Studies on the Constituents of Heloniopsis orientalis (THUNB.) C. TANAKA

Kimiko Nakano, Kotaro Murakami, Yoshihisa Takaishi, Toshiaki Tomimatsu and Toshihiro Nohara*, b

Faculty of Pharmaceutical Sciences, Tokushima University, ^a 1–78 Shomachi, Tokushima 770, Japan and Faculty of Pharmaceutical Sciences, Kumamoto University, ^b 5–1 Oe-honmachi, Kumamoto 862, Japan. Received May 27, 1988

The constituents of the fresh whole plants of *Heloniopsis orientalis* (THUNB.) C. TANAKA (Liliaceae) were investigated and five steroidal components were obtained. Their chemical structures were characterized as dioscin (1), pennogenin 3-O- β -chacotrioside (T-c)(2), pregnadienolone 3-O- β -chacotrioside (P-d)(3), 26-O- β -D-glucopyranosyl 17-dehydrokryptogenin 3-O- β -chacotrioside (4) and 12-O- β -D-galactopyranosyl heloniogenin 3-O- β -D-allomethylopyranosyl-(1 \rightarrow 5)- β -D-apiofuranoside (5).

Keywords *Heloniopsis orientalis*; Liliaceae; steroidal glycoside; dioscin; pennogenin glycoside; 17-dehydrokryptogenin glycoside; pregnadienolone glycoside; heloniogenin bisdesmoside; allomethylose; β -chacotrioside

In the previous paper, 1) we reported the isolation of four acylated sucrose derivatives from the fresh whole plants of *Heloniopsis orientalis* (THUNB.) C. TANAKA. Further examination led to the isolation of a new spirostanol bisdesmoside (5) along with four steroidal glycosides (1—4). The present paper describes the isolation and structural characterization of these compounds 1—5.

The AcOEt- and BuOH-soluble fractions previously obtained¹⁾ from the methanolic extract of the title plant were subjected to a combination of Sephadex LH-20 and silica gel chromatographies with various solvent systems to afford compounds 1—5, together with H_{a-d} , which were isolated by Kawasaki *et al.*²⁾

Compounds 1 and 2 showed strong absorptions due to hydroxyl groups (3500 cm⁻¹) and a (25 R)-spiroketal moiety in the infrared (IR) spectra,³⁾ and peaks due to $(M + Na)^+$ at m/z 891 and 907, respectively, in the fast atom bombardment mass spectra (FAB-MS). They were identified respectively as dioscin⁴⁾ and T-c⁵⁾: 3-O- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 2)$]- β -D-glucopyranosides (β -chacotriosides) of diosgenin and pennogenin, respectively, by the IR, FAB-MS and carbon-13 nuclear magnetic resonance (13 C-NMR) spectral evidence.

Compound 3 showed absorptions of α,β -unsaturated ketone (1650 cm⁻¹) and hydroxyl groups (3400 cm⁻¹), but none due to a spirostanol side chain in the IR spectrum. The FAB-MS of 3 exhibited a peak at m/z 791 that originated from $(M + Na)^+$. The proton nuclear magnetic resonance (¹H-NMR) spectrum showed signals due to C-19 and -18 methyls (each 3H, s, at δ 0.92 and 1.07), two rhamnosyl C-6 methyls (each 3H, d, J=6.1 Hz, at δ 1.23 and 1.26), one keto-methyl (3H, s, at δ 2.25) and two olefinic protons (each 1H, br s, at δ 5.39 and 6.91). From the above evidence, 3 was presumed to be a pregnane triglycoside and it was found to be 3β -hydroxypregna-5,16-dien-20-one 3-O- β -chacotrioside by direct comparison with an authentic specimen synthesized from methyl proto-dioscin according to Marker's degradation⁶); this compound had been isolated from Paris polyphylla SM. and named P-d7) by Kawasaki et al.

Compound 4 gave quite similar IR, ultraviolet (UV) and optical rotatory dispersion (ORD) spectra to those of Hc, *i.e.* the 3, 26-O-bisglycoside of 17(20)-dehydrokryptogenin. The FAB-MS of 4 gave the $(M+Na)^+$ ion peak at m/z 1067. Signals ascribable to the sugar residue of 4 were

superimposable on those of proto-dioscin in the 13 C-NMR spectra. Therefore, **4** could be represented as 26-O- β -D-glucopyranosyl 17(20)-dehydrokryptogenin 3-O- β -chacotrioside.

Compound 5 showed a strong absorption band due to the hydroxyl groups and characteristic absorption bands of the (25R)-spiroketal side chain in the IR spectrum. On acid hydrolysis, 5 liberated an aglycone (6), galactose, apiose and allomethylose,8) which was identified by direct comparison with a specimen prepared⁹⁾ from rhamnose. Compound 6, colorless needles, mp 208-211 °C, showed an M^+ peak at m/z 430.3068, giving the molecular formula $C_{27}H_{42}O_4$, and a characteristic prominent peak¹⁰ at m/z139.1124 (C₉H₁₅O⁺) derived from the spiroketal side chain of the steroidal sapogenol in the electron-impact mass spectrum (EI-MS). The ¹H-NMR spectrum of 6 showed two singlets (3H each) at δ 0.83 and 1.02 assignable to the C-18 and -19 methyl groups, two doublets (3H each, J=6.3and 7.1 Hz) at δ 0.78 and 0.99 ascribable to two secondary methyl groups at C-27 and -21, a signal at δ 3.38 (2H, m) due to the 26-methylene protons, a signal at δ 4.40 due to the 16α -H and a signal at δ 5.35 due to a vinyl proton. One of the other protons, a multiplet centered at δ 3.40, was associated with the α -hydrogen adjacent to the β -hydroxyl group at C-3, and the remaining proton appeared at δ 3.74 (1H, m, $W_{h/2} = 7$ Hz); these signals shifted downfield to δ 4.60 and 4.96 on acetylation, respectively. The ¹³C-NMR spectrum of 6 exhibited four carbon signals bearing a hydroxyl group or oxide ring at δ 66.9 (t), 71.3 (d), 71.5 (d) and 81.0 (d). These signals except for the one at δ 71.5 could be assigned to C-26, C-3 and C-16 by comparison with those in the ¹³C-NMR spectrum of diosgenin. The signal at δ 71.5 was assigned to C-12 by taking into account the substituent effects of the hydroxyl group, 11) the configuration of which was determined to be α-axial on the basis of the half-height width of the above-mentioned proton signal at δ 3.74. Furthermore, the resonances of C-11 ($\Delta\delta$ + 8.4 ppm) and C-13 ($\Delta\delta$ +4.8 ppm) were shifted downfield (β -effect) due to the introduction of the axial hydroxyl group at C-12, while the signals of the two carbons at C-14 ($\Delta\delta$ -12.1 ppm) and C-17 ($\Delta\delta$ -8.2 ppm) were shifted upfield because of the γ -gauche interaction with the axial hydroxyl group at C-12. Consequently, 6 was assumed to be heloniogenin¹²⁾ which had been isolated from this plant by Okanishi et al., and this was confirmed by

comparing the ¹H-NMR spectrum¹³⁾ and physical data with the reported values.

The FAB-MS of 5 gave a $(M+Na)^+$ peak at m/z 893. Thus, 5 was considered to be a triglycoside of heloniogenin possessing one each of galactosyl, apiosyl and allomethylosyl moieties.

The nona-O-acetyl derivative (5a) of 5 exhibited peaks due to terminal galactosyl, allomethylosyl and allomethylosyl-apiosyl cations at m/z 331, 273 and 489, respectively, in the EI-MS. The ¹³C-NMR spectrum of 5, in comparison with the spectra of heloniogenin (6), methyl galactopyranoside, methyl apiofuranoside and methyl allomethylopyranoside, ¹⁴) exhibited significant glycosylation shifts¹⁵) of the C-3 and C-12 signals of the aglycone, and of the C-5 signal of apiofuranoside. It also gave three anomeric carbon signals at δ 108.0, 107.1 and 102.5, reflecting all

$$\begin{array}{c} R_{2} \\ R_{3}O \\ \\ R_{1}O \\ \\ R_{2} \\ R_{3} \\ R_{2} \\ R_{3} \\ R$$

TABLE I. 13 C-NMR Data for 5—7 (in Pyridine- d_5)

 $4:R=S_1$

	5	6	7		5	6	7
C-1	37.1	37.7	37.5	C-25	30.6	30.7	30.6
C-2	30.1	32.6	32.6	C-26	66.8	66.9	66.8
C-3	77.5	71.3	71.3	C-27	17.3	17.3	17.3
C-4	39.3	43.5	43.5	Gal			
C-5	141.2	142.1	142.3	C-1	107.1		107.2
C-6	121.5	121.2	120.9	C-2	72.9		72.9
C-7	32.0	32.3	32.0	C-3	75.4		75.5
C-8	31.7	32.1	31.9	C-4	70.5		70.0
C-9	49.0	48.4	49.1	C-5	76.6		76.8
C-10	36.8	36.8	36.8	C-6	62.0		62.1
C-11	27.5	29.3	27.6	Api			
C-12	82.6	71.5	82.6	C-1	108.0		
C-13	44.8	45.1	44.9	C-2	78.3		
C-14	44.3	44.5	44.5	C-3	78.9		
C-15	32.0	32.4	32.2	C-4	74.6		
C-16	80.9	81.0	81.0	C-5	72.9		
C-17	53.0	53.9	53.1	Allo			
C-18	17.0	17.3	17.1	C-1	102.5		
C-19	19.2	19.5	19.3	C-2	74.1		
C-20	42.2	42.3	42.3	C-3	72.3		
C-21	15.2	14.9	15.3	C-4	72.7		
C-22	109.3	109.3	109.3	C-5	69.8		
C-23	32.0	31.9	32.0	C-6	18.5		
C-24	29.3	29.4	29.4				

TABLE II. ¹³C-NMR Data for 1—4 (in Pyridine-d₅)

	1	2	3	4
C-1	37.3	37.6	37.3	37.1
C-2	30.0	30.1	30.1	30.0
C-3	77.8	77.8	77.8	77.8
C-4	38.9	39.0	39.0	38.8
C-5	140.8	140.8	141.3	140.9
C-6	121.6	121.8	121.5	121.3
C-7	32.2	32.3	32.3	31.7
C-8	31.6	31.8	30.4	30.8
C-9	50.3	50.3	50.8	49.9
C-10	37.0	37.1	37.1	37.0
C-11	21.0	20.9	20.9	20.9
C-12	39.8	32.4	35.1	38.7
C-13	40.4	45.1	46.3	43.4
C-14	56.6	53.0	56.5	50.5
C-15	32.1	32.1	31.8	36.0
C-16	81.0	90.1	144.6	210.4
C-17	62.8	90.1	155.2	142.5
C-18	16.2	17.1	15.9	15.7
C-19	19.3	19.4	19.2	19.3
C-20	41.9	44.8	196.2	145.6
C-21	14.9	9.6	27.1	16.7
C-22	109.1	109.8		205.6
C-23	31.6	32.1		37.9
C-24	29.2	28.8		27.9
C-25	30.5	30.4		33.3
C-26	66.8	66.7		75.0
C-27	17.2	17.3		17.4
3- <i>O</i> -Glc	100.2	100.2	100.2	100.2
C-1 C-2	100.2 78.9	78.8	78.8	78.8
C-3	76.6	76.8	76.8	76.8
C-4	78.1	78.1	78.1	78.0
C-5	77.7	77.9	77.8	77.8
C-6	61.3	61.3	61.3	61.3
Rha	01.5	01.5	01.5	0110
C-1	101.8	101.9	101.9	101.8
C-2	72.5	72,4	72.3	72.6
$(Glc^{2}-) C-3$	72.2	72.6	72.6	72.4
C-4	73.7	73.8	73.8	73.7
C-5	69.3	69.4	69.3	69.4
C-6	18.5	18.6	18.5	18.5
Rha'				
C-1	102.7	102.9	102.8	102.8
C-2	72.6	72.4	72.3	72.7
(Glc ⁴) C-3	72.2	72.8	72.7	72.4
C-4	73.9	74.1	74.0	74.0
C-5	70.3	70.4	70.3	70.3
C-6	18.3	18.4	18.4	18.4
26- <i>O</i> -Glc				10:-
C-1				104.7
C-2				75.0
C-3				78.3
C-4				71.4
C-5				78.5
C-6				62.8

 β -configuration of the apiofuranosyl, the galactopyranosyl and the allomethylopyranosyl residues in 5 (Table I). Accordingly, 5 was suggested to be a bisdesmoside. Partial hydrolysis with 0.3 n HCl-MeOH of 5 provided a prosapogenin (7) together with methylsides of apiose and allomethylose. The ¹³C-NMR spectrum of 7 showed the glycosylation shift of the C-12 signal and an anomeric carbon signal at δ 107.2 assignable to the galactopyranosyl moiety (Table I). Consequently, the structure of 5 was assigned as 3-O- β -D-allomethylopyranosyl- $(1 \rightarrow 5)$ - β -D-apiofuranosyl heloniogenin 12-O- β -D-galactopyranoside.

Compound 5 is the first heloniogenin bisdesmoside to be reported, and to our knowledge, the first example of a glycoside possessing an allomethylosyl unit except for cardenolide glycoside. The sugar moiety and the aglycone part of 1—4 are respectively identical and closely related chemically, and this suggests a close biogenetic relationship among these compounds.

Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Optical rotations were measured with a Union Giken PM-201 automatic digital polarimeter. ORD curve was measured with a JASCO J-600. IR and UV spectra were recorded with Hitachi 215 and 330 machines and ¹H- and ¹³C-NMR spectra were taken with a JEOL FX-200 machine. EI- and FAB-MS were recorded on a JEOL JMS D-300 instrument. Column chromatography was carried out with Sephadex LH-20 (25—100 μ, Pharmacia Fine Chemical Co., Ltd.), MCI-gel CHP 20P (75—150 μ, Mitsubishi Chemical Industries, Ltd.), Kieselgel 60 silanisiert (70—230 mesh, Merck) and Kieselgel 60 (70—230 mesh, Merck). Thin-layer chromatography (TLC) was performed on precoated Kieselgel 60 F_{2.54} plates (0.2 mm thick, Merck) and spots were detected by spraying 10% H₂SO₄ followed by heating.

Isolation of Glycosidic Constituents The AcOEt- and BuOH-soluble fractions, previously obtained¹⁾ from the methanolic extract of the fresh whole plants of *Heloniopsis orientalis* (Shojobakama) were rechromatographed over silica gel (CHCl₃-MeOH-H₂O (8:2:0.2), AcOEt-MeOH-H₂O (9:1:0.1), CHCl₃-MeOH-AcOEt-H₂O (2:2:5:1) upper phase), silanized silica gel (40% aqueous MeOH), Sephadex LH-20 (MeOH) and MCI-gel CHP 20P (30% aq. MeOH) to afford compounds 1 (1.2 g), 2 (40 mg), 3 (214 mg), 4 (420 mg) and 5 (305 mg).

Compound 1 Colorless needles, mp 277—279 °C. $[\alpha]_D^{24}$ – 121.0 ° (c=1.00, MeOH). IR $v_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3500. FAB-MS m/z: 891 $(M+\text{Na})^+$. ¹³C-NMR: Table II. Identical with an authentic sample on direct comparison.

Compound 2 Colorless needles, mp 275—277 °C (dec.). $[\alpha]_D^{22}$ – 44.0 ° (c = 1.00, MeOH). IR $v_{\rm max}^{\rm KBr}$ cm ⁻¹: 3500, 980, 920, 900, 890 (900 > 920, (25R)-spiroketal). FAB-MS m/z: 907 (M + Na) + . ¹³C-NMR: Table II.

Compound 3 A white powder. $[\alpha]_{\rm p}^{24} - 85.6^{\circ}$ (c = 0.90, MeOH). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3400, 1650, 1590 (enone), no spiroketal absorption. UV $\nu_{\rm max}^{\rm MeOH}$ nm: 240 (ε=7600). FAB-MS m/z: 791 (M+Na) $^{+}$. 1 H-NMR (CD₃OD) δ: 0.92 (3H, s, 18-CH₃), 1.07 (3H, s, 19-CH₃), 1.23, 1.26 (each 3H, d, J = 6.1 Hz, rha 5-CH₃), 2.25 (3H, s, CH₃-CO-), 4.50 (1H, d, J = 7.8 Hz, glc 1-H), 5.20 (1H, d, J = 1.5 Hz, rha 1-H), 5.39 (2H, br d, 6-H and rha 1-H), 6.91 (1H, br s, 16-H). 13 C-NMR: Table II. Identified as 3-hydroxypregna-5,16-dien-20-one 3-*O*-β-chacotrioside by direct comparison with an authentic sample prepared from methyl protodioscin.

Compound 4 A white powder. $[\alpha]_0^{22} - 94.0^{\circ} (c=1.0, \text{ MeOH})$. IR $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 3400 (OH), 1700 (C=O), 1630 (C=C). UV $\lambda_{\text{max}}^{\text{MeOH}} \text{ nm}$: 247 (ϵ = 3580). ORD (ϵ =0.062, MeOH) [M] (nm): +4600° (322) (peak), -5200° (364) (trough). FAB-MS (m/z): 1067 (M+Na)⁺, ¹³C-NMR: Table II.

Compound 5 An amorphous powder. $[\alpha]_{D}^{24} - 41.0^{\circ} (c = 1.00, \text{ MeOH})$. IR $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 3400 (OH), 980, 960, 912, 900, 860, 840 (900 > 912, (25 R)-spiroketal). FAB-MS m/z: 893 (M+Na)⁺. Anal. Calcd for $C_{44}H_{70}O_{17}H_2O$: C, 59.44; H, 8.16. Found: C, 59.73 H, 8.12. EI-MS m/z: 592, 430, 412, 394, 298, 139.

Acid Hydrolysis of 5 A solution of 5 (50 mg) in 2 N HCl–MeOH was refluxed for 2 h and the reaction mixture was neutralized with 3% KOH–MeOH and evaporated to dryness *in vacuo* to give a residue, which was chromatographed over silica gel (solv. CHCl₃–MeOH (10:1) \rightarrow CHCl₃–MeOH–H₂O (7:3:0.5)) to afford an aglycone 6, colorless needles (15 mg), mp 208-212 °C. [α] $_{20}^{126}$ -60.0° (c=0.60, CHCl₃). MS m/z: 430.3068 ($C_{27}H_{42}O_4$), 412.2919 ($C_{27}H_{40}O_3$), 298.2288 ($C_{21}H_{30}O$), 139.1124

(C₉H₁₅O). ¹H-NMR (CDCl₃) δ : 0.78 (3H, d, J=6.3 Hz, 27-CH₃), 0.83 (3H, s, 18-CH₃), 0.99 (3H, d, J=7.1 Hz, 21-CH₃), 1.02 (3H, s, 19-CH₃), 3.38 (2H, m, 26-H₂), 3.40 (1H, m, 3-H), 3.74 (1H, br s, $W_{h/2}$ =7 Hz, 12-H), 4.40 (1H, m, 16-H), 5.35 (1H, br d, 6-H). ¹³C-NMR: Table I. Methylside of β-D-allomethylose (5 mg), colorless oil. ¹H-NMR (pyridine- d_5) δ : 1.60 (3H, d, J=6.3 Hz, 5-CH₃), 3.59 (3H, s, OMe), 3.68 (1H, dd, J=2.9, 9 Hz, 4-H), 3.95 (1H, dd, J=3.2, 7.8 Hz, 2-H), 4.30 (1H, m, 5-H), 4.67 (1H, dd, J=3.2, 2.9 Hz, 3-H), 5.12 (1H, d, J=7.8 Hz, 1-H), which was identified by comparison of the ¹H-NMR spectrum and Rf on TLC with those of methyl β -D-allomethyloside, prepared⁹⁾ from rhamnose, and a mixture of methylsides of galactose and apiose, which were identified by TLC comparison with authentic samples.

Acetylation of 6 Compound **6** (10 mg) was acetylated with acetic anhydride and pyridine (each 1 ml) in the usual manner to give a diacetate (**6a**, 6 mg). $[\alpha]_{2}^{26} - 21.7 \,^{\circ}(c = 0.46, \text{CHCl}_3). \,^{1}\text{H-NMR} (\text{CDCl}_3) \, \delta : 0.78 \, (3\text{H}, \text{d}, J = 6.1 \,\text{Hz}), 0.87 \, (3\text{H}, \text{s}), 0.91 \, (3\text{H}, \text{d}, J = 7.1 \,\text{Hz}), 1.02 \, (3\text{H}, \text{s}), 2.03, 2.06 \, (\text{each 3H, s}), 3.36 \, (2\text{H, m}, 26\text{-H}_2), 4.40 \, (1\text{H, m}, 16\text{-H}), 4.60 \, (1\text{H, m}, 3\text{-H}), 4.96 \, (1\text{H, br s}, 12\text{-H}), 5.39 \, (1\text{H, br d}, 6\text{-H}).$

Acetylation of 5 Compound **5** (10 mg) was acetylated in the same manner as described above to give a nonaacetyl derivative (5**a**, 5 mg). $[\alpha]_D^{27} + 26.0^{\circ} (c = 0.50, \text{ CHCl}_3)$. EI-MS m/z: 743 (C₄₁H₅₉O₁₂), 489 (C₂₁H₂₉O₁₃), 331 (C₁₄H₁₉O₉), 273 (C₁₂H₁₇O₇). ¹H-NMR (CDCl₃) δ : 0.78 (3H, d, J = 5.4 Hz), 0.79 (3H, s), 0.95 (3H, d, J = 6.5 Hz), 0.98 (3H, s), 1.20 (3H, d, J = 6.4 Hz), 1.99—2.18 (OAc×9).

Partial Hydrolysis A solution of 5 (43 mg) in 0.3 N HCl-MeOH (3 ml) was refluxed for 20 min then diluted with water and extracted with *n*-BuOH. The BuOH layer was evaporated. The residue was subjected to column chromatography over silica gel with CHCl₃-MeOH-H₂O (8:1:0.1) to afford a prosapogenin 7 (17 mg), $[\alpha]_{2}^{24}$ + 4.6° (c = 1.31, MeOH). ¹³C-NMR: Table I. The aqueous layer was neutralized by passage through Amberlite IRA-400, then evaporated *in vacuo* to give a mixture of sugars, apiose (Rf 0.64 on TLC, solv. benzene–EtOH–acetone–H₂O (7:5:3:0.5)) and allomethylose (Rf 0.60).

References and Notes

- K. Nakano, K. Murakami, Y. Takaishi and T. Tomimatsu, Chem. Pharm. Bull., 34, 5005 (1986).
- T. Nohara, Y. Ogata, M. Aritome, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 23, 925 (1975).
- E. S. Rothman, M. E. Wall and C. R. Eddy, J. Am. Chem. Soc., 74, 4013 (1952).
- 4) T. Nohara, F. Kumamoto, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 23, 1158 (1975).
- T. Nohara, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 23, 872 (1975).
- T. Kawasaki, T. Komori, K. Miyahara, T. Nohara, I. Hosokawa and K. Mihashi, Chem. Pharm. Bull., 22, 2164 (1974).
- T. Nohara, H. Yabuta, M. Suenobu, R. Hida, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 21, 1240 (1973).
- 8) H. T. Andrew Cheung, T. R. Watson, S. M. Lee, M. M. McChesney and J. N. Seiber, J. Chem. Soc., Perkin Trans. 1, 1986, 61.
- 9) P. A. Levene and J. Compton, J. Biol. Chem., 116, 169 (1936).
- H. Budzikiewicz, C. Djerassi and D. H. Williams, "Structure Elucidation of Natural Products by Mass Spectrometry," Vol. 2, Holden-Day Inc., San Francisco, 1964, p. 113.
- H. Eggert, C. L. V. Antwerp, N. S. Bhacca and C. Djerassi, J. Org. Chem., 41, 71 (1976).
- T. Okanishi, A. Akahori and F. Yasuda, Chem. Pharm. Bull., 10, 1195 (1962).
- 13) K. Tori and K. Aono, Ann. Rept. Shionogi Res. Lab., 14, 136 (1964).
- 14) B. Schenk, P. Junior and M. Wichte, *Planta Medica*, 40, 1 (1980).
- R. Kasai, M. Suzuo, J. Asakawa and O. Tanaka, Tetrahedron Lett., 1977, 175; K. Tori, S. Seo, Y. Yoshimura, H. Arita and Y. Tomita, ibid., 1977, 179.