Triazolo [4,5-d] pyrimidines. IX.¹⁾ Reactions of 5-Chloro- and 5-(Methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo [4,5-d] pyrimidines with C-Nucleophiles

Ken-ichi Tanji,* Katsuhisa Yamamoto and Takeo Higashino

School of Pharmaceutical Sciences, University of Shizuoka, 2-2-1 Oshika, Shizuoka 422, Japan. Received November 29, 1988

The nucleophilic substitution of 5-(methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo[4,5-d] pyrimidine (2) with potassium cyanide proceeded smoothly to give 3-phenyl-3H-1,2,3-triazolo[4,5-d] pyrimidine-5-carbonitrile (6), but the same reaction did not take place in the case of 5-chloro-3-phenyl-3H-1,2,3-triazolo[4,5-d] pyrimidine (1).

Compounds 1 and 2 reacted with ethyl cyanoacetate in the presence of sodium hydride in tetrahydrofuran, giving ethyl α -cyano-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-5-acetate (7). When acetone was used as a ketone, it added across the C^7 ,N⁶-double bond, giving 7-acetonyl-5-chloro-6,7-dihydro- (8a) and 7-acetonyl-6,7-dihydro-5-(methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidines (8b), respectively, although the yields were low.

The reaction of 1 with Grignard reagents resulted in the formation of addition products such as 7-alkylated 5-chloro-6,7-dihydro-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines (9a—e). The substitution of the methylsulfonyl group of 2 with Grignard reagents proceeded to give the corresponding 5-alkylated 3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines (11a—e).

Keywords 5-chloro-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine; 5-(methylsulfonyl)-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine; nucleophilic substitution; Grignard reagent; addition reaction; *C*-nucleophile

We reported that chloro²⁾ and *p*-tolylsulfonyl groups²⁾ at the 7-position of the 3H-1,2,3-triazolo[4,5-d]pyrimidine ring could be replaced by C-nucleophiles, resulting in the introduction of functionalized carbons at the 7-position. However, little work has been reported on introducing a functionalized carbon at the 5-position of the 3H-1,2,3-triazolo[4,5-d]pyrimidine ring. In the present paper, we describe the reactions of 5-chloro-(1) and 5-(methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidines (2) with C-nucleophiles.

Compound 2 was easily prepared by the substitution of 1 with sodium methyl sulfide in dimethylformamide (DMF), followed by oxidation with potassium permanganate $(KMnO_4)$ in acetic acid (AcOH).

It was reported³⁾ that the reaction of 1 with O-, N-, and S-nucleophiles gave 5-substituted 3H-1,2,3-triazolo[4,5-d]-pyrimidines. Similarly, compound 2 reacted with sodium methoxide and butylamine to afford 5-methoxy- (4) and 5-butylamino-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (5), respectively.

Then we investigated the reactions of 1 and 2 with C-nucleophiles. We reported²⁾ that the chlorine atom at the 7-position of the 3H-1,2,3-triazolo[4,5-d]pyrimidine ring was replaced by potassium cyanide (KCN) in DMF, giving 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-7-carbonitrile. However, similar substitution did not take place at the 5-position. On the other hand, nucleophilic substitution of the methylsulfonyl group at the 5-position with KCN in DMF

proceeded smoothly at room temperature, yielding 3-phen-yl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-5-carbonitrile (**6**).

It was reported²⁾ that the reactions of 7-chloro- and 7-(ptolylsulfonyl)-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine with active methylene compounds and ketones in the presence of sodium hydride (NaH) in DMF gave the corresponding 7-substituted 3-phenyl-3H-1,2,3-triazolo-[4,5-d]pyrimidine. Similarly, in the reaction with ethyl cyanoacetate as an active methylene compound in the presence of NaH in tetrahydrofuran (THF), compounds 1 and 2 underwent substitution, giving ethyl α-cyano-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-5-acetate (7). On the other hand, application of this nucleophilic substitution to 1 and 2 with acetone as a ketone under the same conditions did not give the anticipated acetonyl compound. However, use of potassium hydroxide (KOH) as a base and dimethyl sulfoxide (DMSO) as a solvent instead of NaH and THF gave the addition products across the C^7 , N^6 -double bond, 7-acetonyl-5-chloro-6,7-dihydro- (8a) and 7-acetonyl-6,7dihydro-5-(methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo-[4,5-d]pyrimidines (8b), respectively, although the yields were low.

We reported⁴⁾ that Grignard reagents added to the C⁷, N⁶-double bond of 3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine, giving corresponding 7-alkylated 6,7-dihydro-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines. Some work has been reported on the reaction of halogenated *N*-heteroarenes with Grignard reagents in the absence of metal

Chart 1

© 1989 Pharmaceutical Society of Japan

phosphine complex⁵⁾ catalysts. Thus, we examined the reaction of 1 with Grignard reagents.

Chart 2

When a solution of 1 and methylmagnesium iodide in THF was refluxed for 2h, the addition of methylmagnesium iodide across the C⁷, N⁶-double bond of 1 was found to occur, giving 5-chloro-6,7-dihydro-7-methyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (9a). A similar addition proceeded in the case of the reaction of 1 with ethyl-, phenyl-, benzyl-, and phenethylmagnesium bromide under the same conditions, giving the corresponding 7-alkylated 5-chloro-6,7-dihydro-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidines (9b—e). Compounds 9a—e were easily aromatized to 7-alkylated 5-chloro-3-phenyl-3H-1,2,3-triazolo-[4,5-d]pyrimidines (10a—e) by oxidation with 2,3-dichloro-4,5-dicyano-p-benzoquinone (DDQ) in THF. It appeared from the above results that 1 undergoes addition of Grignard reagents to the C⁷, N⁶-double bond rather than nucleophilic substitution of the chlorine atom at the 5position.

It is well known that sulfonyl groups of pyridine⁶⁾ and quinoline⁷⁾ rings are replaced by Grignard reagents. Thus, we investigated the reaction of **2** with Grignard reagents.

Chart 3

TABLE I. Yields, Melting Points, and Elemental Analysis for 9 and 10

Compd.	Yield (%)	mp (°C)	Formula	Analysis (%) Calcd (Found)		
				C	Н	N
9a	87	190—191 ^{a)}	C ₁₁ H ₁₀ ClN ₅	53.34	4.07	28.27
		511110	-11103	(53.27)	(4.03)	(28.20)
9b	80	$148 - 150^{b}$	$C_{12}H_{12}CIN_5$	55.07	4.62	26.76
, .	00	1.0 100	0121120113	(55.29)	(4.62)	(26.80)
9c	76	158—161 ^{b)}	$C_{16}H_{12}CIN_5$	62.04	3.90	22.61
,,	, 0	100 101	016111201115	(62.03)	(3.90)	(22.39)
9d	73	$172-173^{a}$	C ₁₇ H ₁₄ ClN ₅	63.06	4.36	21.62
,,,	7.5	172 175	C ₁₇ 11 ₁₄ C114 ₅	(62.78)	(4.35)	(21.38)
9e	76	$100-102^{b}$	$C_{18}H_{16}CIN_5$	64.00	4.77	20.73
,,	70	100—102		(64.25)	(4.78)	(20.61)
10a	88	1246)	$C_{11}H_8ClN_5$	53.78	3.28	28.51
Iva	00	124	C11118C1115	(54.08)	(3.33)	(28.68)
10b	90	$114 - 115^{b}$	$C_{12}H_{10}ClN_5$	55.50	3.88	26.97
100	90	114-115	C ₁₂ H ₁₀ CHV ₅	(55.44)	(3.89)	(26.94)
10c	68	183—187 ^{b)}	C H CIN	62.44	3.28	22.89
100	00	105-107	$C_{16}H_{10}CIN_5$	(62.48)	(3.30)	(22.63)
10d	50	110—111 ^{b)}	$C_{17}H_{12}ClN_5$	63.46	3.76	21.76
104	50			(63.63)	(3.83)	(21.76)
10e	86	99—100 ^{b)}	C H CIN	64.38	4.20	20.86
106	00	33100°	$C_{18}H_{14}CIN_5$	(64.60)	(4.26)	(20.49)

a) Recrystallized from benzene. b) Recrystallized from petroleum benzinbenzene.

TABLE II. Yields, Melting Points, and Elemental Analysis for 11 and 12

Compd.	Yield (%)	mp (°C)	Formula	Analysis (%) Calcd (Found)		
				С	Н	N
11a	76	155—157 ^{a)}	$C_{11}H_{9}N_{5}$	62.55 (62.69)	4.30 (4.36)	33.16 (33.11)
11b	69	75—77 ^{b)}	$C_{12}H_{11}N_5$	63.98 (63.99)	4.92 (4.95)	31.09 (30.88)
11c	35	131—134 ^{b)}	$C_{16}H_{11}N_5$	70.31 (70.55)	4.06 (4.05)	25.63 (25.54)
11d	24	106—107°	$C_{17}H_{13}N_5$	71.06 (71.20)	4.56 (4.54)	24.38 (24.42)
11e	55	105—107°	$C_{18}H_{15}N_5$	71.74 (71.82)	5.02 (5.09)	23.24 (22.88)
12c	12	176—177 ^{c)}	$C_{17}H_{15}N_5O_2S$	57.78 (57.48)	4.28 (4.32)	19.82 (19.51)

a) Recrystallized from petroleum benzin-benzene. b) Recrystallized from petroleum benzin. c) Recrystallized from chloroform.

When a solution of 2 and methylmagnesium iodide in THF was stirred at room temperature for 2h, the substitution proceeded to give 5-methyl-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (11a). Similarly, 2 reacted with ethyl-, benzyl-, and phenethylmagnesium bromide to give 11b, d, e, respectively. On the other hand, in the case of the reaction with phenylmagnesium bromide under the same conditions, both addition across the C⁷, N⁶-double bond and substitution of the methylsulfonyl group at the 5-position occurred, giving 6,7-dihydro-3,7-diphenyl-5-(methylsulfonyl)-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (12c) and 3,5-diphenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (11c), respectively.

We concluded that the methylsulfonyl group at the 5-position of the 3H-1,2,3-triazolo[4,5-d]pyrimidine ring was easily substituted with C-nucleophiles, that is, potassium

cyanide, the carbanion of ethyl cyanoacetate, and Grignard reagents, giving the corresponding 5-substituted 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines. The substitution of the methylsulfonyl group in 2 with *C*-nucleophiles provides a useful method for the introduction of functionalized carbons at the 5-position of the 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine ring.

Experimental

All melting points are uncorrected. Infrared (IR) spectra were measured with a Jasco A-102 diffraction grating IR spectrometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were taken at 60 MHz and 23 °C with a Hitachi R-24B high-resolution ¹H-NMR spectrometer. Chemical shifts are expressed in parts per million (ppm) downfield from tetramethylsilane as an internal standard. The following abbreviations are used; s=singlet, d=doublet, t=triplet, br=broad, q=quartet, m=multiplet.

5-(Methylthio)-3-phenyl-3 \dot{H} -1,2,3-triazolo[4,5-d]pyrimidine (3) A solution of 1³⁾ (2.5 g, 12 mmol) and 15% aqueous NaSMe (10 ml, 22 ml) in DMF (5 ml) was stirred at 60 °C for 1 h. The reaction mixture was poured into water and extracted with benzene. The crude product obtained from the benzene extract was purified by SiO₂ column chromatography using petroleum benzin–benzene to give 3 as colorless needles, mp 119—120 °C. Yield 2 g (70%). Anal. Calcd for C₁₁H₉N₅S: C, 54.30; H, 3.73; N, 28.79. Found: C, 54.63; H, 3.72; N, 28.53. 1 H-NMR (CDCl₃): 2.66 (3H, s, SCH₃), 7.37—7.75 (3H, m, N³-Ph), 8.24—8.31 (2H, m, N³-Ph), 9.28 (1H, s, C⁷-H).

5-(Methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (2) A solution of KMnO₄ (2.6 g, 16.4 mmol) in H₂O (50 ml) was added to a solution of 3 (2.0 g, 8.2 mmol) in AcOH (100 ml). The mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with H₂O, made alkaline with Na₂CO₃, and extracted with benzene. The crude product obtained from the benzene extract was purified by SiO₂ column chromatography using benzene–CHCl₃ (1:1) as an eluant and recrystallized from benzene–CHCl₃ to give 2 as colorless needles, mp 149—150 °C. Yield 1.46 g (65%). Anal. Calcd for C₁₁H₉N₅O₂S: C, 48.00; H, 3.30; N, 25.44. Found: C, 48.47; H, 3.33; N, 25.27. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1120, 1305 (SO₂). ¹H-NMR (CDCl₃): 3.45 (3H, s, SO₂CH₃), 7.41—7.67 (3H, m, N³-Ph), 8.08—8.24 (2H, m, N³-Ph), 9.64 (1H, s, C⁷-H).

5-Methoxy-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (4) A solution of 2 (150 mg, 0.55 mmol) and NaOMe (30 mg, 0.55 mmol) in MeOH (15 ml) was stirred at room temperature for 1 h. The solvent was removed under reduced pressure. The residue was diluted with H₂O and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was recrystallized from petroleum benzin-benzene to give 4 as colorless needles, mp 94—95 °C (lit.³⁾ mp 98—99 °C). Yield 120 mg (97%). ¹H-NMR (CDCl₃): 4.14 (3H, s, OCH₃), 7.38—7.65 (3H, m, N³-Ph), 8.10—8.28 (2H, m, N³-Ph), 9.41 (1H, s, C⁷-H).

5-Butylamino-3-phenyl-3*H***-1,2,3-triazolo[4,5-***d***]pyrimidine (5) A solution of 2** (150 mg, 0.55 mmol) and butylamine (41 mg, 0.55 mmol) in CHCl₃ (5 ml) was refluxed for 30 min. The mixture was diluted with H₂O and extracted with CHCl₃. The CHCl₃ extract was washed with 2 n HCl. The crude product obtained from the CHCl₃ extract was recrystallized from CHCl₃ to give **5** as colorless needles, mp 149—150 °C. Yield 125 mg (86%). *Anal.* Calcd for C₁₄H₁₆N₆: C, 62.66; H, 6.02; N, 31.32. Found: C, 62.47; H, 6.03; N, 31.22. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3250 (NH). ¹H-NMR (CDCl₃): 0.84—1.17 (3H, m, NHCH₂)₃CH₃), 1.28—1.78 (4H, m, NHCH₂(CH₂)₂CH₃), 3.35—3.66 (2H, m, NHCH₂(CH₂)₂CH₃), 5.62—6.18 (1H, br, NH), 7.25—7.61 (3H, m, N³-Ph), 8.05—8.21 (2H, m, N³-Ph), 8.95 (1H, s, C³-H).

3-Phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-5-carbonitrile (6) A solution of 2 (200 mg, 0.72 mmol) and KCN (95 mg, 1.44 mmol) in DMF (5 ml) was stirred at room temperature for 1.5 h. The mixture was diluted with $\rm H_2O$ and extracted with benzene. The crude product obtained from the benzene extract was recrystallized from benzene to give 6 as a yellow solid, mp 172—173 °C. Yield 156 mg (96%). *Anal.* Calcd for $\rm C_{11}H_6N_6$: C, 59.45; H, 2.72; N, 37.82. Found: C, 59.65; H, 2.79; N, 38.00. $\rm ^1H$ -NMR (CDCl₃): 7.36—7.79 (3H, m, N³-Ph), 7.94—8.33 (2H, m, N³-Ph), 9.63 (1H, s, C³-H).

Ethyl α -Cyano-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-5-acetate (7) 1) A solution of 1 (116 mg, 0.5 mmol), ethyl cyanoacetate (113 mg, 1 mmol), and 60% (in oil) NaH (40 mg, 1 mmol) in DMF (3 ml) was stirred at room temperature for 3 h. The mixture was diluted with H_2O , neutralized with AcOH, and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was purified by SiO₂ column

chromatography using CHCl $_3$ -MeOH (100:1) and recrystallized from benzene–MeOH to give 7 as pale yellow needles, mp 280—282 °C. Yield 105 mg (62%). Anal. Calcd for $C_{15}H_{12}N_6O_2 \cdot H_2O$: C, 55.21; H, 4.32; N, 25.76. Found: C, 55.41; H, 3.95; N, 26.10. IR $v_{\rm max}^{\rm KBr}$ cm $^{-1}$: 1695 (C=O), 2140 (CN). 1 H-NMR (DMSO- d_6): 1.31 (3H, t, J=7.0 Hz, OCH $_2$ CH $_3$), 4.23 (2H, q, J=7.0 Hz, OCH $_2$ CH $_3$), 7.38—7.89 (6H, m, N^3 -Ph and CH $_3$ CO $_2$ Et), 8.82 (1H, s, C^7 -H).

2) A mixture of 2 (200 mg, 0.73 mmol), ethyl cyanoacetate (165 mg, 1.46 mmol), 60% (in oil) NaH (58 mg, 1.46 mmol), and DMF (5 ml) was stirred at room temperature for 3h. The same work-up of the reaction mixture as described for 7 under item 1) gave 7 in 93% yield (210 mg).

7-Acetonyl-5-chloro-6,7-dihydro-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (8a) A solution of 1 (232 mg, 1 mmol), acetone (87 mg, 1.5 mmol), and KOH (86 mg, 1.5 mmol) in DMSO (5 ml) was stirred at 40°C for 5 h. The reaction mixture was diluted with H_2O , neutralized with AcOH, and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was purified by SiO₂ column chromatography. The fraction eluted from benzene gave 1. Recovery, 35 mg (15%). The fraction eluted from CHCl₃ gave 8a as pale yellow needles, mp 192—193 °C. Yield 26 mg (9%). *Anal.* Calcd for $C_{13}H_{13}ClN_5O$: C, 53.70; H, 4.51; N, 24.09. Found: C, 53.98; H, 4.18; N, 24.19. IR $\nu^{\text{KBr}}_{\text{max}}$ cm⁻¹: 1690 (C=O), 3200 (NH). ¹H-NMR (CDCl₃): 2.22 (3H, s, CH₂COCH₃), 3.09 (1H, d, d, J=19.0, 2.4 Hz, CH₂COCH₃), 3.48 (1H, d, d, J=19.0, 10.0 Hz, CH₂COCH₃), 5.59 (1H, d, d, J=2.4, 10.0 Hz, C⁷-H), 6.34—6.66 (1H, br, NH), 7.24—7.50 (3H, m, N³-Ph), 7.62—7.88 (2H, m, N³-Ph).

7-Acetonyl-6,7-dihydro-5-(methylsulfonyl)-3-phenyl-3H-1,2,3-triazolo-[4,5-d]pyrimidine (8b) A solution of 2 (150 mg, 0.55 mmol), acetone (47 mg, 0.83 mmol), and KOH (46 mg, 0.83 mmol) in DMSO (5 ml) was stirred at room temperature for 3 h. The mixture was diluted with H_2O , neutralized with AcOH, and extracted with CHCl₃. The crude product

TABLE III. IR and ¹H-NMR Spectral Data for 9a-e

Compd.	$IR v_{max}^{KBr} (cm^{-1})$	1 H-NMR (CDCl ₃) δ
9a	3320 (NH)	1.68 (3H, d, $J = 7.0 \text{ Hz}$, CH ₃), 5.30 (1H, dq,
		J=7.0 Hz, J=3.8 Hz, C ⁷ -H), 6.51—6.79 (1H, br, NH), 7.29—7.65 (3H, m, N ³ -Ph), 7.80—7.97 (2H, m, N ³ -Ph)
9b	3160 (NH)	1.02 (3H, t, $J=7.0$ Hz, CH_2CH_3), 1.73—
		2.21 (2H, m, CH_2CH_3), 5.10 (1H, t, $J = 4.0 \text{ Hz}$, C^7 -H), 6.45—6.90 (1H, br, NH),
		7.23—7.56 (3H, m, N ³ -Ph), 7.70—7.79 (2H,
		m, N ³ -Ph)
9c	3150 (NH)	5.99 (1H, d, $J=2.0$ Hz, C^7 -H), 6.18—6.91
		(1H, br, NH), 7.21—7.55 (8H, m, N ³ -Ph
	2150 (2177)	and C ⁷ -Ph), 7.71—7.93 (2H, m, N ³ -Ph)
9 d	3150 (NH)	3.90 (1H, dd, $J = 14.0$, 3.2 Hz, CH ₂ Ph), 3.47
		(1H, dd, $J = 14.0 8.8 \text{Hz}$, $C\underline{H}_2\text{Ph}$), 5.42 (1H, dd, $J = 3.2, 8.8 \text{Hz}$, C^7 -H), 6.09—6.35 (1H,
		br, NH), 6.96—7.60 (8H, m, N ³ -Ph and
		CH ₂ Ph), 7.67—7.89 (2H, m, N ³ -Ph)
9e	3200 (NH)	$2.06-2.97$ (4H, m, CH_2CH_2Ph), $5.00-5.28$
		$(1H, m, C^7-H), 6.25-6.50 (1H, br, NH),$
		6.96—7.55 (8H, m, N^3 -Ph and C_2H_4 Ph),
		7.67—7.89 (2H, m, N ³ -Ph)

TABLE IV. 1H-NMR Spectral Data for 10a-e

Compd.	1 H-NMR (CDCl $_{3}$) δ
10a	2.88 (3H, s, CH ₃), 7.20—7.65 (3H, m, N ³ -Ph), 7.83—8.13 (2H, m, N ³ -Ph)
10b	1.54 (3H, t, $J = 7.0$ Hz, CH_2CH_3), 3.38 (2H, q, $J = 7.0$ Hz, CH_2CH_3), 7.35—7.79 (3H, m, N^3 -Ph), 7.96—8.34 (2H, m, N^3 -Ph)
10c	7.30—7.69 (5H, m, C ⁷ -Ph), 7.97—8.30 (3H, m, N ³ -Ph), 8.74—8.99 (2H, m, N ³ -Ph)
10d	4.56 (2H, s, CH ₂ Ph), 7.07—7.65 (8H, m, N ³ -Ph and CH ₂ Ph), 7.88—8.15 (2H, m, N ³ -Ph)
10e	3.12—3.82 (4H, m, CH ₂ CH ₂ Ph), 7.24 (5H, s, CH ₂ CH ₂ Ph), 7.38—7.80 (3H, m, N ³ -Ph), 7.97—8.28 (2H, m, N ³ -Ph)

TABLE V. IR and 1H-NMR Spectral Data for 11 and 12

Compd.	IR $v_{\text{max}}^{\text{KBr}}$ (cm ⁻¹)	1 H-NMR (CDCl ₃) δ
11a		2.88 (3H, s, CH ₃), 7.30—7.78 (3H, m, N ³ -
11b		Ph), 8.01—8.25 (2H, m, N³-Ph), 9.38 (1H, s, C^7 -H) 1.46 (3H, t, J =7.0 Hz, CH_2CH_3), 3.17 (2H, q, J =7.0 Hz, CH_2CH_3), 7.27—7.65 (3H, m, N³-Ph), 8.03—8.31 (2H, m, N³-Ph), 9.39
11c		(1H, s, C ⁷ -H) 7.08—7.60 (6H, m, N ³ -Ph and C ⁵ -Ph), 8.02—8.42 (4H, m, N ³ -Ph and C ⁵ -Ph), 9.34
11d		(1H, s, C ⁷ -H) 4.45 (2H, s, CH ₂ Ph), 7.05—7.78 (8H, m, N³-Ph and CH ₂ Ph), 8.00—8.43 (2H, m, N³-
11e		Ph), 9.45 (1H, s, C ⁷ -H) 2.71—3.80 (4H, m, CH ₂ CH ₂ Ph), 7.17 (5H, s, CH ₂ CH ₂ Ph), 7.34—7.67 (3H, m, N ³ -Ph), 8.05—8.23 (2H, m, N ³ -Ph), 9.42 (1H, s,
12c	1130 (SO ₂) 1300 (SO ₂) 3270 (NH)	C ⁷ -H) 3.12 (3H, s, SO ₂ CH ₃), 6.22 (1H, d, J = 2.0 Hz, C ⁷ -H), 7.22—7.50 (9H, m, N³-Ph, C ⁷ -Ph, and NH), 7.72—7.95 (2H, m, N³-Ph)

obtained from the CHCl₃ extract was purified by SiO₂ column chromatography using CHCl₃ as an eluant and recrystallized from benzene to give **8b** as a colorless solid, mp 163—165 °C. Yield 25 mg (14%). *Anal.* Calcd for $C_{14}H_{15}N_5O_3S$: C, 50.44; H, 4.54; N, 21.01. Found: C, 50.26; H, 4.46; N, 20.87. IR $\nu_{\rm KBr}^{\rm KBr}$ cm⁻¹: 1130, 1310 (SO₂), 1700 (C=O). ¹H-NMR (CDCl₃): 2.22 (3H, s, CH₂COCH₃), 2.61—3.80 (2H, m, CH₂COCH₃), 3.16 (3H, s, SO₂CH₃), 5.51—5.80 (1H, br, C⁷-H), 7.25—7.66 (4H, m, N³-Ph and NH), 7.70—8.01 (2H, m, N³-Ph).

General Procedure for the Reaction of 1 with Grignard Reagents A solution of 1 (232 mg, 1 mmol) and Grignard reagent (2 mmol) in THF

(10 ml) was refluxed for 3 h. The solvent was removed under reduced pressure. The residue was diluted with a mixture of 28% NH₄OH-NH₄Cl-H₂O (1:1:5) and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was purified by SiO₂ column chromatography using CHCl₃ as an eluant and recrystallized from the appropriate solvent shown in Table I to give 9a-e.

General Procedure for the Oxidation of 9 with DDQ A solution of 9 (0.47 mmol) and DDQ (0.55 mmol) in THF (4 ml) was stirred at room temperature for 2 h. The solvent was removed under reduced pressure. The residue was diluted with H₂O and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was purified by SiO₂ column chromatography using benzene-CHCl₃ (1:1) as an eluant and recrystallized from petroleum benzin-benzene to give 10a—e.

General Procedure for the Reaction of 2 with Grignard Reagents A solution of 2 (275 mg, 1 mmol) and Grignard reagent (1.5 mmol) in THF (10 ml) was stirred at room temperature for 3 h. The solvent was removed under reduced pressure. The residue was diluted with a mixture of 28% NH₄OH-NH₄Cl-H₂O (1:1:5) and extracted with CHCl₃. The crude product obtained from the CHCl₃ extract was purified by SiO₂ column chromatography. The fraction eluted from benzene gave 11a—e. The fraction from CHCl₃ gave 12c.

References

- 1) Part VIII: T. Higashino, M. Takemoto, A. Miyashita and E. Hayashi, *Chem. Pharm. Bull.*, 33, 1395 (1985).
- T. Higashino, T. Katori, H. Kawaraya and E. Hayashi, Chem. Pharm. Bull., 28, 337 (1980).
- S S Pharmaceutical Co., Ltd., Japan. Patent 5962594 (1984) [Chem. Abstr., 101, P72754 (1984)].
- 4) T. Higashino, T. Katori, S. Yoshida and E. Hayashi, *Chem. Pharm. Bull.*, 27, 3176 (1979).
- a) H. Yamanaka, K. Edo, F. Shoji, S. Konno, T. Sakamoto and M. Mizugaki, *Chem. Pharm. Bull.*, 26, 2160 (1978); b) D. E. Bergstrom and P. A. Reday, *Tetrahedron Lett.*, 23, 419 (1982).
- N. Furukawa, M. Tsuruoka and H. Fujihara, Heterocycles, 24, 3337 (1986).
- 7) E. Hayashi and T. Saito, Yakugaku Zasshi, 89, 74 (1969).