NEW TRITERPENOIDS FROM RUBIA CORDIFOLIA VAR. PRATENSIS (RUBIACEAE)

Hideji ITOKAWA, *,a Ya-Fang QIAO,a Koichi TAKEYAa and Yoichi IITAKAb

Department of Pharmacognosy, Tokyo College of Pharmacy, a Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan and Faculty of Medicine, Teikyo University, b Ohtsuka 359, Hachioji, Tokyo 192-03, Japan

From the roots of <u>Rubia cordifolia</u> var. <u>pratensis</u>, three new triterpenoids named rubiprasins A, B and C have been isolated and their structures were determined as 3β -acetoxyoleanane- 13β , 15α -diol-12-one, 3β -acetoxyoleanane- 13β -ol-12-one and 3β -acetoxyl-19 α -hydroxyolean-12-en-28-oic acid respectively by various chemical and spectroscopic methods including ^{1}H - ^{1}H COSY, ^{1}H - ^{13}C COSY and X-ray diffraction.

KEYWORDS rubiprasin A; rubiprasin B; rubiprasin C; <u>Rubia cordifolia</u> var. <u>pratensis</u>; Rubiaceae; oleanane-type; triterpenoid; ¹H-¹H COSY; ¹H-¹³C COSY; X-ray diffraction

The methanol extract of the roots of R. cordifolia var. pratensis¹⁾ collected in China was partitioned between water and chloroform, and then between water and n-butanol. The chloroform-soluble fraction was applied to repeated silica gel column chromatography to give three new oleanane-type triterpenoids (rubiprasins A, B and C) shown in Fig. 1.

Rubiprasin A: colorless needles (from $CHCl_3$), mp > $300^{\circ}C$, $\left[\alpha\right]_D$ +12.8° in EtOH showed IR absorption bands at 3470, 3430, 2920, 2870, 1720, 1695, 1478, 1465, 1365, 1270 and 1025 cm⁻¹ in KBr. The MS showed fragment ion peaks at m/z 516 [M]⁺, 498 [M-H₂O]⁺, 235, 207 (base peak) and 189. The ^{1}H -, ^{13}C -NMR, ^{1}H - ^{1}H COSY, ^{1}H - ^{13}C COSY spectra of rubiprasin A in pyridine-d₅ exhibited the presence of the partial structures 1, 2, 3, 4, 5, and 6 shown in Fig. 2. In addition to eight tertiary methyls at δ 0.88, 0.91, 0.92, 0.94, 1.01, 1.40, 1.61 and 1.85, one acetyl group [δ 2.05 and δ 21.12 (q), 170.54 (s)], one ketonic carbonyl carbon [δ 210.40 (s)], one acetoxylated and two hydroxylated carbons [δ 80.56 (d), 85.83 (s) and 66.70 (d)] and six quarternary carbons at δ 31.79, 35.06, 37.85, 37.98, 44.88 and 51.09. From these results, it was concluded this compound was a 3 β -acetoxyoleanane derivative, which had the ketonic carbonyl group in the C-12 position and one of two hydroxyl groups was attached to C-13, because it was found that the carbon signal of 28-CH₃ was shifted downfield about 4 ppm by the syn-diaxial OH - CH₃ interaction²) in comparison with β -amyrin³), and another hydroxyl group was found to be linked to the C-15 as an α -orientation or the C-16 as a β -orientation. Also, rubiprasin A was acetylated with Ac₂O - pyridine in the usual way to give a mono-acetate, colorless needles from CHCl₃, mp 270 - 271°C and MS m/z; 558 [M⁺].

In order to confirm the structure of rubiprasin A indicated by the spectroscopic methods, its X-ray

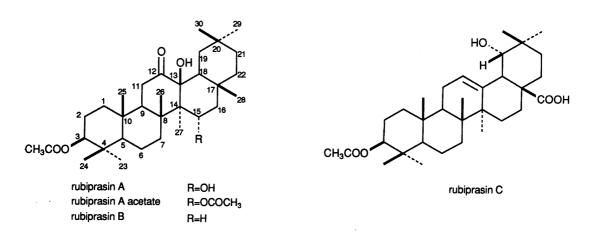


Fig. 1. Structures of Rubiprasins A, A-acetate, B and C

© 1989 Pharmaceutical Society of Japan

June 1989 1671

Fig. 2. Partial Structures 1, 2, 3, 4, 5 and 6 of Rubiprasin A

Crystal System: orthorhombic

Space Group: $P2_1 2_1 2_1$

z: 4

a = 11.079 (6) Å

b = 32.743 (17) Å

c = 8.245 (5) Å

v = 2991 h^3

R = 0.054



Fig. 3. Perspective View of Rubiprasin A

Table I. 13 C-NMR Spectral Data for Rubiprasins A, B and C (100.6 MHz, Py-d₅)

Carbon No	. А		В		С		Carbon No.	A		В		С	
1	38.44	(t)	38.25	(t)	38.06	(t)	17	35.06	(s)	34.24	(s)	46.09	(s)
2	24.01	(t)	23.98	(t)	24.10	(t) ^{b)}	18	51.57	(d)	51.32	(d)	44.81	(d)
3	80.56	(d)	80.66	(d)	80.85	(d)	19	35.16	(t)	35.47	(t)	81.30	(d)
4	37.98	(s)	38.15	(s) ^{a)}	37.91	(s)	20	31.79	(s)	30.01	(s)	35.74	(s)
5	55.19	(d)	55.58	(d)	55.68	(d)	21	34.53	(t)	34.67	(t)	29.15	(t) ^d
6	18.64	(t)	18.30	(t)	18.65	(t)	22	39.58	(t)	39.73	(t)	33.18	(t) ^c
7	38.16	(t)	31.84	(t)	33.66	(t) ^c	23	27.96	(p)	28.06	(p)	28.16	(p)
8	44.88	(s)	42.79	(s)	39.99	(s)	24	16.71	(p)	16.68	(p)	16.89	(p)
9	46.21	(d)	46.45	(d)	48.16	(d)	25	15.94	(p)	15.89	(p)	15.33	(p)
10	37.85	(s)	37.47	(s) ^{a)}	37.35	(s)	26	20.41	(p)	20.09	(p)	17.45	(p)
11	39.15	(t)	39.21	(t)	23.88	(t) ^b	27	14.38	(p)	18.69	(p)	24.87	(p)
12	210.40	(s)	210.28	(s)	123.24	(d)	28	32.00	(q) ^{e)}	31.45	(q) ^{f)}	180.86	(s)
13	85.83	(s)	83.09	(s)	144.92	(s)	29	32.27	(q) ^{e)}	32.10	(q) ^{f)}	28.83	(p)
14	51.09	(s)	45.39	(s)	42.16	(s)	30	24.84	(p)	25.85	(p)	24.87	(p)
15	66.70	(d)	23.08	(t)	28.39	(t) ^d) Ac-Me	21.12	(p)	21.11	(q)	21.12	(p)
16	43.99	(t)	34.03	(t)	29.24	(t) ^d) Ac-CO	170.54	(s)	170.53	(s)	170.59	(s)

a-f) Assignments may be reversed.

1672 Vol. 37, No. 6

diffraction analysis was undertaken and it was confirmed that the structure was 3β -acetoxyoleanane- 13β , 15α -diol-12-one. The perspective view of rubiprasin A is shown in Fig. 3. The proton and carbon signals shown in Fig. 2 and Table I were assigned based on the $^1\text{H}-^1\text{H}$ COSY and $^1\text{H}-^{13}\text{C}$ COSY spectral data, and also by comparison of our spectral data with those of β -amyrin. 3)

Rubiprasin B: colorless needles (from $CHCl_3$), mp 277 - 280°C, showed fragment ion peaks at m/z 500 [M⁺], 333, 249, 220, 208 (base peak) and 189 in the MS. The proton and carbon signals of C-15 hydroxymethine which appeared at δ 5.22 (OH), 5.19 (CH) and δ 66.70 (d) in the NMR of rubiprasin A was not found in the NMR of rubiprasin B, while other signals were similar to those of rubiprasin A. Also, the 27-CH₃ carbon signal (δ 14.38) in rubiprasin A was shifted downfield to δ 18.67 in rubiprasin B. It was suggested that there was no hydroxyl group at C-15 in rubiprasin B, because the γ -gauche substituent effect between 27-CH₃ and 15 α -OH in rubiprasin A disappeared in rubiprasin B. Therefore, rubiprasin B was confirmed to be 3 β -acetoxyoleanane-13 β -ol-12-one. The carbon signals shown in Table I were assigned by comparing with rubiprasin A.

Rubiprasin C: colorless needles (from CHCl₃), mp 171-173°C, showed seven tertiary methyl groups at δ 0.70, 0.86, 0.86, 0.92, 0.95, 0.97 and 1.24⁴), one acetyl group [δ 2.04, and δ 21.12 (q), 170.59 (s)], one carboxyl group (δ 180.86), two secondary hydroxymethine carbon signals [δ 80.85 (d) and 81.30 (d)] and one double bond [δ 5.42 (1H, t, J=3 Hz)⁴) and δ 123.24 (d), 144.92 (s)]. So this compound was assumed to be a 3 β -acetoxyoleanolic acid derivative. The fragment ion peaks at m/z 515 [M+1]⁺, 263 (a characteristic retro-Diels-Alder fragment), 246 [263-H₂0]⁺ and 201 [263-COOH]⁺ (base peak) in the MS suggested that the D or E ring was substituted by one hydroxyl group. It was proved from the 1 H- 1 H COSY spectrum that neighbors of the hydroxymethine (δ 81.30) must be linked to a quarternary carbon and methine [C-C(OH)H-CH]. Furthermore, it appeared that the hydroxyl group was bonded to C-19 as an α -orientation, because the coupling signal with the neighboring proton was a broad singlet due to the vicinal protons' angle of about 90°, and the C-12 and C-13 chemical shifts were scarcely changed in comparison with oleanolic acid, 5) whereas, if the hydroxyl group at C-19 was present as a β -orientation, their chemical shifts would vary more greatly. Consequently, rubiprasin C was confirmed to be $^{3}\beta$ -acetoxy-19 α -hydroxyolean-12-en-28-oic acid. The assignment of each carbon signal is shown in Table I.

Several ursolic acid- and fernane-type triterpenes from <u>Rubia cordifolia</u>, ^{7,8)} and oleanane analogs bearing a ketonic carbonyl group at C-12⁹⁾ or hydroxyl group at C-13¹⁰⁾ have been reported independently. However, oleanane-type triterpenes having oxygen-functions at both positions of C-12 and C-13, rubiprasins A and B, from R. <u>cordifolia</u> var. <u>pratensis</u> were isolated for the first time.

REFERENCES AND NOTES

- 1) The roots of <u>Rubia cordifolia</u> var. <u>pratensis</u> used in this experiment were identified by Prof. Yun-Zhen Guo at Shen Yang College of Pharmacy, Peoples Republic of China.
- H. Eggert, C. L. Van Antwerp, N. S. Bhacca and C. Djerassi, J. Org. Chem., 41, 71 (1976).
 H. Beierbeck and J. K. Saunders, Can. J. Chem., 54, 2985 (1976); ibid., 55, 2813 (1977).
- 3) S. A. Knight, Org. Magn. Res., 6, 603 (1974).
- 4) The $^1\mathrm{H}\text{-NMR}$ spectra for rubiprasins B and C were measured in CDCl_3 .
- 5) S. Seo, Y. Tomita and K. Tori, J. Chem. Soc., Chem. Commun., 954 (1975).
- 6) D. M. Doddrell, P. W. Khong and K. G. Lewis, Tetrahedron Letters, 1974, 2381.
- 7) S. K. Talapatra, A. C. Sarkar and B. Talapatra, Phytochemistry, 20, 1923 (1981).
- 8) M. Arisawa, H. Ueno, M. Nimura, T. Hayashi and N. Morita, Lloydia, 49, 1114 (1986).
- 9) M. J. Begley, L. Crombie, W. M. L. Crombie and D. A. Whiting, J. Chem. Soc. Perkin Trans. 1, 1986, 1905.
- 10) R. Tschesche, S. Sepulveda und T. M. Braun, Chem. Ber., 113, 1754 (1980).

(Received May 1, 1989)