from two molecules of rosmarinic acid.

REFERENCES

- 1) E. Fujita and M. Node, Fortschr. Chem. Org. Naturst., 46, 78 (1984).
- 2) P. B. Hulbert, W. Klyne and P. M. Scopes, <u>J. Chem. Res.</u> (S), 1981, 27.
- 3) Yueh-Hsiung Kuo, Pao-Chu Kuo and Sheng-Tsair Lin, Proc. Natl. Sci. Counc. Repub. China, Part B, 7, 28 (1983) [Chem. Abstr., 99, 53253k (1983)].

(Received June 22, 1988)