NEW TRITERPENOID SAPOGENOLS FROM ABRUS CANTONIENSIS (I)

Takashi TAKESHITA, Shuichi HAMADA and Toshihiro NOHARA*

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862,

Japan

New five triterpenoid sapogenols, designated abrisapogenols B, E, D, F and G (1-5) were obtained from the hydrolysate of the crude saponin fraction of Abri Herba, the whole plants of Abrus cantoniensis Hance (Leguminosae). Their structures were determined by spectroscopic and X-ray analysis.

KEYWORDS Abri Herba; <u>Abrus cantoniensis</u>; Leguminosae; triterpenoid sapogenol; oleanene derivative; cantoniensistriol; sophoradiol; soyasapogenol; kudzusapogenol; abrisapogenol

In the course of our systematic studies on the constituents of <u>Pueraria lobata Ohwi</u> (Leguminosae), we found the occurrence of the oleanene glucosides²⁾ in Puerariae Radix and P. Flos, and reported that they were effective for hepatic injury induced with CCl₄.³⁾ In connection with this pharmacological activity and as a part of our programs of the studies on the ingredients of the leguminous plants, we have surveyed the constituents of Abri Herba (Chiku-ts'ao in Chinese), the whole plants of <u>Abrus cantoniensis Hance</u> (Leguminosae), which is a native herb in Kwangtung and Kwangsi provinces of China and has long been used in South China and Southeast Asia as a folk medicine for the treatment of infectious hepatitis.⁴⁾ Its efficacy towards this disease has been substantiated by clinical trials and has become well known in recent years.⁵⁾ Chiang <u>et al</u>. reported that the crude saponin obtained from the title plants is effective against liver disease in pharmacological tests.⁶⁾ And from the hydrolysate of the methanolic extract, they isolated a new sapogenol, cantoniensistriol (6), along with the known ones, sophoradiol (7),⁷⁾ soyasapogenol A (8)⁸⁾ and soyasapogenol B (9),⁸⁾ and elucidated the structure of 6.⁵

Now, we have also recognized that the crude saponin originating from the methanolic extract of this plant is effective for the hepatic injury induced with CCl_4 . The present paper deals with the isolation and structural elucidation of five new sapogenols, named abrisapogenol B, E, D, F and G (1-5), together with the identification of 6, 7, 8, 9 and kudzusapogenol A (10) obtained from the hydrolysate of the biologically active crude saponin.

Abrisapogenol B (1), $C_{30}H_{50}O_4$, colorless needles, mp 278-280°C, [α] $_D$ +26.1°(pyridine), showed the presence of a total of thirty carbons, in which four oxygenated carbons [δ 64.4 (t), 73.0 (t), 75.6 (d) and 80.1 (d)] and two sp² carbons [δ 122.4 (d) and 144.9 (s)] were included in the 13 C-NMR spectrum. 10 1 is a typical oleanene-type sapogenol. The 11 H-NMR spectrum of the corresponding tetraacetate (11), $C_{38}H_{58}O_8$, colorless needles, mp 156-157° C, [α] $_D$ +61.3°(CHCl $_3$), displayed signals due to one acetoxymethyl (δ 4.14, 4.37, ABq, \underline{J} =11.5 Hz) and two methine protons (δ 4.59, dd, \underline{J} =5.5, 10.6 Hz and 4.71, t, \underline{J} =3.5 Hz) assignable to the H_2 -24, H-3 α and H-22 α , respectively, by comparing them with those of the acetate of 9. The signal of the remaining acetoxymethyl group (δ 3.67, 3.73, ABq, \underline{J} =10.6 Hz) could be reasonably assigned to the H_2 -29 by comparison with that (δ 3.68, 3.77, ABq, \underline{J} =10 Hz, H_2 -29) of 3 β ,24,29-triacetoxyolean-12-ene 11) derived from azukisapogenol. Therefore, the strucure of 1 was represented as 3 β ,22 β ,24,29-tetrahydroxyolean-12-ene.

Abrisapogenol E (2), $C_{30}H_{50}O_4$, colorless needles, mp 249-252°C, $[\alpha]_D$ +67.7° (methanol), exhibited peaks due to the characteristic fragmentations 12 at $\underline{m/z}$ 175 ($C_{13}H_{19}$) originating from the A/B ring, and at $\underline{m/z}$ 250 ($C_{16}H_{26}O_2$), 232 ($C_{16}H_{24}O$), 219 ($C_{15}H_{23}O$) and 201 ($C_{15}H_{21}$) originating from the D/E ring by retro Diels-Alder fission in the EI-MS. These peaks also appeared in 1. 2 was then converted to the acetate (12), colorless needles mp 283-285°C, $[\alpha]_D$ +72.2° (CHCl $_3$). Signals of one acetoxymethyl group (δ 4.11 and 4.37, ABq, \underline{J} =10.8 Hz) and two methine protons (δ 4.59, dd, \underline{J} =5.1, 10.8 Hz and δ 4.66, t, \underline{J} =3.3 Hz) in the 1 H-NMR spectrum of 12 could be easily assigned to the H_2 -24, H-3 α and H-22 α , respectively. The other one (δ 3.99 and 4.14, ABq, \underline{J} =10.4 Hz) was ascribable to the H_2 -30 because the 13 C-NMR spectra of both 12 O and 11 O provided analogous chemical shifts except for those of C-8 (+1.0), -15 (+2.5), -18 (-1.8), -21 (+1.0), -22 (+3.3), -29 (-35.2) and -30 (+53.3). Consequently, the structure of 2 was expressed as 13 C, 15 C,

Abrisapogenol D (3), $C_{30}H_{50}O_3$, was obtained as colorless needles, mp 290-291°C, $\left[\alpha\right]_D$ +76.7°(pyridine), the acetate of which, colorless needles, mp 222-224°C, $\left[\alpha\right]_D$ +76.5°(CHCl $_3$), showed signals of 1H, t (\underline{J} =3.3 Hz) at δ 4.66, and 1H, dd (\underline{J} =4.0, 7.7 Hz) at δ 4.50 ascribable to the H-22 α and H-3 α respectively in the 1 H-NMR spectrum. The remaining signal of the ABq (\underline{J} =11.0 Hz) at δ 3.99 and 4.12 was assigned to the acetoxymethyl group at C-30 by comparing it with that of 12. Hence, the structure of 3 could be determined to be 3 β ,22 β ,30-trihydroxyolean-12-ene.

Abrisapogenol F (4), $C_{30}H_{48}O_2$, colorless needles, mp 66-67°C, $[\alpha]_D$ +15.4°(CHCl $_3$), showed the presence of the carbonyl group in the IR (1696 cm $^{-1}$) and ^{13}C -NMR (δ 216.5) spectra. 16) The EI-MS provided a peak due to the D/E ring, indicating the location of the carbonyl group on the D/E ring. This compound was thus identified with 3 β -hydroxyolean-12-en-22-one derived from 7. Its ^{13}C -NMR chemical shifts supported this structure. Abrisapogenol G (5), $C_{30}H_{50}O_2$, colorless needles, mp 231-233°C, $[\alpha]_D$ -5.3°(CH $_3$ OH),

848 Vol. 37, No. 3

showed signals due to two oxygenated carbons at δ 78.0 and 79.0, and one tetra-substituted double bond at δ 131.7 and 137.3 in the ${}^{13}\text{C-NMR}$ spectrum, thus it appeared that the double bond shifted into an unusual position. Another signal due to a proton (1H, dd, $\underline{\text{J}}$ =7.5, 9.4 Hz) adjacent to the hydroxyl group, except for that of the H-3 α (1H, dd, J=5.1, 11.0 Hz), could not be assigned. Therefore, the single crystal of 5 was subjected to X-ray analysis. Crystal data were $C_{30}^{\text{H}}_{50}^{\text{O}}_{2}^{\text{e}}_{12}^{\text{H}}_{20}^{\text{O}}$, M.W.=460.7, monoclinic $\underline{\text{P}}_{21}^{\text{o}}$, $\underline{\text{a}}$ =15.199(2), $\underline{\text{b}}$ =12.115(2), $\underline{\text{c}}$ =7.244(1) $\hat{\text{A}}$, $\hat{\text{B}}$ =95.75(1)°, V=1327.1 $\hat{\text{A}}^{3}$, $\underline{\text{Z}}$ =2, Dx=1.152 g/cm³, F(000)=512, λ =0.518 mm⁻¹ (Cu·K $_{\alpha}$ =0.5418 $\hat{\text{A}}$). Refinements of 1934 observed reflections converged at $\underline{\text{R}}$ =0.058. The structure was established as shown in the formulae.

The structural analysis of the other substances are under investigation.

ACKNOWLEDGEMENTS The authors are grateful to Prof. Isao Kitagawa, Faculty of pharmaceutical Sciences, Osaka University and Dr. Takao Konoshima, Kyoto pharmaceutical University, for their valuable suggestions.

REFERENCES AND NOTES

- 1) Part 13 in the series of the studies on the leguminous plants.
- 2) a) J.Kinjo, I.Miyamoto, K.Murakami, K.Kida, T.Tomimatsu, M.Yamasaki and T.Nohara, Chem. Pharm. Bull., 33, 1293 (1985); b) J.Kinjo, T.Takeshita, Y.Abe, N.Terada, H.Yamashita, M.Yamasaki, K.Takeuchi, K.Murakami, T.Tomimatsu and T.Nohara, Chem. Pharm. Bull., 36, 1174 (1988).
- 3) T.Takeshita, J.Kinjo, T.Nohara, H.Itoh, Y.Niiho and T.Yamazaki, Abstracts Papers,
 The 34th Annual Meeting of the Japanese Society of Pharmacognosy, Osaka, 1987, p.65.
- 4) Chiang Su New Medical College ed., "Dictionary of Chinese Crude Drugs", Shanghai Scientific Technologic Publisher, Shanghai, 1977, p.1210.
- 5) T.C.Chiang and H.M.Chang, Planta Medica, 46, 52 (1982).
- 6) T.C.Chiang, K.F.Choung and H.M.Chang, Planta Medica, 39, 225 (1980).
- 7) <u>a) M.Takahashi, S.Ishimasa and Y.Koyama, Yakugaku Zasshi, 80, 698 (1960); b)</u>
 T.C.W.Mak, T.C.Chiang and H.M.Chang, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1982, 785.
- 8) a) H.M. Smith, J.M.Smith and F.S.Spring, <u>Tetrahedron</u>, 4, 111 (1958); b) I.Kitagawa, M.Yoshikawa, H.K.Wang, M.Saito, V.Tosirisuk, T.Fujiwara and K.Tomita, <u>Chem. Pharm.</u>
 Bull., 30, 2294 (1982).
- 9) T.Takeshita and T.Nohara, Abstract Papers, The 35th Annual Meeting of the Japanese Society of Pharmacognosy, Niigata, 1988, p.97.
- 10) This ¹³C-NMR spectrum was measured in pyridine-d₅ and other ¹H- and ¹³C-NMR spectra in this article were in CDCl₃.
- 11) I.Kitagawa, H.K.Wang, M.Saito and M.Yoshikawa, Chem. Pharm. Bull., 31, 664 (1983).
- 12) H.Budzikiewicz, C.Djerassi and D.H.Williams, "Structure Elucidation of Natural Products by Mass Spectrometry", vol. 2, Holden-Day Inc., San Francisco, 1964, p.121.
- 13) 13 C-NMR Data of 12: δ 38.4, 26.7, 80.1, 43.8, 55.9, 19.3, 33.5, 41.0, 47.6, 36.7, 23.6, 123.0, 143.1, 41.6, 28.3, 26.2, 38.4, 41.4, 41.4, 36.2, 39.8, 77.8, 23.5, 65.4, 15.5, 16.6, 25.8, 29.6, 32.9, 70.0 ($c_1 c_{30}$).
- 14) ¹³C-NMR Data of **11**: δ 38.8, 26.8, 80.1, 43.3, 55.9, 19.3, 33.0, 40.0, 47.6, 36.8, 23.0, 122.8, 143.4, 41.6, 25.8, 26.8, 38.5, 43.2, 41.0, 36.4, 38.8, 74.5, 23.6, 65.4, 15.5, 16.7, 26.1, 29.9, 68.1, 16.7 (C₁-C₃₀).
- 15) T.Konoshima, M.Kotzuka, M.Takazaki, T.Kimura and M.Tanabe, Abstract Papers, The 35 th Annual Meeting of the Japanese Society of Pharmacognosy, Niigata, 1988, p.89.
- 16) ¹³C-NMR Data of **4**: δ 38.6, 27.2, 78.9, 38.8, 55.3, 18.3, 32.7, 39.6, 47.6, 37.0, 23.5, 123.7, 141.6, 41.9, 25.3, 28.1, 47.6, 47.6, 46.7, 32.0, 50.8, 216.5, 27.2, 15.5, 15.5, 16.8, 25.4, 29.7, 34.1, 20.5 (C₁-C₃₀).

(Received December 26, 1988)