Total Synthesis of a Xanthonolignoid, Kielcorin

Hitoshi Tanaka, Masaya Ishihara, Kazuhiko Ichino, Norihiro Ohiwa and Kazuo Ito*

Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya 468, Japan. Received November 30, 1988

The reaction of 3-benzyloxy-4-hydroxy-2-methoxyxanthone with ethyl 2-bromo-3-(4-benzyloxy-3-methoxyphenyl)-3-oxopropionate in the presence of potassium tert-butoxide afforded the condensation product (8) which was converted to the debenzylation product (9) by hydrogenolysis. Reduction of 9 with lithium borohydride followed by treatment of resulting alcohols (10a, b) with concentrated hydrochloric acid in acetic acid provided kielcorin.

Keywords xanthonolignoid; xanthone; kielcorin; benzodioxane; Guttiferae; cis-kielcorin

Xanthonolignoids are a new class of natural products and to data five compounds (kielcorin, 1^{a-c}) kielcorin B, 1^{d}) cadensin $A^{(1a,c)}$ cadensin $B^{(1a,c)}$ and cadensin $C^{(1c)}$) have been isolated from the plant kingdom. These materials possess a novel skeleton in which a phenylpropane unit is linked to a xanthone nucleus through a dioxane bridge.²⁾ The xanthonolignoid, kielcorin (1), has been isolated^{1a)} from several species of Kielmeyera (K. coriacea, K. corymbosa, K. speciosa, K. ferruginosa and K. rubriflora) (Guttiferae) and has also been found^{1b)} in several Hypericum (H. androsaemum, H. calycinum, H. maculatum and H. perforatum) (Guttiferae). The structure was proposed^{1b)} (1) on the basis of spectroscopic studied. Gottlieb et al. 1d) have recently accomplished the synthesis of kielcorin in low yield by oxidative coupling of 3,4-dihydroxy-2-methoxyxanthone and coniferyl alcohol with silver oxide.

Herein, we wish to describe a facile synthesis of kielcorin (1) from readily available materials (3-benzyloxy-4-hydroxy-2-methoxyxanthone (6) and ethyl 2-bromo-3-(4benzyloxy-3-methoxyphenyl)-3-oxopropionate (7)).

The starting material (6) was synthesized by benzylation of 4-formyl-3-hydroxy-2-methoxyxanthone (4),4) followed by treatment with m-chloroperbenzoic acid in CH₂Cl₂ (the Baeyer-Villiger reaction). Compound 6 was then condensed with 7⁵⁾ in acetonitrile in the presence of potassium tertbutoxide to give 8 in 74% yield; this product was subjected to catalytic hydrogenation, affording a debenzylation product (9). Reduction of 9 with lithium borohydride in tetrahydrofuran (THF) at 0 °C provided an inseparable mixture of alcohols (10a, b).6)

Acetylation of the alcohols (10a, b) followed by separation of resulting tetraacetates (11a, b) using preparative high-performance liquid chromatography (HPLC) gave 11a as the major product and 11b as a minor product. The structural assignment of 11a, b was made on the basis of their spectral data. The high-resolution mass spectra (MS) of 11a, b indicated the same molecular formula $C_{32}H_{30}O_{13}$. In the proton nuclear magnetic resonance (¹H-NMR) spectrum of 11a, the signal of the methine proton at the C-1" position was observed as a doublet at δ 6.20, whose coupling constant was 4.4 Hz. On the other hand, the same proton signal in 11b appeared as a doublet at δ 6.27 (J=7.1 Hz). It is known⁷⁾ that the vicinal coupling constant of the threo form is larger than that of the erythro form and hence the signal at δ 6.20 was attributed to the *erythro* isomer (11a), and 11b was assigned as the three isomer. The ratio of the erythro and threo isomers was about 8.3:1 on the basis of the ¹H-NMR spectral analysis (11a, b).

The mixture of 10a, b cyclized upon heating in acetic acid

in the presence of concentrated hydrochloric acid to furnish kielcorin (1) (30% yield) and cis-kielcorin (3) (3% yield).

Chart 1

This synthetic kielcorin (1) was identical with an authentic specimen^{1d)} by direct comparison of the spectral data (infrared (IR), MS, ¹H-NMR and ¹³C-NMR). The IR and MS spectra of cis-kielcorin were similar to those of kielcorin (1). However, in the ¹H-NMR spectrum, the methine proton signal at C-3 was observed as a doublet at δ 5.42 with 3.0 Hz, demonstrating cis orientation of the benzodioxane moiety and therefore this compound is represented by the formula 3.

Experimental

All melting points are uncorrected. Column chromatography was run on Merck silica gel 60 (70—230 mesh). Thin layer chromatography (TLC) was performed on glass plates precoated with Kieselgel 60 F_{254} (Merck). MS were recorded on a Hitachi M-52 spectrometer and high-resolution MS on a Hitachi M-80 spectrometer. IR spectra were obtained on a JASCO IR-810 spectrophotometer. $^1\text{H-NMR}$ spectra were recorded on a JEOL JNM-GX-270 and $^{13}\text{C-NMR}$ spectra on a JEOL JNM-FX-100 spectrometer with tetramethylsilane as an internal standard. Chemical shifts are quoted in parts per million (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, br=broad).

4-Formyl-3-benzyloxy-2-methoxyxanthone (5) A mixture of **4**⁴⁾ (540 mg), benzyl chloride (455 mg), and anhydrous K_2CO_3 (966 mg) in dry dimethylformamide (DMF) (20 ml) was heated with stirring at 140 °C for 1 h. After cooling, the reaction mixture was poured into ice-water and extracted with CHCl₃. The CHCl₃ layer was washed with water, dried over Na₂SO₄, and evaporated. The crude solid was recrystallized from MeOH–CHCl₃ to give **5** as colorless needles (527 mg, 73%). mp 159 °C. *Anal.* Calcd for $C_{22}H_{16}O_5$: C, 73.33; H, 4.48. Found: C, 73.02; H, 4.53. Ms m/z: 360 (M⁺), 332, 269, 268, 254, 240, 226, 213, 170. IR (CHCl₃): 1700, 1650, 1620, 1605 cm⁻¹. ¹H-NMR (CDCl₃) δ: 4.05 (3H, s, OCH₃), 5.36 (2H, s, OCH₂Ph), 7.33—7.45 (6H, m, C_7 -H and 5 × aromatic protons), 7.56 (1H, dd, J=0.7, 8.4 Hz, C_5 -H), 7.72 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_6 -H), 8.00 (1H, s, C_1 -H), 8.30 (1H, dd, J=1.7, 8.1 Hz, C_8 -H), 10.49 (1H, s, CHO).

3-Benzyloxy-4-hydroxy-2-methoxyxanthone (6) A mixture of 5 (1.0 g) and m-chloroperbenzoic acid (720 mg) in CH₂Cl₂ (60 ml) was refluxed under a nitrogen atmosphere for 6 h. After cooling, the solvent was removed and the residue was dissolved in AcOEt. The AcOEt solution was washed with 5% NaHCO₃ and brine, and evaporated to afford an ester compound as a pale yellow solid. The ester compound was dissolved in a mixture of 10% KOH (5.0 ml), MeOH (120 ml) and CHCl₃ (30 ml). The mixture was heated at 90 °C for a few minutes, and then ice-water was added. The reaction mixture was neutralized with HCl and extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated. The crude solid was recrystallized from benzene to give 6 as colorless needles (802.6 mg, 83%). mp 177 °C. Anal. Calcd for $C_{21}H_{16}O_5$: C, 72.41; H, 4.63. Found: C, 72.37; H, 4.59. MS m/z: 348 (M⁺), 333, 258, 243, 229, 215. IR (CHCl₃): 3520, 1660, 1620, 1615, 1600 cm⁻¹. ¹H-NMR (CDCl₃) δ : 4.02 (3H, s, OCH₃), 5.27 (2H, s, OCH₂Ph), 5.96 (1H, s, OH), 7.34—7.45 (7H, m, C_1 -H, C_7 -H and $5 \times$ aromatic protons), 7.55 (1H, dd, J=0.7, 8.4 Hz, C_5 -H), 7.70 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_6 -H), 8.34 (1H, dd, $J = 1.7, 8.1 \text{ Hz}, C_8 - \text{H}$).

Ethyl 2-[3-Benzyloxy-2-methoxy-9-oxo-4-xanthenyloxy]-3-(4-benzyloxy-3-methoxyphenyl)-3-oxopropionate (8) A solution of 7⁵⁾ (234 mg) in acetonitrile (5.0 ml) was added dropwise to a mixture of 6 (100 mg) and potassium tert-butoxide (96.6 mg) in acetonitrile (20 ml). The mixture was stirred at room temperature for 50 min and then poured into ice-water. The reaction mixture was extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (benzene-AcOEt (10:1)) to give 8 as a yellow oil (143.3 mg, 74%). High-resolution MS m/z: 674.2150 Calcd for $C_{40}H_{34}O_{10}$ (M⁺). Found: 674.2148. MS m/z: 674 (M⁺), 583, 417, 416, 414, 371, 346, 331, 328, 269, 258, 241, 225. IR (CHCl₃): 3030, 1715, 1680, 1650, 1615, 1600 cm⁻¹. ¹H-NMR (CDCl₂) δ : 1.12 (3H, t, J = 7.1 Hz, OCH₂CH₃), 3.89, 3.94 (6H, $2 \times s$, $2 \times OCH_3$), 4.17 (2H, q, J = 7.1 Hz, OC $\underline{\text{H}}_2\text{CH}_3$), 5.19, 5.20 (4H, $2 \times \text{s}$, $2 \times \text{OC}\underline{\text{H}}_2\text{Ph}$), 5.81 (1H, s, $C_{2''}$ -H), 6.84 (1H, d, J=8.4 Hz, $C_{5'}$ -H), 7.07 (1H, dd, J=0.7, 8.4 Hz, C_5 -H), 7.27—7.45 (11H, m, C_7 -H and $10 \times$ aromatic protons), 7.54 (1H, s, C_1 -H), 7.60 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_6 -H), 7.64 (1H, d, $J=2.0 \text{ Hz}, C_2-H), 7.75 \text{ (1H, dd, } J=2.0, 8.4 \text{ Hz}, C_6-H), 8.28 \text{ (1H, dd, } J=2.0, 8.4 \text{ Hz}, C_6-H)$ $J = 1.7, 8.1 \text{ Hz}, C_8 \text{-H}$).

Ethyl 2-[3-Hydroxy-2-methoxy-9-oxo-4-xanthenyloxy]-3-(4-hydroxy-3-methoxyphenyl)-3-oxopropionate (9) A mixture of 8 (22 mg) and 5% Pd-C (2 mg) in MeOH (4.0 ml) was stirred under a hydrogen atmosphere at room temperature for 3 h. Then the catalyst was filtered off and the filtrate was evaporated. The residue was recrystallized from benzene to give 9 as colorless needles (14.4 mg, 89%). mp 127—128 °C. *Anal.* Calcd for $C_{26}H_{22}O_{10}$: C, 63.16; H, 4.48. Found: C, 63.95; H, 4.46. MS m/z: 494 (M⁺), 448, 258, 243, 238, 215. IR (CHCl₃): 3520, 1710, 1680, 1650, 1610 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.24 (3H, t, J=7.1 Hz, OCH₂CH₃), 4.00 (6H, s, 2×OCH₃), 4.34 (2H, q, J=7.1 Hz, OCH₂CH₃), 5.75 (1H, s, C_{27} -

H), 6.27 (1H, s, OH), 7.01 (1H, d, J=8.4 Hz, C_5 -H), 7.22 (1H, dd, J=0.7, 8.4 Hz, C_5 -H), 7.37 (1H, ddd, J=0.7, 7.4, 8.1 Hz, C_7 -H), 7.54 (1H, s, C_1 -H), 7.65 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_6 -H), 7.74 (1H, d, J=2.0 Hz, C_2 -H), 7.82 (1H, dd, J=2.0, 8.4 Hz, C_6 -H), 8.31 (1H, dd, J=1.7, 8.1 Hz, C_8 -H), 9.03 (1H, s, OH).

1-(4-Hydroxy-3-methoxyphenyl)-2-[3-hydroxy-2-methoxy-9-oxo-4-xanthenyloxy]propane-1,3-diol (10a, b) A solution of LiBH₄ (90 mg) in dry THF (15 ml) was added gradually to a solution of 9 (300 mg) in dry THF (15 ml) at 0 °C. The mixture was stirred at room temperature for 15 min and then poured into ice-water. The reaction mixture was neutralized with dilute HCl, and extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (CHCl₃-MeOH (10:1)) to give 10a, b as an amorphous powder (100.6 mg, 37%). IR (KBr): 3300, 1650, 1620 cm⁻¹.

1,3-Diacetoxy-1-(4-acetoxy-3-methoxyphenyl)-2-[3-acetoxy-2-methoxy-9-oxo-4-xanthenyloxy]propane (11a, b) A mixture of 10a, b (24.5 mg), acetic anhydride (2.0 ml), and pyridine (2.0 ml) was stirred at room temperature for 4 h. The reaction mixture was poured into ice-water and then extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (benzene–AcOEt (10:1)) and recrystallized from MeOH to give 11a (11.5 mg). The mother liquid gave two peaks at t_R 22.8 min (11b) and 23.6 min (11a) on HPLC [conditions: column, YMC-Pack A-302 (ODS), 4.6 × 150 mm: flow rate, 1.0 ml/min; detector, UV 254 nm; solvent, acetonitrile–MeOH–water (2:1.5:2); instrument, JASCO TR1 ROTAR-II] yielding erythro-1,3-diacetoxy-1-(4-acetoxy-3-methoxy-phenyl)-2-[3-acetoxy-2-methoxy-9-oxo-4-xanthenyloxy]propane (11a) (9.6 mg) and threo-1,3-diacetoxy-1-(4-acetoxy-3-methoxyphenyl)-2-[3-acetoxy-2-methoxy-9-oxo-4-xanthenyloxy]propane (11b) (2.2 mg)].

11b: Colorless prisms. mp 168—170 °C (from MeOH). High-resolution MS m/z: 622.1684 Calcd for $C_{32}H_{30}O_{13}$ (M+). Found: 622.1711. MS m/z: 622 (M+), 580, 520, 478, 418, 343, 323, 301, 300, 258, 222. IR (CHCl₃): 1760, 1740, 1660, 1620 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.87, 1.94, 2.31, 2.32 (12H, 4×s, 4×OAc), 3.83, 3.95 (6H, 2×s, 2×OCH₃), 4.14 (1H, dd, J=5.7, 12.1 Hz, C_{3} ····H), 4.37 (1H, dd, J=3.7, 12.1 Hz, C_{3} ····H), 4.92 (1H, ddd, J=3.7, 5.7, 7.1 Hz, C_{2} ····H), 6.27 (1H, d, J=7.1 Hz, C_{1} ·····H), 7.03 (3H, br s, C_{2} ····H, C_{5} ···H and C_{6} ···H), 7.41 (1H, ddd, J=0.7, 7.4, 8.1 Hz, C_{7} ···H), 7.52 (1H, dd, J=0.7, 8.4 Hz, C_{5} ··H), 7.60 (1H, s, C_{1} ···H), 7.76 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_{6} ··H), 8.35 (1H, dd, J=1.7, 8.1 Hz, C_{8} ··H).

(25*,35*)-2-Hydroxymethyl-3-(4-hydroxy-3-methoxyphenyl)-5-methoxydioxano[2,3-c]xanthen-7-one (Kielcorin (1)) and (2R*,3S*)-2-Hydroxymethyl-3-(4-hydroxy-3-methoxyphenyl)-5-methoxydioxano[2,3-c]xanthen-7-one (cis-Kielcorin (3)) A mixture of 10a, b (110 mg) and 35% HCl (6.0 ml) in acetic acid (6.0 ml) was heated at 60°C for 5 min. After cooling, the reaction mixture was poured into ice-water, and then extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated to give a pale yellow oil. The oil was chromatographed on a silica gel column using CHCl₃-MeOH (10:1) to give 1 (32 mg, 30%) and 3 (2.7 mg, 3%).

1: Colorless needles. mp 250—251 °C (from MeOH–CHCl₃) (lit., 1d) mp 250—251 °C). High-resolution MS m/z: 436.1157 Calcd for $C_{24}H_{20}O_8$ (M $^+$). Found: 436.1131. This compound was identical with an authentic sample 1d) by direct comparison of various spectra (IR, MS and 1 H-NMR).

3: Amorphous powder. High-resolution MS m/z: 436.1157 Calcd for $C_{24}H_{20}O_8$ (M $^+$). Found: 436.1184. MS m/z: 436 (M $^+$), 418, 299, 258, 243, 228, 215, 180. IR (CHCl₃): 3550, 1650, 1620, 1610 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 3.70 (1H, m, CH₂OH), 3.85 (1H, m, CH₂OH), 3.89, 3.99 (6H, 2×s, 2×OCH₃), 4.73 (1H, ddd, J=3.0, 4.0, 8.4 Hz, C_2 -H), 5.42 (1H, d, J=3.0 Hz, C_3 -H), 5.68 (1H, s, OH), 6.92—6.94 (3H, m, C_2 -H, C_5 -H and C_6 -H), 7.40 (1H, ddd, J=0.7, 7.4, 8.1 Hz, C_9 -H), 7.41 (1H, s, C_6 -H), 7.59 (1H, dd, J=0.7, 8.4 Hz, C_{11} -H), 7.72 (1H, ddd, J=1.7, 7.4, 8.4 Hz, C_{10} -H), 8.37 (1H, dd, J=1.7, 8.1 Hz, C_8 -H).

 $(2S^*,3S^*)$ -2-Acetoxymethyl-3-(4-acetoxy-3-methoxyphenyl)-5-methoxydioxano[2,3-c]xanthen-7-one (Diacethylkielcorin (2)) A mixture of kiel-

corin (1) (30 mg), acetic anhydride (1.0 ml), and pyridine (1.0 ml) was stirred at room temperature overnight. The reaction mixture was poured into ice-water and then extracted with AcOEt. The AcOEt layer was washed with water, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (CHCl₃-hexane-acetone (20:10:1)) and recrystallized from MeOH-CHCl₃ to give 2 as colorless needles (35 mg, 98%). mp 204—206 °C (lit., $^{1\circ}$ mp 203—206 °C). Highresolution MS m/z: 520.1368 Calcd for $\rm C_{28}H_{24}O_{10}$ (M $^+$). Found 520.1357. This compound was identical with an authentic sample $^{1\circ}$ by direct comparison (TLC and various spectra).

Acknowledgements The authors are grateful to Professor F. D. Monache, Universitá Cattolica, Rome, Italy, for a generous gift of natural kielcorin diacetate. The authors also wish to thank Professor Madalena M. M. Pinto, Universidade do Porto, Portugal, for providing synthetic kielcorin and the spectra (IR, ¹H-NMR and ¹³C-NMR).

References and Notes

1) a) J. F. Castelão Jr, O. R. Gottlieb, R. A. De Lima, A. A. L.

- Mesquita, H. E. Gottlieb and E. Wenkert, *Phytochemistry*, **16**, 735 (1977); b) H. Nielsen and P. Arends, *ibid.*, **17**, 2040 (1978); c) F. D. Monache, M. M. M-Quhae, G. D. Monache, G. B. M. Bettolo and R. A. De Lima, *ibid.*, **22**, 227 (1983); d) M. M. De M. Pinto, A. A. L. Mesquita and O. R. Gottlieb, *ibid.*, **26**, 2045 (1987).
- We have previously reported convenient syntheses of naturally occurring benzodioxanes (flavonolignan (silybin)^{3a)} and coumarinolignoids^{3b)}) for testing for biological activities.
- a) H. Tanaka, M. Shibata, K. Ohira and K. Ito, *Chem. Pharm. Bull.*,
 33, 1419 (1985); b) H. Tanaka, M. Ishihara, K. Ichino and K. Ito,
 ibid., 36, 3833 (1988), and references cited therein.
- 4) O. R. Gottlieb, A. A. L. Mesquita, G. G. De Oliveira and M. T. De Melo, *Phytochemistry*, **9**, 2537 (1970); A. J. Quillinan and F. Scheinmann, *J. Chem. Soc.*, *Perkin Trans.* 1, **1973**, 1329.
- G. E. Miksche, J. Gratzl and M. F. Matzka, *Acta Chem. Scand.*, 20, 1038 (1966).
- 6) The mixture of 10a, b showed one spot on TLC in a variety of solvent systems.
- 7) R. A. Auerbach and C. A. Kingsbury, *Tetrahedron*, **27**, 2069 (1971), and references cited therein.