Studies on the Constituents of *Picrodendron baccatum* Growing in Indonesia. II. Structures of Two New Sesquiterpene Lactones, Picrodendrins C and D

Taichi Ohmoto,*.a Kazuo Koike,a Hiroshi Fukuda,a Katsuyoshi Mitsunaga,a Koreharu Ogatab and Kengo Kageic

School of Pharmaceutical Sciences, Toho University,^a 2–2–1 Miyama, Funabashi, Chiba 274, Japan, Faculty of Pharmaceutical Sciences, Chiba University,^b 1–33 Yayoi-cho, Chiba 260, Japan and Tsukuba Research Laboratories, Eisai Co., Ltd.,^c 5–1–3 Tokodai, Tsukuba, Ibaraki 300–26, Japan. Received March 4, 1989

Two new picrotoxane-type sesquiterpene lactones, picrodendrins C and D, together with a known compound, isohyenanchin, were isolated from the barks of Indonesian *Picrodendron baccatum*. The structures were elucidated on the basis of spectroscopic data and X-ray structure analysis.

Keywords Picrodendron baccatum; Simaroubaceae; picrodendrin C; picrodendrin D; isohyenanchin; picrotoxane-type sesquiterpene lactone; X-ray structure analysis

Furthering our research into the chemical compositions of Simaroubaceae plants, we investigated *Picrodendron baccatum* (L.) KLUG et URBAN growing in Indonesia. The isolation and structure elucidation of a picrotoxane-type nor-diterpene lactone, picrodendrin A, from the bark of this plant were reported previously.¹⁾ In a continuation of our studies on the bark of this plant, we isolated two new picrotoxane-type sesquiterpene lactones, named picrodendrins C and D, together with a known compound, isohyenanchin. The present paper deals with the isolation and structure elucidation of these compounds on the basis of spectral data and X-ray diffraction analysis.

The terpene fractions of the chloroform extract of the bark of *P. baccatum* collected in Indonesia were repeatedly column-chromatographed on silica gel to give isohyenanchin (1) and two new sesquiterpene lactones, picrodendrins C (2) and D (3).

Isohyenanchin (1) is a crystalline compound isolated by Jommi and co-workers²⁾ from *Hyenanche globosa* LAMB. (*Toxicodendrum capense* THUMB.). Although the proton nuclear magnetic resonance (¹H-NMR) spectra favor the structure of isohyenanchin, other structures could not be definitively eliminated and the stereochemistry was not revealed (*e.g.*, the conformations of the cyclohexane, cyclopentane, γ-lactone and two epoxide rings, and the stereochemistry of the methyl group at C-1, the hydroxyisopropyl group at C-4 and the two hydroxyl groups at C-2 and C-6). In order to establish a definitive structure, an X-ray diffraction analysis of a single crystal was carried out. An ORTEP³⁾ drawing of the X-ray model of isohyenanchin (1) is presented in Fig. 1. The present study showed the presence of five fused rings; cyclohexane, cyclopentane, γ-

R₁ R₂ R₃
1: H OH OH
2: OH OH H
3: OH H H
Chart I

lactone and two epoxide rings. A characteristic feature of this compound is the γ -lactone ring coming across the cyclohexane ring from C-3 to C-5. The cyclohexane ring has a quasi-chair conformation with an α -equatorial methyl group at C-1, β -equatorial hydroxyl group at C-2, α -axial

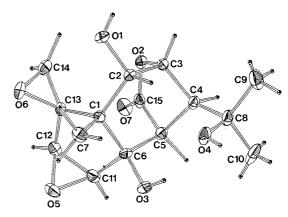


Fig. 1. ORTEP Drawing of Compound 1 with 50% Probability Ellipsoids

Table I. Final Positional Parameters ($\times 10^4$) and Equivalent Isotropic Thermal Parameters with Estimated Standard Deviations in Parentheses for Compound 1

Atom	x	у	z	$B_{\rm eq}$ (Å ²)
C-1	2522 (3)	2368 (3)	-920 (8)	1.9
C-2	3300 (2)	2290 (3)	-2440 (8)	2.0
C-3	4248 (3)	2495 (3)	-1650 (8)	2.0
C-4	4336 (3)	3508 (4)	-808 (9)	2.2
C-5	3753 (3)	3353 (4)	1019 (9)	2.2
C-6	2711 (3)	3202 (3)	612 (8)	2.0
C-7	1635 (4)	2526 (4)	-2065 (9)	2.7
C-8	4237 (4)	4394 (4)	-2108(10)	2.8
C-9	4389 (5)	5273 (4)	-881(13)	4.6
C-10	4905 (4)	4353 (5)	-3770(12)	4.3
C-11	2289 (3)	2887 (4)	2511 (9)	2.6
C-12	2107 (3)	1859 (4)	2450 (9)	2.6
C-13	2388 (3)	1500 (4)	474 (8)	2.1
C-14	2812 (4)	550 (4)	371 (10)	3.2
C-15	4144 (3)	2380 (4)	1676 (9)	2.4
O-1	3256 (3)	1370 (3)	-3329 (6)	2.7
O-2	4427 (2)	1908 (2)	79 (6)	2.2
O-3	2323 (3)	4092 (2)	63 (7)	2.6
O-4	3327 (3)	4414 (3)	-2924 (7)	2.9
O-5	1370 (2)	2551 (3)	2319 (7)	3.1
O-6	21879 (3)	690 (3)	-211 (7)	3.3
O-7	4218 (3)	2069 (3)	3291 (7)	3.4

November 1989 2989

hydroxyisopropyl group at C-4 and α -equatorial hydroxyl group at C-6. The cyclopentane ring has a flattened envelope conformation which carries a *cis*-fused α -epoxide between C-11 and C-12. Another epoxide ring, spiro-fused at C-13, is perpendicular to that of the cyclopentane ring. The cyclohexane and the cyclopentane rings are *cis*-fused by β -axial bonds between C-1 and C-6. Therefore the compound is isohyenanchin, in agreement with the conclusion based on spectral studies in the preceding paper.²⁾ The information gained by the X-ray study, completely resolved, the relative stereochemistry.

Picrodendrin C (2), colorless prisms, mp 234 °C, $[\alpha]_D$ $+1.2^{\circ}$, showed the absorption bands of hydroxyl (v_{max} 3550 cm⁻¹) and γ -lactone (v_{max} 1740 cm⁻¹) groups in the infrared (IR) spectrum. From the elementary analysis, 2 had the same molecular formula, $C_{15}H_{20}O_7$ as determined for 1. The ¹H-NMR spectrum (Table II) of 2 showed an isopropyl group [δ 1.11 and 1.46 (each 3H, d, J=6.6 Hz, H-9 and H-10) and 2.96 (1H, septet, $J = 6.6 \,\text{Hz}$, H-8)] and one tertiary methyl group at δ 2.06 (3H, s, 1-CH₃). The ¹H spin decoupling NMR experiments on 2 showed AX-type vicinal protons at δ 4.24 and 3.63 (each 1H, d, J=2.9 Hz, H-11 and H-12) of the 11,12-epoxide group and the nonequivalent methylene protons at δ 3.11 and 4.85 (each 1H, d, $J = 6.2 \,\text{Hz}$, H-14) of the 13,14-epoxide group. The two-dimensional ¹H-¹H correlation (2D ¹H-¹H COSY) spectrum of 2 showed that a signal at δ 4.44 (1H, d, J=5.5 Hz, H-2) was coupled with a methine signal at δ 5.13 (1H, d, J=1.1 Hz, H-3). Irradiation of the signal at δ 4.44 caused sharpening of the methine signal at δ 5.13 indicating vicinal coupling. When the signal at δ 5.13 was irradiated, the change observed was collapse of the doublet at δ 3.50 (1H, d, J=1.1 Hz, H-5) into a singlet, indicating W-type long-range coupling. From a comparison of the chemical shift of the carbon-13 nuclear magnetic resonance (13C-NMR) signals (Table III) of 2 with that of 1, the hydroxyl group was linked to C-4 (δ 82.04) and exerted the β -effect on C-3 (δ 90.04) and C-5 (δ 58.34). The signals of C-8, C-9 and C-10 were, in turn, shifted upfield by replacing the hydroxyl group at C-8 of the hydroxyisopropyl group with the hydrogen. The relative stereochemistry of 2 was ascertained from the ¹H nuclear Overhauser effect (NOE) difference spectra of 2 (Fig. 2). On irradiation of the signal of 1-CH₃, NOE's were observed at the signals of H-2 (2%), H-3 (2%), 6-OH (4%) and H-8 (2%). Irradiation of 6-OH gave NOE's at the signals of 1-CH₃ (14%), H-3 (4%), H-5 (7%) and H-11 (3%). Irradiation of H-11 gave NOE's at the signals of H-5 (5%), 6-OH (3%) and H-12 (9%). Irradiation of H-12 gave NOE's at the signals of H-11 (9%) and H_a-14 (6%). These NOE experiments allowed us to establish (i) the orientation of the 1-CH₃, 2-OH, 4-OH and 6-OH groups of the cyclohexane ring; (ii) cis-fusion between the cyclohexane and the cyclopentane rings; (iii) the orientation of two 11,12- and 13,14-epoxide groups; (iv) location of the γ -lactone ring perpendicular to the cyclohexane ring. Thus, the structure of picrodendrin C was concluded to be 2.

Picrodendrin D (3), colorless prisms, mp higher than $300\,^{\circ}$ C, $[\alpha]_D$ -72.3° , showed the absorption bands of hydroxyl ($\nu_{\rm max}$ $3550\,{\rm cm}^{-1}$) and γ -lactone ($\nu_{\rm max}$ $1780\,{\rm cm}^{-1}$) groups in the IR spectrum. From the elementary analysis, the molecular formula was concluded to be $C_{15}H_{20}O_6$, sug-

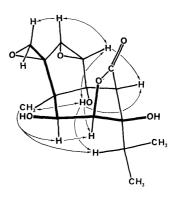


Fig. 2. NOEs Observed in NOE Difference Spectra of Picrodendrin C (2)

TABLE II. ¹H-NMR Spectral Data^{a)} for Compounds 1, 2, and 3

Proton	1	2	3
H-2	5.15(1H, d, 4.8)	4.44(1H, d, 5.5)	4.20 (1H, d, 4.4)
H-3	5.17 (1H, dd, 4.4, 1.1)	5.13(1H, d, 1.1)	5.00 (1H, d, 1.1)
H-4	2.75 (1H, t, 4.4)		
H-5	3.43 (1H, dd, 4.4, 1.1)	3.50(1H, d, 1.1)	3.12(1H, dd, 3.1, 1.1)
H-6			2.69 (1H, d, 3.1)
H-8		2.96 (1H, sep, 6.6)	2.04(1H, sep, 6.8)
H-9	1.39(3H, s)	1.11 (3H, d, 6.6)	1.08(3H, d, 6.8)
H-10	1.55 (3H, s)	1.46 (3H, d, 6.6)	1.18 (3H, d, 6.8)
H-11	4.26 (1H, d, 2.9)	4.24 (1H, d, 2.9)	4.07 (1H, d, 2.9)
H-12	3.59 (1H, d, 2.9)	3.63 (1H, d, 2.9)	3.56 (1H, d, 2.9)
H_a -14	3.11 (1H, d, 6.2)	3.11 (1H, d, 6.2)	3.11 (1H, d, 6.2)
H_{b} -14	4.85 (1H, d, 6.2)	4.85 (1H, d, 6.2)	4.80 (1H, d, 6.2)
1-CH ₃	1.97(3H, s)	2.06(3H,s)	1.89(3H, s)
2-OH	$7.27(1H, d, 4.8)^{b}$	$7.53(1H, d, 5.5)^{b}$	$7.43(1H, d, 4.4)^{b}$
4-OH		$7.32(1H, d, 1.8)^{b}$	$7.34(1H, s)^{b}$
6-OH	$9.14(1H, s)^{b}$	$8.26(1H, d, 1.8)^{b}$	
8-OH	$7.45(1H, s)^{b}$		

a) The spectra were measured in pyridine- d_5 . s = singlet, d = doublet, dd = doublet of doublets, sep = septet. b) Disappeared with the addition of D_2O .

TABLE III. ¹³C-NMR Spectral Data^{a)} for Compounds 1, 2, and 3

Carbon	1	2	3
C-1	46.26	45.53	40.83
C-2	73.06	75.35	76.22
C-3	84.81	90.04	89.44
C-4	54.54	82.04	80.94
C-5	50.25	58.34	51.48
C-6	77.34	78.52	45.16
C-7	21.42	21.75	27.70
C-8	68.35	30.91	29.57
C-9	28.53	15.44	15.27
C-10	30.53	18.32	16.52
C-11	61.11	61.82	57.18
C-12	60.33	60.95	60.83
C-13	66.97	66.90	67.28
C-14	52.25	52.35	52.04
C-15	175.55	176.45	177.63

a) The spectra were measured in pyridine- d_5 . The signal assignment was based on analyses of the $^1\mathrm{H}^{-13}\mathrm{C}$ and long-range $^1\mathrm{H}^{-13}\mathrm{C}$ shift correlation spectra.

gesting that it has one less hydroxyl group than 2. The 1 H-NMR spectrum (Table II) of 3 was similar to that of 2 but revealed a signal at δ 2.69 (1H, d, J=3.1 Hz) due to H-6, instead of the hydroxyl group at C-6 in 2, and the doublet of the methine proton at H-5 in 2 was transformed into a doublet of doublets in 3. In the 2D 1 H- 1 H COSY spectrum

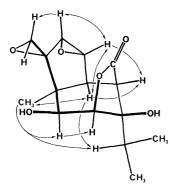


Fig. 3. NOEs Observed in NOE Difference Spectra of Picrodendrin D (3)

of 3, a signal at δ 4.20 (1H, d, J=4.4 Hz, H-2) was coupled with a signal at δ 5.00 (1H, d, J=1.1 Hz, H-3) indicating a vicinal coupling. The proton at δ 2.69 was coupled to a proton at δ 4.07 (1H, d, J=2.9 Hz, H-11). Irradiation of the signal at δ 2.69 caused sharpening of the signal at δ 4.07, indicating vicinal coupling. When the signal at δ 5.00 was irradiated, the change observed was a collapse of the doublet at δ 3.12 (1H, dd, J=3.1, 1.1 Hz, H-5) into a singlet, indicating W-type long-range coupling. In a comparison of the chemical shifts of the ¹³C-NMR signals (Table III) assigned to C-1, C-5, C-6, C-7 and C-11 in compound 3 with the corresponding signals of 2, upfieldshifted C-1 (δ 40.83), C-5 (δ 51.48), C-6 (δ 45.16) and C-11 (δ 57.18) and downfield-shifted C-7 (δ 27.70) were observed. The relative stereochemistry of 3 was ascertained by analysis of the ¹H NOE difference spectrum of 3 (Fig. 3). Irradiation of the signal for 1-CH₃ gave NOE's at the signals of H-2 (8%), H-6 (10%) and H-8 (2%). Irradiation of H-6 gave NOE's at the signals of 1-CH₃ (9%), H-8 (9%), H-5 (9%) and H-11 (7%). Irradiation of H-11 gave NOE's at the signals of H-5 (9%), H-6 (3%) and H-12 (10%). Irradiation of H-12 gave NOE's at the signals of H-11 (8%) and H_a -14 (6%). These observations indicated that all chiral centers were compatible with those of isohyenanchin (1) and picrodendrin C (2). The coupling constants $J_{\rm H2,H3}$ and $J_{\rm H6,\,H11}$ were very small (each J=ca. 0 Hz) which indicated that both dihedral angles were ca. 90 degrees. Thus, the structure of picrodendrin D was concluded to be 3.

Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. The IR spectra were recorded with a Hitachi 260-30 spectrophotometer. The $^1\mathrm{H}$ - and $^{13}\mathrm{C}\text{-NMR}$ spectra were recorded with a JEOL JNM GX-400 ($^1\mathrm{H}\text{-NMR}$ at 400 MHz and $^{13}\mathrm{C}\text{-NMR}$ at 100 MHz) spectrometer. Chemical shifts are given on the δ scale (ppm) with tetramethylsilane as an internal standard and coupling constants (*J*) are given in hertz (Hz). Electron ionization mass spectra (EI-MS) were measured with a JEOL JMS D-300 mass spectrometer. Optical rotations were determined on a JASCO DIP-4 digital polarimeter. Column chromatography was carried out on silica gel (BW-820MH, Fuji Davison).

Extraction and Isolation Dried bark (1.5 kg) of *P. baccatum* collected at Kebun Raya Bogor, Indonesia, in July 1986 was extracted successively with *n*-hexane, chloroform and methanol. The chloroform-soluble fraction (18 g) was subjected to column chromatography on silica gel (200 g) (chloroform, then 1, 2, 5, 10, 20 and 50% methanol in chloroform, and finally methanol). The fraction (2.5 g) eluted with 10 and 20% methanol in chloroform was further purified by column chromatography on silica gel to give isohyenanchin (1, 143 mg), picrodendrin C (2, 21 mg) and picrodendrin D (3, 132 mg).

Isohyenanchin (1) Colorless prisms (methanol), mp > 300 °C, [α]_D²⁴ -15.4° (c=2.0, pyridine), [(lit,²¹ mp 298 °C, [α]_D²⁰ -61.2° (c=0.2, H₂O)]. IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3520, 3250, 2980, 1760, 1300, 1160, 950. MS m/z (%): 294 [(M – H₂O)⁺, 2], 261 (3), 249 (3), 235 (3), 207 (8), 191 (10), 177 (22), 161 (21), 151 (12), 141 (33), 125 (36), 108 (28), 95 (33), 71 (23), 59 (100), 43 (79). ¹H- and ¹³C-NMR data are given in Tables I and II, respectively. *Anal.* Calcd for C₁₅H₂₀O₇: C, 57.69; H, 6.45. Found: C, 57.50; H, 6.52.

X-Ray Crystal Structure Analysis of Isohyenanchin (1) Suitable crystals of **1** were grown from methanol as colorless prisms. Crystals were orthorhombic, space group $P2_1P2_1P2_1$, a=14.754 (3), b=14.056 (3), c=6.857 (1) (Å); V=1422.08 ų, Z=4, $D_{\rm calcd}=1.459$ g·cm⁻³. All unique diffraction maxima with $2\theta < 120^{\circ}$ were collected with a Rigaku AFC-6 four-circle automatic diffractometer using the ω - 2θ scanning method at a speed of 4° /min with graphite-monochromated Cu K_{α} radiation. Of the 1661 unique reflections, 1369 had $|F_{o}| > 3\sigma$ (F_{o}) and were judged as observed. The structure was solved by the direct method using the structure determination program package MULTAN 80^{4}) provided with the diffractometer. The structure was refined by the block-diagonal least-squares methods to an R value of 0.0505. The final positional parameters are given in Table I.

Picrodendrin C (2) Colorless prisms (methanol), mp 234 °C, $[α]_{0}^{24}$ +1.2° (c=1.9, pyridine). IR $ν_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3550, 3460, 2880, 1740, 1660, 1360, 1145, 920. MS m/z (%): 294 [(M – H₂O)⁺, 2], 265 (2), 241 (19), 211 (17), 193 (21), 166 (26), 149 (55), 141 (100), 125 (79), 113 (57), 95 (45), 85 (24), 77 (15), 71 (57), 55 (24), 43 (81). ¹H- and ¹³C-NMR data are given in Tables I and II, respectively. *Anal.* Calcd for C₁₅H₂₀O₇: C, 57.69; H, 6.45. Found: C, 57.47; H, 6.49.

Picrodendrin D (3) Colorless prisms (methanol), mp $> 300 \,^{\circ}$ C, $[\alpha]_{2}^{124}$ -72.3° (c=2.4, pyridine). IR $v_{\rm mar}^{\rm KBr}$ cm $^{-1}$: 3550, 3410, 2990, 1780, 1480, 1385, 1280, 1160, 1000. MS m/z (%): 296 (M $^{+}$, 1), 278 (1), 235 (3), 223 (5), 205 (9), 195 (13), 177 (24), 155 (48), 137 (57), 125 (53), 111 (82), 95 (39), 77 (22), 71 (100), 55 (27), 43 (82). 1 H- and 13 C-NMR data are given in Tables I and II, respectively. *Anal.* Calcd for $C_{15}H_{20}O_{6}$: C, 60.80; H, 6.80. Found: C, 60.56; H, 6.84.

Acknowledgement We thank Mr. M. Takayama and Mrs. Y. Sakamoto, the Analytical Laboratory of this school, for the measurements of MS and elementary analysis.

References and Notes

- T. Ohmoto, K. Koike, K. Mitsunaga, H. Fukuda, K. Kagei, T. Kawai and T. Sato, Chem. Pharm. Bull., 37, 1805 (1989).
- G. Jommi, P. Manitto, F. Pelizzoni, C. Scolastico, Chimica Industria, 46, 549 (1964).
- C. K. Johnson, ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, U.S.A., 1965.
- 4) P. Main, M. M. Woolfson and G. Germain, LSAM "A System of Computer Programmes for the Automatic Solution of Centrosymmetric Crystal Structures," Univ. of York, York, England, and Univ. de Louvain, Louvain, Belgium, 1972; P. Main, M. M. Woolfson and G. Germain, MULTAN "A Computer Programmes for the Automatic Solution of Crystal Structures," Univ. of York, York, and Univ. de Louvain, Louvain, Belgium, 1971; A. Furusaki, Acta Crystallogr., Sect. A, 35, 220 (1979); T. Sakurai and K. Kobayashi, Rep. Inst. Phys. and Chem. Res., 55, 69 (1979).