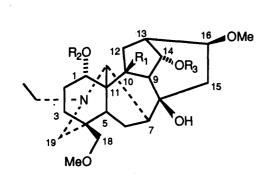
TWO NEW DITERPENE ALKALOIDS, 10-HYDROXYISOTALATIZIDINE AND 10-HYDROXY-TALATIZAMINE

Hiromitsu TAKAYAMA, Yukio HITOTSUYANAGI, Keiichi YAMAGUCHI, Norio AIMI, and Shin-ichiro SAKAI*


Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Chiba 260, Japan

Two new C₁₉ diterpene alkaloids 1 and 2 were isolated from Aconitum sanyoense Nakai and their novel structures with a hydroxy function at C₁₀ position were elucidated.

KEYWORDS Aconitum sanyoense; diterpene alkaloid; 10-hydroxyisotalatizidine; 10-hydroxytalatizamine; ¹³C-NMR; X-ray analysis

From the aerial parts of Aconitum sanyoense Nakai var. tonenze Nakai, a plant native to Kuzure-Sawa, Nagano Prefecture, two new C₁₉ diterpene alkaloids were isolated along with the five known diterpene alkaloids, isotalatizidine (3), talatizamine (5), 14-O-acetyltalatizamine, 1) condelphine 2) and sanyonamine, 3) and the two aporphine alkaloids, N-methyllaurotetanine 4) and isoboldine. 5)

The new alkaloid (1) was isolated as an amorphous solid, $[\alpha]_D^{14} + 7.0^\circ$ (c=0.28, CHCl₃). The high resolution mass spectrum of 1 presents the molecular ion m/z 423.2636, corresponding to the formula C₂₃H₃₇O₆N. The intensive IR absorption at 3650 cm⁻¹ indicated the presence of hydroxy groups. The ¹H-NMR spectrum showed the characteristic signals of C₁₉ type diterpene alkaloid due to N-CH₂CH₃ (δ 1.11, 3H, t, J=7Hz), OMe x 2 (δ 3.32, 6H, s) and C₁₄-H (δ 4,67, 1H, t, J=5Hz). The base peak at m/z 406 (M⁺-OH) in the mass spectrum strongly indicated that a hydroxy group was located at C₁ position.⁶) Treatment of 1 with acetic anhydride in pyridine at room temperature afforded diacetate (4) as a crystalline compound, mp. 156-158.5°C (from acetone-isopropylether). In the ¹H-NMR spectrum of 4, two characteristic signals were observed at δ 5.29 (1H, t, J=5Hz) and δ 5.44 (1H, dd, J=10 and 7Hz), which appeared at δ 4.67 (1H, t, J=5Hz) and δ 4.07 (1H, br s) in the spectrum of 1, respectively. This indicates that two secondary hydroxy groups exist at C₁ and C₁₄ position in 1. The ¹³C-NMR spectrum of 1 resembled that of isotalatizidine (3)²) except for a few changes (Table). The appearance of an extra singlet at δ 82.3 in the spectrum of 1 afforded evidence for the presence of an additional tertiary hydroxyl group in 1 compared with 3. The chemical shifts of C₉, C₁₁ and C₁₂ in 1 appeared at δ 56.1, 53.3 and 39.1, respectively, which were significantly shifted downfield compared with those of 3. This indicated that the neighboring

- 1: $R_1 = OH$, $R_2 = R_3 = H$
- 2: $R_1 = OH$, $R_2 = Me$, $R_3 = H$
- 3: $R_1 = R_2 = R_3 = H$
- 4: $R_1 = OH$, $R_2 = R_3 = Ac$
- 5: $R_1 = R_3 = H$, $R_2 = Me$
- 6: R_1 =OH, R_2 =Me, R_3 =Ac

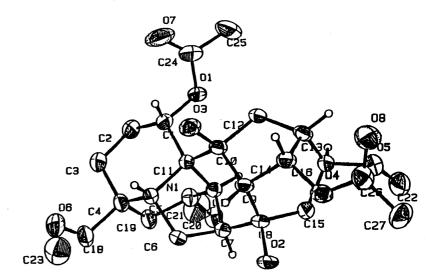


Fig. 1. ORTEP Drawing of 4

© 1989 Pharmaceutical Society of Japan

C₁₀ carbon was substituted by a hydroxy group. The structure of 1 proposed by the spectroscopic analysis was confirmed by X-ray analysis of the diacetate derivative (4). The crystal of 4 belongs to a orthorhombic space group, P2₁₂₁₂₁, with the cell parameters of a=13.694(4), b=14.160(3), c=13.143(2)Å, Z=4, Cell volume=2548.6Å³, and Dx=1.32g/cm³. The structure was solved by the direct method MULTAN and the result was refined by a block diagonal least squares procedure to R=0.066 for 4433 unique reflections with Fo>3 σ (Fo) measured on a Rigaku AFC-5 diffractometer with CuK α radiation. The ORTEP drawing of the structure of 1,14-diacetyl-10-hydroxyisotalatizidine (4) is shown in Fig. 1.

Table, ¹³C Chemical Shifts and Assignments of 1, 3, 2, 5, 6 and 7

Carbon	(1)	(3) ²⁾	(2)	(5) ⁷⁾	(6)	(7)
1	69.2	72.2	78.5	86.1	78.6	79.6
2 3 4	26.6	28.7	25.7	25.7	26.0	26.3
3	30.8	29.7	32.5	32.6	32.3	32.4
4	36.9	37.2	38.5	38.6	38.3	38.0
5	40.5	41.6	42.0	45.7	41.7	42.9
6	25.0	24.9	25.4	24.8	25.4	24.0
7	44.7	45.1	45.2	45.7	45.6	42.9
6 7 8	73.4	74.3	72.1	72.7	72.8	77.2
9	56.1	46.6	56.0	46.9	55.0	47.4
10	82.3	43.9*	81.1	45.7*	80.6	86.9
11	53.3	48.6	54.0	48.6	54.1	56.0
12	39.1	26.7	37.6	28.6	39.1	36.8
13	37.5	40.1*	37.7	37.7*	35.5	37.5
14	74.3	75.7	74.1	75.7	76.3	83.3
15	43.4	42.4	39.5	39.2	41.9	39.2
16	81.3	82.0	81.7	82.2	81.2	82.5
17	64.8	64.0	63.9	62.8	63.1	62.7
18	78.9	79.0	79.4	79.4	79.4	79.9
19	56.6	56.5	52.9	53.1	53.1	53.6
N-ÇH ₂	48.5	48.5	49.5	49.4	49.4	49.2
ĊH3	13.0	13.1	13.7	13.6	13.5	13.4
1'OMe	-	-	56.0	56.1	56.0	56.0
8'OMe	-	-	-		-	48.0
10'OMe	-	-	-		-	53.2
14'OMe	-	•	-	-	-	57.8
16'OMe	56.3	56.3	56.4	56.3	56.1	56.3
18'OMe	59.4	59.4	59.5	59.3	59.5	59.5
Ç=O	•	-	-	-	170.7	-
Сн3	-	-	-	-	21.4	-

Chemical Shifts in δ downfield from TMS. Solvent; CDCl₃.

The new alkaloid (2) was obtained as an amorphous solid, $[\alpha]_D^{20}$ +6.4° (c=0.33, CHCl₃), whose high resolution mass spectrum showed the M+437.2799 (C24H39O6N), which is 14 a.m.u. higher than the corresponding peak in the spectrum of 10-hydroxyisotalatizidine (1). The base peak at m/z 406 (M⁺-OMe) suggested the presence of a methoxyl group at the C₁ position.6) Furthermore, the orientation of C₁-methoxyl group was α-equatorial as indicated by the coupling pattern of C₁-H (dd, J=10.2 and 6.6Hz). On acetylation with acetic anhydride in pyridine, 2 afforded monoacetate (6). The major diffeence in the ¹H-NMR spectrum between the acetate (6) and the original alcohol (2) was the downfield shift (Δ δ0.61) of the signal at δ4.72 (1H, t, J=5.1Hz) in 2. This indicated the presence of a hydroxy group at C₁₄ in 2. Next, as in the case of isotalatizidine (3) and 10-hydroxyisotalatizidine (1), we compared the ¹³C-NMR spectra of (2) and talatizamine (5).7) The presence of a tertiary hydroxy group at C₁₀ was confirmed by a singlet at 881.1 in the spectrum of 2 and by the downfield shift of the C9 (Δ δ9.1), C₁₁ (Δ δ5.4) and C₁₂(Δ δ9.0) in comparison with the spectrum of talatizamine (5). Treatment of 2 with NaH/CH3I in DMF gave trimethylated product (7), [a]D²⁴-11.8° (c=0.13, CHCl3), in 74% yield (Chart 1). In the ¹H-NMR spectrum, there were six singlet signals (83.39, 3.37, 3.35, 3.29, 3.28 and 3.15) due to OMe groups. Tetramethylated compound (7), $[\alpha]D^{23}$ -12.1° (c=0.13, CHCl₃), was obtained from 1 under the above methylation condition. The TLC behavior, IR, ¹H-NMR and ¹³C-NMR spectra of both hexamethylethers (7) from 1 and from 2 were superimposable. Therefore, the structure of the new alkaloid (2) was concluded to be 10hydroxytalatizamine.

^{*} The assignments of the resonance of C₁₀ and C₁₃ in 3 and 5 in the literature were reversed.

REFERENCES

- 1) S. Sakai, H. Takayama and T. Okamoto, Yakugaku Zasshi, 99, 647 (1979).
- 2) S. W. Pelletier and Z. Djarmati, J. Am. Chem. Soc., 98, 2626 (1976).
- 3) S. Sakai, K. Yamaguchi, H. Takayama, I. Yamamoto and T. Okamaoto, Chem. Pharm. Bull., 30, 4576 (1982).
- 4) A. Ruegger, Helv. Chim. Acta, 83, 755 (1959).
- 5) T. Masao and M. Fujie, Yakugaku Zasshi, 82, 1457 (1962).
- 6) O. E. Edwards, "Diterpenoid Alkaloids" in "The Alkaloids" Specialist Periodical Reports, Vol.I, ed. J. E. Saxton, The Chemical Society, London, 1971, p.369; S. W. Pelletier and S. W. Page, *ibid.*, Vol. III, 1973, p.235.
- 7) C. Konno, M. Shirasaka and H. Hikino, J. Nat. Prod., 45, 128 (1982).

(Received December 13, 1988)