Communications to the Editor

Chem. Pharm. Bull. 36(9)3718—3721(1988)

SYNTHESES OF PSEUDO- α -D-ARABINOFURANOSE, PSEUDO- β -D-ARABINOFURANOSE, AND PSEUDO- β -L-XYLOFURANOSE, THREE OPTICALLY ACTIVE PSEUDO-PENTOFURANOSES, FROM D-GLUCOSE

Masayuki Yoshikawa, Bae Cheon Cha, Yoshihiko Okaichi, and Isao Kitagawa*

Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

Using lead tetraacetate oxidaton and cyclitol formation with KF in the presence of 18-crown-6 as key reactions, three optically active pseudo-pentofuranoses: pseudo- α -D-arabinofuranose, pseudo- β -D-arabinofuranose, and pseudo- β -L-xylofuranose, have been synthesized from D-glucose, via nitrofuranose derivatives which were common reaction intermediates in previous pseudo-hexopyranose synthesis.

KEYWORDS — pseudo-pentofuranose optically active; pseudo- α -D-arabinofuranose; pseudo- β -D-arabinofuranose; pseudo- β -L-xylofuranose; pseudo-sugar synthesis; D-glucose; chemical transformation

By use of stereoselective deacetoxylation reaction effected by NaBH₄ and cyclitol formation from nitrofuranose with KF in the presence of 18-crown-6 as key reactions, we have recently developed a versatile method for converting carbohydrate to pseudo-hexopyranose. Using this method, pseudo- α -D-gluco-pyranose and pseudo- β -L-idopyranose have been synthesized from D-glucose via nitrofuranose derivatives. 1)

As an extension of our studies on chemical transformation of carbohydrate leading to pseudo-sugar, we have found a new method for synthesizing pseudo-pento-furanose from nitrofuranose derivatives, which were common reaction intermediates in previous pseudo-hexopyranose synthesis. 1) In this paper, we report syntheses of three optically active pseudo-pentofuranoses: pseudo- α -D-arabinofuranose (7), pseudo- β -D-arabinofuranose (8), 2) and pseudo- β -L-xylofuranose (14) from nitrofuranose derivatives (1, 9), which were prepared from D-glucose. 3)

Oxidation of the nitrofuranose derivative $(1)^{1}$ with Pb(OAc)₄ in benzene (25°C, 40 min) provided an unstable aldehyde (2). Treatment of 2 with KF in DMF in the presence of 18-crown-6 (2°C, 2 h) yielded a mixture of cyclization products (3, 52% from 1), a white powder, IR (CHCl₃): 3403, 1716, 1544, 1361 cm⁻¹, EI-MS (m/z): 415 (M⁺). Removal of the formyl group in 3 with dil. NH₄OH in EtOH (25°C, 3 min) and subsequent treatment of the product with ethyl vinyl ether and d-camphorsulfonic acid (CSA) in CH₂Cl₂ (2°C, 3 h) and elimination of the nitro group with n-Bu₃SnH in benzene in the presence of α,α' -azobis-iso-butyronitrile (AIBN) (80°C, 10 h), furnished 4 (48%) (a mixture of 1α and 1β -epimers), colorless oil, IR (CHCl₃): 2905, 1715, 1280, 1095 cm⁻¹, EI-MS (m/z): 486 (M⁺). Removal of the

ethoxyethyl group in 4 with 10 % aq. AcOH in acetone (40°C, 5 h) and subsequent acetylation with Ac2O and pyridine provided 5 (65%), colorless oil, $[\alpha]_D^{20} + 15^\circ$ (CHCl3), $C_{24}H_{26}O_{7}$, 4 IR (CHCl3): 1721, 1270, 1220, 1100 cm⁻¹, EI-MS (m/z): 426 (M⁺) and 6 (25%), colorless oil, $[\alpha]_D^{20} + 38^\circ$ (CHCl3), $C_{24}H_{26}O_{7}$, IR (CHCl3): 1723, 1270, 1220, 1100 cm⁻¹, EI-MS (m/z): 426 (M⁺). The detailed 1H NMR decoupling experiments (500 MHz, CDCl3) of 5 and 6 resulted in the following assignment (J in Hz): 5, 6 2.04 (ddd, J=3, 3, 14, 5 6 -H), 2.11 (ddd, J=6, 10, 14, 5 6 -H), 2.66 (m, 4 6 -H), 3.92 (dd, J=3, 4, 2 6 -H), 4.38 (d, J=6, 6-H₂), 5.13 (ddd, J=3, 3, 6, 1 6 -H), 5.19 (dd, J=4, 7, 3 6 -H); 6 , 6 1.69 (ddd, J=7, 11, 13, 5 6 -H), 2.52 (ddd, J=8, 8, 13, 5 6 -H), 2.80 (m, 4 6 -H), 3.94 (dd, J=3, 3, 2 6 -H), 4.68 (d, J=10, 6-H₂), 5.11 (ddd, J=3, 7, 8, 1 6 -H), 5.24 (dd, J=3, 5, 3 6 -H). The NOE's were observed between the following pairs of protons⁵): 6 , 6

Deacetylation of 5 with 1% NaOH-MeOH (25°C, 3 h) followed by Birch reduction (Na, liq.NH₃, -78°C, 30 min), furnished the new optically active pseudo-sugar pseudo- α -D-arabinofuranose (7, 92%), colorless oil, [α] $_{D}^{20}$ +40° (MeOH), C $_{6}$ H₁₂O₄, $_{1}$ H NMR (500 MHz, d $_{5}$ -pyridine-D $_{2}$ O, J in Hz): δ 2.33 (ddd, J=4, 6, 13), 2.38 (ddd, J=7, 7, 13) (5-H $_{2}$), 2.76 (m, 4 α -H), 4.04 (dd, J=6, 10), 4.12 (dd, J=5, 10) (6-H $_{2}$), 4.44 (dd, J=8, 8, 3 β -H), 4.59 (dd, J=3, 8, 2 α -H), 4.60 (ddd, J=3, 4, 7, 1 β -H). 13C NMR (125 MHz, d $_{5}$ -pyridine): δ c 33.9 (5-C), 45.8 (4-C), 64.8 (6-C), 76.0, 79.5 (1, 3-C), 86.2 (2-C). Removal of the protecting groups in 6 as described above for 5 furnished pseudo- β -D-arabinofuranose (8, 87%).6)

On the other hand, $Pb(OAc)_4$ oxidation of the nitrofuranose derivative (9) 1) furnished an aldehyde ($\overset{1}{\overset{1}{\sim}}$) which, on treatment with KF in DMF in the presence of 18-crown-6 (2°C, 2 h), was converted to a mixture of cyclization products 11 (52 % from 9), IR (CHCl₃): 3403, 1716, 1544, 1361 cm⁻¹, EI-MS (m/z): 415 (M⁺). Deformylation of $\stackrel{11}{\sim}$ and subsequent ethyl vinyl ether treatment and elimination of the nitro group as described above for 3 yielded 12 (45%), colorless oil, [α] $_{D}^{20}$ $+70^{\circ}$ (CHCl₃), C₂₈H₃₈O₇, IR (CHCl₃): 2890, 1710, 1277, 1100 cm⁻¹, EI-MS (m/z): 486 Elimination of the ethoxyethyl group in 12 and subsequent acetylation provided $\stackrel{13}{\sim}$ (90%), colorless oil, $[\alpha]_D^{20}$ +13° (CHCl₃), $C_{24}H_{26}O_7$, IR (CHCl₃): 1724, 1275, 1220, 1100 cm $^{-1}$, EI-MS (m/z): 426 (M $^+$). The $^1\mathrm{H}$ NMR decoupling experiments (500 MHz, CDCl $_3$) of $\stackrel{13}{\cancel{13}}$ resulted in the following assignment (J in Hz): δ 1.84 (ddd, J=6, 6, 13, 5 β -H), 2.32 (ddd, J=6, 10, 13, 5 α -H), 2.37 (m, 4 β -H), 3.91 (dd, J=5, 5, $2\alpha-H$), 4.39 (dd, J=7, 11), 4.44 (dd, J=6, 11) (6- H_2), 5.22 (ddd, J=5, 6, 6, 1 β -H), 5.25 (dd, J=5, 6, 3 β -H). The detailed comparisons of the 1 H NMR data for 13 with those for 5 and 6 led us to assign the structure 13, the stereostructure of which was corroborated by examination of the NOE's.7)

Deprotection of 13 as described above for 5 and 6 furnished the new optically active pseudo-sugar pseudo- β -L-xylofuranose (14, 90%), colorless oil, [α] $^{20}_{D}$ +5° (MeOH), $C_{6}H_{12}O_{4}$, ^{1}H NMR (500 MHz, d_{5} -pyridine- $D_{2}O$, J in Hz): δ 2.07 (ddd, J=6, 6, 13), 2.47 (ddd, J=6, 6, 13) (5-H₂), 2.50 (m, 4 β -H), 4.10 (dd, J=5, 10), 4.20 (dd, J=6, 10) (6-H₂), 4.39 (dd, J=6, 6, 2 α -H), 4.54 (ddd, J=6, 6, 6, 1 β -H), 4.62 (dd, J=6, 6, 3 β -H). ^{13}C NMR (125 MHz, ^{13}C -pyridine): $^{$

 $Bz : C_6H_5CO$

EE: ethoxyethyl

 $Bn : C_6H_5CH_2$

AIBN : α , α '-azobis-iso-butyronitrile

(a) $Pb(OAc)_4$ / benzene (25°C, 40 min) (b) KF / 18-crown-6 / DMF (2°C, 2 h) (c) 28 % aq. NH₄OH / EtOH (25°C, 3 min); ethyl vinyl ether / <u>d</u>-camphorsulfonic acid / CH_2Cl_2 (2°C, 3 h); $n-Bu_3SnH$ / AIBN / benzene (80°C, 10 h) (d) 10 % aq. AcOH / acetone (40°C, 5 h); Ac₂O / pyridine (25°C, 2h) (e) 1 % NaOH-MeOH (25°C, 3 h); Na / 1iq.NH₃ (-78°C, 30 min)

Following our previous paper on the synthesis of optically active <u>pseudo-hexopyranose</u>, 1) we have now shown that optically active <u>pseudo-pentofuranose may</u> be conveniently synthesized from carbohydrate <u>via</u> nitrofuranose which is a common intermediate in our previous <u>pseudo-hexopyranose</u> synthesis.

We are currently extending this conversion method to the synthesis of other pseudo-sugars.

ACKNOWLEDGEMENT The authors are grateful to the Ministry of Education, Science, and Culture of Japan for a Grant-in-Aid for Special Project Research (Grant No. 62114007).

REFERENCES AND NOTES

- 1) M. Yoshikawa, B. C. Cha, T. Nakae, and I. Kitagawa, Chem. Pharm. Bull. (1988), submitted.
- 2) K. Tadano, H. Kimura, M. Hoshino, S. Ogawa, and T. Suami, Bull. Chem. Soc. Jpn., 60, 3673 (1987).
- 3) M. Yoshikawa, B. C. Cha, T. Nakae, Y. Yokokawa, Y. Okaichi, and I. Kitagawa, presented at the 37th Annual Meeting of the Kinki Branch of the Pharmaceutical Society of Japan, Abstract p. 40 (Nov. 1987, Kobe).
- 4) The molecular composition of the compound given with the chemical formula was determined either by elemental analysis or by high resolution mass spectrometry.
- 5) The magnitude of NOE (%) given in the parenthesis was obtained when the underlined proton was irradiated.
- 6) 8, colorless oil, $[\alpha]_D^{20}$ +6° (MeOH), ^1H NMR (500 MHz, d_5 -pyridine-D₂O, J in Hz): δ 2.15 (ddd, J=8, 8, 13), 2.46 (ddd, J=8, 8, 13) (5-H₂), 2.73 (m, 4 α -H), 4.14 (dd, J=6, 11), 4.31 (dd, J=7, 11) (6-H₂), 4.55 (ddd, J=5, 8, 8, 1 α -H), 4.65 (dd, J=5, 5, 2 α -H), 4.69 (dd, J=5, 7, 3 β -H). ^{13}C NMR (125 MHz, ^{13}C -pyridine): δ c 34.9 (5-C), 42.1 (4-C), 62.8 (6-C), 77.2, 78.7 (1, 3-C), 85.6 (2-C).
- 7) The NOE's of $\frac{13}{13}$: $\frac{4\beta-H}{10}$ & $1\beta-H$ (7%), $\frac{4\beta-H}{10}$ & $3\beta-H$ (4%), $4\beta-H$ & $5\beta-H$ (15%).

(Received July 13, 1988)