Condensed Thienopyrimidines. II.¹⁾ Synthesis and Gastric Antisecretory Activity of Thiazole and Polymethylene Condensed Thienopyrimidine Derivatives

Mitsuo Sugiyama, ^a Toshiaki Sakamoto, ^a Keiichi Tabata, ^b Kazuo Endo, ^b Keiichi Ito, ^b Mitsuko Kobayashi ^b and Hiroshi Fukumi*. ^a

Medicinal Chemistry Research Laboratories^a and Biological Research Laboratories,^b Sankyo Co., Ltd., 1–2–58 Hiromacni, Shinagawa-ku, Tokyo 140, Japan. Received February 10, 1989

Thiazolo[3,2-a]thieno[3,2-d]-, [3,4-d]- and [2,3-d]pyrimidin-5-one derivatives (6, 11 and 16), and polymethylene condensed thieno[3,2-d]-, [3,4-d]- and [2,3-d]pyrimidin-5-one derivatives (19—21), in which the oxygen atom of the oxazolidine moiety in 3 was replaced by a sulfur atom or methylene groups, were synthesized and evaluated for gastric antisecretory activity in pylorus-ligated rats. The structure-activity relationships of these compounds are discussed.

Keywords aminothiophenecarboxylate; thiophosgene; thiazolothienopyrimidine; lactam; polymethylene condensed thienopyrimidine; gastric antisecretory activity; structure–activity relationship

Some thiazolo[3,2-a]thieno[2,3-d]pyrimidines (1) and polymethylene condensed (e.g. pyrrolo-, piperidino-, azepino- and others) thieno[2,3-d]pyrimidines (2) have been synthesized, $^{2,3)}$ and reported to possess significant biological activities, for example, antiinflammatory activity (1a and 2a), $^{2a,3a)}$ gastric antisecretory activity (1b) $^{2b)}$ and anti-dermatomycosis activity (2b).

In treatment of peptic ulcer, it is generally considered to be important to improve the imbalance between aggressive factors (e.g. gastric acid secretion and pepsin secretion) and defensive factors (e.g. gastric mucosal blood flow, bicarbonate secretion, and mucus secretion).⁴⁾ Since the discovery of histamine H₂ receptor antagonists, control of gastric acid secretion has received much attention from a clinical viewpoint because of its superior healing rate and efficacy. In spite of this clinical usefulness, a high recurrence

rate of peptic ulcer has been reported after cessation of treatment with H₂ receptor antagonists.⁵⁾ On the other hand, more emphasis has recently been placed on the important roles of gastric defensive factors in protection against and healing of peptic ulcer.

We have carried out the preparation of 2,3-dihydro-5*H*-oxazolo[3,2-*a*]thieno[3,2-*d*]pyrimidin-5-one (3), which exhibits potent gastric antisecretory activity.¹⁾

However, no work has been done on the syntheses and biological evaluation of thiazolo[3,2-a]thieno[3,2-d]- or [3,4-d]pyrimidines, though thiazolo[3,2-a]thieno[2,3-d]pyrimidines have been reported.²⁾ As for polymethylene condensed thienopyrimidines, only thieno[2,3-d]pyrimidine derivatives have been reported.³⁾

In this paper, we wish to describe the synthesis and gastric antisecretory activity of various thiazole and polymethylene condensed thienopyrimidin-5-ones (6a—o, 11a—k, 16a—d, 19a—n, 20a—l and 21a—i), which include new heterocyclic systems such as thiazolo[3,2-a]thieno[3,2-d]-, [3,4-d]pyrimidines and pyrrole, pyridine, azepine, azocine, and azonine condensed thieno[3,2-d]-, and [3,4-d]pyrimidines

Chemistry Thiazole and polymethylene condensed

© 1989 Pharmaceutical Society of Japan

thienopyrimidines were synthesized according to procedures similar to those used for tricyclic thieno[2,3-d]pyrimidines.^{2,3)} Two methods were utilized for synthesis of thiazolothienopyrimidines. Heating of methyl 3-aminothiophene-2-carboxylate derivatives (4a, h, m, n) with allyl isothiocyanate in ethanol (EtOH) followed by treatment with sodium hydroxide (NaOH) gave 3-allyl-2-mercapto-

TABLE I. Substituted 2,3-Dihydro-5*H*-thiazolothienopyrimidin-5-ones (6, 11, and 16)

Compd.	$\mathbf{R}_{\scriptscriptstyle 1}$	R_2	R_3	R_4	R ₅	Yield	mp (°C)	Formula			Calc	d	Analys	sis (%)		Found	d	
No.				-		(%)	(Recryst. solv.) ^{a)}		C	Н	Cl	N	S	С	Н	Cl	N	S
6a	Н	Н	Н	Н	Н	72	187—189 (E)	$C_8H_6N_2OS_2$	45.70	2.88		13.32	30.49	45.47	2.82		13.05	30.46
6b	Η	Н	Me	Н	Н	69	95—97 (H)	$C_9H_8N_2OS_2$	48.19	3.60		12.49	28.59	48.25	3.60			28.70
6c	Η	Н	Et	Н	Н	67	98-100 (C-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.22	4.04		11.79	26.97
6 d	Η	Η	Ph	Η	Н	85	126—128 (E-EA)	$C_{14}H_{10}N_2OS_2$	58.72	3.52		9.78	22.39	58.68	3.24		9.83	22.62
6e	Η	Η	Me	Me		86	121—123 (C-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.12	3.96		11.70	26.98
6f	Н	Η	Η	Η	Me	83	147149 (C-H)	$C_9H_8N_2OS_2$	48.19	3.60		12.49	28.59	48.31	3.46		12.72	28.57
6g	Н	Н	Н	Н	Ph	80	Oil	$C_{14}H_{10}N_2OS_2$ -3/4 H ₂ O	56.08	3.87		9.34	21.38	56.40	3.96		8.99	21.48
6h	Me	Η	Н	Н	Н	87	193—194 (E)	$C_9H_8N_2OS_2$	48.19	3.60		12.49	28.59	48.15	3.45		12.42	28.61
6i	Me	Η	Me	Η	Н	93	182—184 (EA-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23			26.91	50.29			11.72	
6 j	Me	Н	Н	Н	Me	91	177—180 (E-EA)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.72	3.88		11.83	
6k ^{b)}	Me	Н	Н	Н	iso-Bu	94	197—199 (E)	$C_{13}H_{16}N_2OS_2$ · HCl	49.28	5.41	11.19	8.84	20.24	49.36	5.42	11.46	8.92	20.52
6 l	Et	Η	Н	Н	Н	91	138—139 (EA-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.39	4.11		11.94	26.98
6m	Η	Me	Me	Η	Н	80	110—112 (EA-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.70	4.22		12.16	
6n	Me	Me	Η	Η	Н	76	160—162 (E-EA)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.20	4.31		11.39	26.93
60	Me	Me	Me	Η	Н	64	156—158 (EA-H)	$C_{11}H_{12}N_2OS_2$	52.35	4.79		11.10	25.41	52.40	4.86		11.08	25.56
11a	Н	Н	Η	Η	Н	83	198—200 (E)	$C_8H_6N_2OS_2$	45.70	2.88		13.32	30.49	45.79	2.77		13.35	30.25
11b	Η	Н	Me	Н	Н	85	107—109 (EA-H)	$C_9H_8N_2OS_2$	48.19	3.60		12.49	28.59	47.95	3.43		12.49	28.41
11c	Me	Н	Me	Н	Н	85	95—96 (EA-H)	$C_{10}H_{10}N_2OS_2$	50.40	4.23		11.75	26.91	50.29	4.19		11.85	27.10
11d	H		Me	Н	Н	88	113—114 (C-H)	$\mathrm{C_{10}H_{10}N_2OS_2}$	50.40	4.23		11.75	26.91	50.30	4.10		11.67	26.94
11e	H		Me		H	80	146—147 (EA-H)	$C_{11}H_{12}N_2OS_2$	52.35				25.41	52.28	4.59		11.27	25.47
11f	H	Et		Н	H	90	146—148 (EA-H)	$C_{10}H_{10}N_2OS_2$	50.40				26.91	50.22			11.94	26.62
11g	H		Me	Η	Н	92	82—84 (EA–H)	$C_{11}H_{12}N_2OS_2$	52.35			11.10		52.42			11.16	25.47
11h	Н	Et		Me		Quant.	56—57 (EA–H)	$C_{12}H_{14}N_2OS_2$	54.11				24.07	53.90			10.69	
11i		Me	Н	Н	H	86	170—172 (E–EA)	$C_{10}H_{10}N_2OS_2$	50.40			11.75		50.54			11.76	
11j		Me		Н	H	88	119—121 (EA-H)	$C_{11}H_{12}N_2OS_2$	52.35			11.10		52.34			11.10	
11k		Me		Me	H	88	191—193 (EA-H)	$C_{12}H_{14}N_2OS_2$	54.11				24.07	53.94			10.51	
111 16a	H H	Cl H	H H	H H	H	80	169—170 (E)	C ₈ H ₅ ClN ₂ OS ₂			14.49	11.45				14.40	11.31	
16b	H	Н	Мe	Н	H H	82 56	202—204 (C-E)	$C_8H_6N_2OS_2$	45.70				30.49	45.63			13.26	
16c	п Ме	н	Me	Н	H	63	123—125 (C-H)	C ₉ H ₈ N ₂ OS ₂	48.19			12.49		48.11			12.31	
16d	H	Me		Н	н	50	140—142 (EA-H) 124—126 (EA)	$C_{10}H_{10}N_2OS_2$	50.40			11.75		50.29			11.84	
16e	Н	Cl	H	Н	н Н	43	124—126 (EA) 160—162 (E)	$C_{10}H_{10}N_2OS_2$	50.40		14.40	11.75		50.35			11.81	
100	11	<u> </u>	11	11	11	+ 3	100—102 (E)	C ₈ H ₅ ClN ₂ OS ₂	39.26	2.06	14.49	11.45	20.20	39.26	1.8/	14.78	11.34	26.16

a) C, CHCl₃; E, EtOH; EA, AcOEt; H, hexane; M, MeOH. b) HCl salt.

afforded isothiocyanate analogues (7a, h, l, n) according to the procedure of Kienzle et al.^{2b)} Reaction of 7a, h, l, n with various 2-aminoethanols afforded 3-(2-hydroxyethyl)-2-mercaptothieno[3,2-d]pyrimidin-4(3H)-one derivatives (8a, c, d, f—h, j—l, n), which were cyclized to 6a, c, d, f—h, j—l, n by heating with methanesulfonic acid. 2,3-Dihydro-2,2-dimethyl-5H-thiazolo[3,2-a]thieno[3,2-d]pyrimidin-5-one (6e) was obtained by the treatment of 7a with 2-methylallylamine followed by cyclization with hydrogen chloride. 2,3-Dihydro-5H-thiazolo[3,2-a]thieno-[3,4-d]- and [2,3-d]pyrimidin-5-one derivatives (11a—k and 16a—d) were prepared from methyl aminothiophene-carboxylates (9 and 14, respectively) using the methods described above.

Polymethylene condensed thieno[3,2-d]pyrimidines 19a—n were prepared with facility by condensation of 4a, h, l, n with various lactams in the presence of catalytic

amounts of phosphorus oxychloride. Using a method similar to that used to synthesize 19, other isomers 20a—l or 21a—i were obtained from 9 or 14, respectively. These derivatives are listed in Tables I and II.

Other thiazolo-, pyrrolo- or azepinothienopyrimidine derivatives (11 l, 16e, 20m, n, and 21j) having a chloro substituent on the thiophene ring were synthesized by treatment of tricyclic thienopyrimidines (11a, 16a, 20a, c and 21a) with sulfuryl chloride (SO_2Cl_2) or N-chlorosuccinimide (NCS). The thiazolo[3,2-a]thieno[3,2-d]pyrimidine derivatives, 23 and 24, possessing an exo- or endo-double bond in the thiazolidine moiety of 2,3-dihydro-2-methyl-5H-thiazolo[3,2-a]theino[3,2-d]pyrimidin-5- one (6b) were synthesized by the procedure shown in Chart 3. Bromination of 5b followed by treatment with potassium carbonate (K_2CO_3) gave the cyclized 2-bromomethyl derivative 22 in 86% yield. Treatment of 22 with morpholine

TABLE II. Polymethylene Condensed Thienopyrimidines (19, 20, and 21)

$$R_1$$
 N $(CH_2)_n$ R_2 N $(CH_2)_n$ R_2 N $(CH_2)_n$ R_2 N $(CH_2)_n$

Compd.	\mathbf{R}_1	R_2	n	Yield	mp (°C)	Formula			Calco	i	Analys	is (%)		Found	i	
No.	1	2		(%)	(Recryst. solv.) ^{a)}		С	Н	Cl	N	S	С	Н	Cl	N	S
19a	Н	Н	1	40	150—152 (E-EA)	C ₉ H ₈ N ₂ OS	56.23				16.68	56.38				16.49
19b	Н	H	2	71	102103 (EA-H)	$C_{10}H_{10}N_2OS \cdot 1/3 H_2O$	56.58	5.07		13.20	15.10	56.55	5.26		13.40	15.05
19c	Н	Н	3	81	110—111 (EA)	$C_{11}H_{12}N_2OS$	59.97	5.49		12.72	14.56	59.92	5.56		12.64	14.46
19d	Me	Н	1	90	170—172 (E-EA)	$C_{10}H_{10}N_2OS$	58.23	4.89		13.58	15.54	58.39	4.75		13.83	15.21
19e	Me	Н	2	85	96—97 (EA-H)	$C_{11}H_{12}N_2OS \cdot 1/5H_2O$	59.01	5.58		12.51	14.32	59.12	5.33		12.63	14.38
19f	Me	Н	3	82	113—115 (EA-H)	$C_{12}H_{14}N_2OS$	61.51	6.02		11.96	13.68	61.47	5.97		11.92	13.75
19g	Me	Н	4	66	120—121 (EA-H)	$C_{13}H_{16}N_2OS$	62.87	6.49		11.28	12.91	62.71			11.11	13.23
19h	Me	Н	5	72	113—114 (EA-H)	$C_{14}H_{18}N_2OS$	64.09	6.92		10.68	12.22	64.03	6.88		10.84	12.07
19i	Et	H	1	63	89—90 (EA)	$C_{11}H_{12}N_2OS$	59.97	5.49		12.72	14.56	59.91	5.44		12.59	14.53
19j	Et	H	2	64	78—79 (EA-H)	$C_{12}H_{14}N_2OS$	61.51	6.02		11.96	13.68	61.32	5.74		11.92	13.55
19k	Et	Н	3	78	70—73 (EA)	$C_{13}H_{16}N_2OS$	62.87	6.49		11.28	12.91	62.78	6.46		11.11	13.15
19l	Me	Me	1	84	157—159 (EA)	$C_{11}H_{12}N_2OS$	59.97	5.49		12.72	14.56	59.93	5.39		12.74	14.61
19m	Me	Me	2	71	164—166 (EA)	$C_{12}H_{14}N_2OS$	61.51	6.02		11.96	13.68	61.27	5.71		12.05	13.92
19n	Me	Me	3	82	154—156 (EA-H)	$C_{13}H_{16}N_2OS$	62.87	6.49		11.28	12.91	62.97	6.30		11.41	12.88
20a	Н	Н	1	50	144—146 (EA)	$C_9H_8N_2OS$	56.23	4.19		14.57	16.68	56.35	3.95		14.49	16.69
20b	Н	Н	2	82	126—128 (EA)	$C_{10}H_{10}N_2OS \cdot 1/5H_2O$	57.23	5.00		13.35	15.28	57.40	4.77		13.32	15.25
20c	Н	Н	3	70	154—156 (EA)	$C_{11}H_{12}N_2OS$	59.97	5.49		12.72	14.56	59.98	5.68		12.79	14.60
20d	Н	Me	1	67	128—129 (EA)	$C_{10}H_{10}N_{2}OS$	58.23	4.89		13.58	15.54	58.18	4.85		13.64	15.81
20e	Н	Me	2	50	108—109 (EA-H)	$C_{11}H_{12}N_2OS$	59.97	5.49		12.72	14.56	59.89	5.41		12.70	14.54
20f	Н	Me	3	57	113—115 (EA-H)	$C_{12}H_{14}N_{2}OS$	61.51	6.02		11.96	13.68	61.70	5.96		11.98	13.67
20g	Н	Et	1	50	9091 (EA-H)	$C_{11}^{12}H_{12}^{14}N_2^2OS$	59.97	5.49		12.72	14.56	59.93	5.25		12.79	14.57
$20h^{b)}$	Н	Et	2	29	255—257 (E)	$C_{12}H_{14}N_2OS \cdot HCl$	53.23	5.21	13.09	10.35	11.84	53.21	5.41	12.80	10.29	11.76
20i	Н	Et	3	13	67—70 (EA-H)	$C_{13}^{12}H_{16}^{14}N_2^2OS$	62.87	6.49		11.28	12.91	62.55	6.36		11.26	13.06
20j	Me	Me	1	80	7779 (EA-H)	$C_{11}^{13}H_{12}^{10}N_2^2OS \cdot 2/3 H_2O$	56.87	5.79		12.06	13.80	56.89	5.63		12.00	13.77
20k	Me	Me	2	50	72—73 (EA-H)	$C_{12}H_{14}N_2OS$	61.51	6.02		11.96	13.68	61.32	5.86		11.73	13.65
201	Me	Me	3	39	103—104 (EA-H)	$C_{13}^{12}H_{16}^{14}N_2^2OS$	62.87	6.49		11.28	12.91	62.87	6.52		11.43	12.88
20m	Н	Cl	1	68	116118 (EA-H)	C ₉ H ₇ ClN ₂ OS	47.69	3.11	15.64	12.36	14.14	47.87	3.19	15.66	12.36	14.22
20n	Н	Cl	3	52	106—108 (EA-H)	$C_{11}H_{11}ClN_2OS$	51.87	4.35	13.92	11.00	12.59	51.92	4.28	13.93	11.08	12.72
21a	Н	Н	1	70	172—174 (EA)	$C_9H_8N_2OS^2$	56.23	4.19		14.57	16.68	56.13	4.07		14.74	16.66
21b	Н	Н	2	56	103—105 (EA)	$C_{10}H_{10}N_{2}OS$	58.23	4.89		13.58	15.54	58.12	4.73		13.35	15.59
21c	Me	Н	1	97	116—118 (EA)	$C_{10}^{10}H_{10}^{10}N_2^2OS$	58.23				15.54	58.35	4.73		13.60	15.80
21d	Н	Me	1	83	144—145 (C-H)	$C_{10}^{10}H_{10}^{10}N_2^2OS$	58.23	4.89			15.54	58.13	4.85		13.70	15.52
21e	Н	Me	2	78	108—111 (EA-H)	$C_{11}^{10}H_{12}^{10}N_2^2OS$	59.98	5.49		12.72	14.55	59.81	5.50		12.80	14.42
21f	Н	Me	3	47	100—102 (M)	$C_{12}^{11}H_{14}^{12}N_{2}^{2}OS$	61.51				13.68	61.44			11.99	13.59
21g	Н	iso-Pr	1	82	93—95 (C-H)	$C_{12}H_{14}N_2OS$	61.51				13.68	61.67				13.79
21h	Н	iso-Pr	2	96	113—115 (EA-H)	$C_{13}^{12}H_{16}^{14}N_2^2OS$	62.87				12.91	62.63				13.07
21i	Н	iso-Pr	3	38	97—98 (M)	$C_{14}H_{18}N_2OS$	64.09				12.22	63.94				12.01
21j	Н	Cl	1	36	154—156 (E-EA)	C ₉ H ₇ ClN ₂ OS			15.64	12.36				15.97		14.22

a) C, CH₂Cl₂; E, EtOH; EA, AcOEt; H, hexane; M, MeOH. b) HCl salt.

Table III. Gastric Antisecretory Activity of Tricyclic Thienopyrimidine Derivtives

Compd. No.	Gastric antisecretory activity (%, 50 mg/kg, i.d.)	Compd. No.	Gastric antisecretory activity (%, 50 mg/kg, i.d.)
6a	66	19a	83
6b	46	19b	92
6h	81	19d	95
6i	34	19e	82
6k	79	19f	68
6m	41	19h	22
6о	60	19i	80
11a	67	19m	41
11b	82	19n	17
11c	58	20c	77
11d	60	20d	65
11f	45	20e	90
11g	68	20f	85
11h	86	20g	81
11i	76	20h	79
11j	62	20i	82
111	71	20j	64
16a	78	20k	62
16b	64	201	55
16c	10	20m	85
16d	44	21a	82
23	50	21d	52
24	50	21e	73
$1a^{a)}$	47	21f	58
Cimetidine	46	21g	80
		21i	61

a) Ref. 2a.

afforded the dehydrobrominated compound, exo-methylene substituted thiazolothienopyrimidine 23. The isomerization of 23 with sulfuric acid (H_2SO_4) afforded the endomethylene analogue (24).

Pharmacology and Structure-Activity Relationships The tricyclic compounds prepared in the present study were tested for gastric antisecretory activity in pylorus-ligated rats, by intraduodenal (i.d.) injection at a dose of 50 mg/kg. The results are shown in Table III. The structureactivity relationships in these derivatives are as follows. Gastric antisecretory activities of thiazolothienopyrimidines (6, 11 and 16) were somewhat lower than those of the previously reported oxazolothienopyrimidine derivatives, 1a) while polymethylene condensed thienopyrimidine derivatives exhibited the most potent activities in these series. As for the positional isomers of the condensed thiophene ring, thieno[2,3-d]pyrimidine derivatives (16 and 21) exhibited reduced activity compared with thieno[3,2d]pyrimidine derivatives (6 and 19) or thieno[3,4-d]pyrimidines derivatives (11 and 20). It was noted that this activity was profoundly influenced by the substituents on the thiophene ring. Decreasing the number of substituents on the thiophene ring resulted in a marked increase of the activity. These structure-activity relationships are in accordance with previous observations of the oxazolothienopyrimidine series. 1a) With regard to the size of the polymethylene ring on 19—21, a marked enhancement of activity was observed in the case of the thienopyrimidine derivatives condensed with a five- or six-membered ring.

TABLE IV. Intermediates (5, 7, and 8) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[3,2-d]pyrimidin-5-one Derivatives (6)

Compd.	_	_	_	_	_	Yield	mp (°C)			-		Ana	ılysis (%)			
No.	\mathbf{R}_{1}	R ₂	R_3	R_4	R_5	(%)	(Recryst. solv.) ^{a)}	Formula			alcd			Fo	und	
									C	Н	N	S	С	Н	N	S
5b	Н	Н		Н		47	212—216 (M)	$C_9H_8N_2OS_2$	48 19	3.60	12 49	28.59	48.20	2 47	12.52	20.71
5e	Н	Н		Me		72	207—210 (M)	$C_{10}H_{10}N_2OS_2$			11.75				11.66	
5i	Me	H		Н		34	239—241 (E)	$C_{10}H_{10}N_2OS_2$			11.75				11.82	
5m	Н	Me		Н		18	202-204 (E)	$C_{10}H_{10}N_2OS_2$			11.75				11.74	
5 0	Me	Me		Н		24	184—187 (E)	$C_{11}H_{12}N_2OS_2$			11.10				11.74	
$7a^{b,c)}$	Н	H				84	54—56	$C_7H_5NO_2S_7$,	11.10	23.41	32.36	₹.00	11.12	23.42
7h	Me	Η				93	63—64 (H)	$C_8H_7NO_2S_2$	45.05	3.31	6.57	30.07	44.73	3 15	6 56	29.78
71	Et	Н				75	6061 (H)	C _o H _o NO ₂ S ₂	47.56	3.99		28.21	47.48			27.97
7n	Me	Me				76	70—71 (H)	C ₉ H ₉ NO ₂ S ₂	47.56			28.21	47.61			28.32
8a ^{b)}	Н	Н	Н		Н	83	255—257	$C_8H_8N_2O_2S_2$				_0	17.01	5.04	0.43	20.32
8c	H	H	Et		Н	51	170—172 (M)	$C_{10}H_{12}N_2O_2S_2$	46.85	4.72	10.93	25.02	46.81	4 66	10.95	25 37
							(dec.)						10.01	1.00	10.75	23.31
8d	Н	Н	Ph		Н	98	215-217 (E)	$C_{14}H_{12}N_2O_2S_2$	55.24	3.97	9.20	21.07	55.20	3.80	9.29	21.21
8f	Н	Н	Н		Me	40	176—178 (M-EA)	$C_9H_{10}N_2O_2S_2 \cdot 1/2H_2O$			11.15				11.20	
8g	Н	Н	Н		Ph	98	193—195 (E)	$C_{14}H_{12}N_2O_2S_2$			9.20				9.24	
8h	Me	Н	Н		H	79	253—255 (E)	$C_9H_{10}N_2O_2S_2$			11.56		44.38			
8j	Me	н	Н		17.	02	(dec.)									
8k	Me	Н	Н		Me	93	210—213 (E)	$C_{10}H_{12}N_2O_2S_2$	46.85				46.63	4.42	10.63	24.98
8i	Et	H	Н	13			172—174 (E)	$C_{13}H_{18}N_2O_2S_2 \cdot 1/4H_2O$			9.28		51.67	5.86	9.25	21.26
8n ^{d)}					H	71	235—237 (M-A)	$C_{10}H_{12}N_2O_2S_2$	46.85	4.72	10.93	25.02	46.94	4.60	11.18	24.98
OII '	ivie	Me	H		H	71	150—153	$C_{10}H_{12}N_2O_2S_2$								

a) A, acetone; C, CHCl₃; D, dimethylformamide; E, EtOH; EA, AcOEt; H, hexane; M, MeOH. b) Ref. 1b. c) Ref. 2b. d) The material was used for the subsequent step without further purification.

Further studies on the synthesis and the structure–activity relationship of tricyclic thienopyrimidines as new anti-ulcer agents are being continued.

Experimental

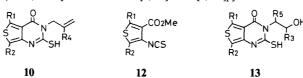

All melting points are uncorrected. Infrared (IR) spectra were measured on a JASCO A-102 spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian T-60A (60 MHz) or EM-390

TABLE V. Spectral Data for Intermediates (5, 7 and 8) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[3,2-d]pyrimidin-5-one Derivatives (6)

Compd.	IR (KBr)		NMR
No.	cm ⁻¹	Solvent	δ : ppm
5b	1675	DMSO-d ₆	4.99—5.15 (3H, m, NCH ₂ C=CH), 5.20—5.35 (1H, m, CC=CH), 5.73—6.20 (1H, m, CCH=C), 7.06 and 8.18 (each 1H, d, J =5.4 Hz, ArH×2), 13.2—13.8 (1H, br, SH)
5e	1652	DMSO- d_6	1.77 (3H, s, CH ₃), 4.51 (1H, br s, CC=CH), 4.73—4.83 (1H, m, CC=CH), 4.96 (2H, br s, NCH ₂ C=C), 7.08 and 8.20 (each 1H, d, $J=5.4$ Hz, ArH×2), 11.0—11.9 (1H, br, SH)
5i	1685 ^{a)}	DMSO-d ₆	2.56 (3H, d, $J=1.5$ Hz, ArCH ₃), 4.95—5.13 (3H, m, NCH ₂ C=CH), 5.18—5.30 (1H, m, CC=CH), 5.71—6.20 (1H, m, CCH=C), 6.81 (1H, d, $J=1.5$ Hz, ArH), 13.1—13.8 (1H, br, SH)
5m	1690 ^{b)}	DMSO-d ₆	2.30 (3H, s, ArCH ₃), 4.97—5.13 (3H, m, NCH ₂ C=CH), 5.17—5.31 (1H, m, CC=CH), 5.69—6.30 (1H, m, CCH=C), 7.80 (1H, s, ArH), 11.8—12.5 (1H, br, SH)
50	1685 (sh), 1680 ^{b)}	DMSO-d ₆	2.21 and 2.43 (each 3H, s, $ArCH_3 \times 2$), 4.98—5.13 (3H, m, $NCH_2C = CH$), 5.20—5.28 (1H, m, $CC = CH$), 5.73—6.18 (1H, m, $CCH = C$), 10.9—11.2 (1H, br, SH)
7h	1705 ^{a)}	CDCl ₃	2.45 (3H, d, $J = 1.5$ Hz, ArCH ₃), 3.91 (3H, s, COOCH ₃), 6.62 (1H, d, $J = 1.5$ Hz, ArH)
71	1705")	CDCl ₃	1.31 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 2.80 (2H, q, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.91 (3H, s, COOCH ₃), 6.67 (1H, s, ArH)
7n	1705a)	CDCl ₃	2.10 and 2.36 (each 3H, s, ArCH ₃ ×2), 3.90 (3H, s, COOCH ₃)
8c	1652	CD₃OD	1.02 (3H, t, $J = 6.8$ Hz, CH_2CH_3), 1.40—1.78 (2H, m, CH_2CH_3), 4.04—5.10 (5H, m, NCH_2CHOH , SH), 7.00 and 8.00 (each 1H, d, $J = 6.0$ Hz, $ArH \times 2$)
8d	1658	DMSO-d ₆	4.37 (1H, dd, $J=12.9$, 3.9 Hz, NCHCOH), 4.79 (1H, dd, $J=12.9$, 9.2 Hz, NCHCOH), 5.35 (1H, dd, $J=9.2$, 3.9 Hz, NCCHOH), 7.06 and 8.17 (each 1H, d, $J=5.4$ Hz, ArH × 2), 7.27—7.56 (5H, m, PhH × 5)
8f	1672	CD ₃ OD	1.54 (3H, d, $J = 6.9$ Hz, CH ₃), 3.87—4.42 (2H, m, NCCH ₂ OH), 5.09—7.30 (1H, m, NCHCOH), 6.99 and 7.99 (each 1H, d, $J = 5.4$ Hz, ArH × 2)
8g	1657	DMSO-d ₆	4.23—4.53 (2H, m, NCCH ₂ OH), 5.03 (1H, br s, NCHCOH), 7.06 and 8.16 (each 1H, d, $J = 5.4$ Hz, ArH × 2), 7.13—7.53 (5H, m, PhH × 5)
8h	1644	DMSO-d ₆	2.58 (3H, s, ArCH ₃), 3.66 (2H, t, $J = 6.6$ Hz, NCC $\underline{\text{H}}_2$ OH), 4.50 (2H, t, $J = 6.6$ Hz, NC $\underline{\text{H}}_2$ COH), 6.82 (1H, s, ArH)
8j	1661	DMSO-d ₆	1.40 (3H, d, $J = 6.9$ Hz, CH ₃), 2.57 (3H, s, ArCH ₃), 3.61—4.16 (2H, m, NCCH ₂ OH), 4.77 (1H, t, $J = 5.7$ Hz, OH), 5.97 (1H, q, $J = 6.9$ Hz, NCHCOH), 6.81 (1H, s, ArH), 11.30 (1H, br s, SH)
8k	1651	DMSO- d_6	0.66—1.12 (6H, m, CH ₂ CH(CH ₃) ₂), 1.27—2.20 (3H, m, CH ₂ CH(CH ₃) ₂), 2.52 (3H, s, ArCH ₃), 3.57—3.96 (2H, m, NCCH ₂ OH), 5.83—6.23 (1H, m, NCHCOH), 6.77 (1H, s, ArH), 4.72 and 11.27 (each 1H, br s, OH, SH)
81	1647	DMSO-d ₆	1.27 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 2.91 (2H, q, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.33 (2H, t, $J = 6.9$ Hz, NCCH ₂ OH), 4.50 (2H, t, $J = 6.9$ Hz, NCH ₂ COH), 6.83 (1H, s, ArH)

a) CHCl₃. b) Liquid film.

TABLE VI. Intermediates (10, 12, and 13) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[3,4-d]pyrimidin-5-one Derivatives (11)

											Ana	ılysis (%)	rsis (%)				
Compd.	R_1	R_2	R_3	R ₄	R_5	Yield	mp (°C)	Formula		C	alcd			Fo	und		
No.						(%)	(Recryst. solv.) ^{a)}		С	Н	N	S	С	Н	N	S	
10b	Н	Н		Н		67	201—203 (E)	$C_9H_8N_2OS_2$	48.19	3.60	12.49	28.59	48.06	3.45	12.50	28.67	
10c	Me	Н		Η		79	212—213 (E)	$C_{10}H_{10}N_2OS_2$	50.40	4.23	11.75	26.91	50.51	4.29	11.86	27.10	
10d	Η	Me		Η		69	177—179 (E)	$C_{10}H_{10}N_2OS_2$	50.40	4.23	11.75	26.91	50.17	4.30	11.74	26.85	
10e	Н	Me		Me		80	178—179 (E)	$C_{11}H_{12}N_2OS_2$	52.35	4.79	11.10	25.41	52.13	4.72	11.14	25.61	
10g	Н	Et		H		69	172—175 (E)	$C_{11}H_{12}N_2OS_2$	52.35	4.79	11.10	25.41	52.31	4.61	10.99	25.24	
10h	Η	Et		Me		96	172—173 (EA-H)	$C_{12}H_{14}N_2OS_2$	54.11	5.30	10.52	24.07	54.03	5.15	10.33	23.83	
10j	Me	Me		Н		34	209-212 (E)	$C_{11}H_{12}N_2OS_2$	52.35	4.79	11.10	25.41	52.25	4.65	11.07	25.69	
10k	Me	Me		Me		86	179—182 (E)	$C_{12}H_{14}N_2OS_2$	54.11	5.30	10.52	24.07	53.85	5.02	10.51	23.87	
12a	Н	Н				74	103—104 (H)	$C_7H_5NO_2S_2$	42.20	2.53	7.03	32.18	42.19	2.46	7.14	32.14	
12f	Н	Et				Quant.	Oil ^{b)}	C ₉ H ₉ NO ₂ S ₂	47.56	3.99	6.16	28.21	47.33	4.03	6.15	28.22	
12i	Me	Me				72	<35 (H)	C ₉ H ₉ NO ₂ S ₂	47.56	3.99	6.16	28.21	47.51	4.07	6.16	28.04	
13a	Н	Н	Н		Н	93	232-234 (dec.) (D-A)	$C_8H_8N_2O_2S_2$	42.09	3.53	12.27	28.09	42.22	3.49	12.38	27.75	
13f	Η	Et	Н		Н	77	181—183 (M)	$C_{10}H_{12}N_2O_2S_2 \cdot 1/5H_2O$	46.21	4.81	10.78	24.66	46.36	4.56	10.91	24.35	
13i	Me	Me	Н		Н	74	210—212 (M)	$C_{10}H_{12}N_2O_2S_2 \cdot 1/4H_2O$	46.06	4.83	10.74	24.59	45.83	4.63	10.78	24.71	

a) See footnote a in Table IV. b) bp 165 °C/7 mmHg.

TABLE VII. Spectral Data for Intermediates (10, 12 and 13) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[3,4-d]pyrimidine-5-one Derivatives (11)

Compd.	IR (KBr)		NMR
No.	cm ⁻¹	Solvent	δ : ppm
10b	1656,	DMSO-d ₆	4.95—5.12 (3H, m, NCH ₂ C=CH), 5.17—5.27 (1H, m, CC=CH), 5.70—6.13 (1H, m, CCH=C), 7.10 and 8.48
	1605		(each 1H, d, $J=3.0$ Hz, ArH \times 2), 12.92 (1H, br s, SH)
10c	1702,	DMSO- d_6	2.79 (3H, s, ArCH ₃), 4.92—5.11 (3H, m, NCH ₂ C=CH), 5.16—5.28 (1H, m, CC=CH), 5.69—6.17 (1H, m,
	1607		CCH = C), 6.76 (1H, s, ArH), 11.75 (1H, br s, SH)
10 d	1687,	DMSO- d_6	2.52 (3H, s, ArCH ₃), 4.96—5.10 (3H, m, NCH ₂ C=CH), 5.16—5.27 (1H, m, CC=CH), 5.70—6.15 (1H, m,
	1606		CCH=C), 8.26 (1H, s, ArH), 11.63 (1H, br s, SH)
10e	1693,	DMSO- d_6	1.75 (3H, br s, CH ₃), 2.53 (3H, s, ArCH ₃), 4.46 (1H, br s, CC=CH), 4.70—4.82 (1H, m, CC=CH), 4.95 (2H, br s,
	1603		NCH ₂ C=C), 8.30 (1H, s, ArH), 11.69 (1H, br s, SH)
10g	1705,	DMSO- d_6	1.21 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.01 (2H, q, $J = 7.5$ Hz, ArCH ₂ CH ₃), 4.97—5.12 (3H, m, NCH ₂ C = CH),
	1605		5.16—5.27 (1H, m, CC=CH), 5.70—6.17 (1H, m, CCH=C), 8.30 (1H, s, ArH), 11.61 (1H, br s, SH)
10h	1690,	CDCl ₃	1.35 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 1.83 (3H, brs, CH ₃), 2.89 (2H, q, $J=7.5$ Hz, ArCH ₂ CH ₃), 4.67 (1H, brs,
	1600		CC=CH), 4.82—4.93 (1H, m, CC=CH), 5.07 (2H, br s, NCH ₂ C=C), 8.07 (1H, s, ArH), 9.88 (1H, br s, SH)
10j	1695,	DMSO- d_6	2.44 and 2.73 (each 3H, s, ArCH ₃ × 2), 4.93—5.12 (3H, m, NCH ₂ C = CH), 5.14—5.30 (1H, m, CC = CH), 5.70—
	1610 ^{a)}		6.15 (1H, m, CCH=C), 11.43 (1H, brs, SH)
10k	1689,	DMSO- d_6	1.75 (3H, br s, CH ₃), 2.46 and 2.72 (each 3H, s, ArCH ₃ × 2), 4.48 (1H, br s, CC=CH), 4.71—4.82 (1H, m, CC=CH), 4.71—4
	1615		CH), 4.93 (2H, brs, NCH ₂ C=C), 11.46 (1H, brs, SH)
12a	1710	CDCl ₃	3.91 (3H, s, COOCH ₃), 7.15 and 8.08 (each 1H, d, $J = 3.6$ Hz, ArH × 2)
12f	1710^{a}	CDCl ₃	1.30 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 2.86 (2H, q, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.91 (3H, s, COOCH ₃), 7.90 (1H, s,
			ArH)
12i	1715 ^{a)}	$CDCl_3$	2.36 and 2.63 (each 3H, s, $ArCH_3 \times 2$), 3.91 (3H, s, $COOCH_3$)
13a	1660,	$DMSO-d_6$	3.67 (2H, t, $J = 6.6$ Hz, NCH ₂ CH ₂ O), 4.51 (2H, t, $J = 6.6$ Hz, NCH ₂ CH ₂ O), 7.09 and 8.48 (each 1H, d, $J = 3.0$ Hz,
	1600		ArH × 2), 4.4—5.1 and 11.2—12.6 (each 1H, br, OH, SH)
13f	1669,	$DMSO-d_6$	1.19 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.01 (2H, q, $J = 7.5$ Hz, ArCH ₂ CH ₃), 3.46—3.84 (2H, m, NCH ₂ CH ₂ O), 4.50
	1602		(2H, t, $J = 6.8$ Hz, NCH ₂ CH ₂ O), 8.30 (1H, s, ArH), 4.6—4.9 and 11.8—12.5 (each 1H, br, SH, OH)
13i	1680,	DMSO- d_6	
	1612		4.3—5.3 (1H, br, OH or SH)

a) CHCl₃.

TABLE VIII. Intermediates (15, 17, and 18) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one Derivatives (16)

			(0.0)					Analysis (%)										
Compd. No.	\mathbf{R}_1	R_2	Yield (%)	mp (°C) (Recryst. solv.) ^{a)}	Formula		Ca	alcd			Fo	und						
NO.			(/0)	(Recryst. solv.)		С	Н	N	S	С	Н	N	S					
15b	Н	Н	63	203—205 (E)	$C_9H_8N_2OS_2$	48.19	3.60	12.49	28.59	48.11	3.56	12.24	28.37					
15c	Me	Н	52	205—207 (E)	$C_{10}H_{10}N_2OS_2$	50.40	4.23	11.75	26.91	50.27	4.39	11.53	26.60					
15d	Н	Me	66	218—221 (E)	$C_{10}H_{10}N_2OS_2$	50.40	4.23	11.75	26.91	50.34	4.13	11.72	26.68					
17			39	61—62 (H)	$C_7H_5NO_2S_2$	42.20	2.53	7.03	32.18	42.11	2.29	6.97	31.99					
18			68	232-234 (dec.) (D-A)	$C_8H_8N_2O_2S_2$	42.09	3.53	12.27	28.09	42.28	3.41	12.41	27.81					

a) See footnote a in Table IV.

TABLE IX. Spectral Data for Intermediates (15, 17 and 18) to 2,3-Dihydro-5H-thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one Derivatives (16)

Compd.	IR (KBr)		NMR
No.	cm ⁻¹	Solvent	δ: ppm
15b	1650 (sh), 1645	DMSO-d ₆	4.94—5.13 (3H, m, NCH ₂ C=CH), 5.17—5.29 (1H, m, CC=CH), 5.70—6.15 (1H, m, CCH=C), 7.24 and 7.29 (each 1H, d, $J=6.0$ Hz, ArH×2)
15c	1690 ^{a)}	DMSO-d ₆	
15d	1655 (sh), 1645	DMSO-d ₆	2.42 (3H, d, J =0.9 Hz, ArCH ₃), 4.93—5.12 (3H, m, NCH ₂ C=CH), 5.17—5.28 (1H, m, CC=CH), 5.70—6.13 (1H, m, CCH=C), 6.93 (1H, d, J =0.9 Hz, ArH), 11.3—12.0 (1H, br, SH)
17 18	1705 1650 (sh), 1640	CDCl ₃ DMSO-d ₆	3.91 (3H, s, COOCH ₃), 6.97 and 8.15 (each 1H, d, $J=6.0$ Hz, $ArH \times 2$) 3.64 (2H, t, $J=7.2$ Hz, NCH_2CH_2O), 4.49 (2H, t, $J=7.2$ Hz, NCH_2CH_2O), 7.20 and 7.30 (each 1H, d, $J=4.5$ Hz, $ArH \times 2$), 4.3—5.0 and 12.3—13.1 (each 1H, br, OH, SH)

a) CHCl₃.

(90 MHz) spectrometer and the chemical shifts are expressed in ppm from tetramethylsilane as an internal standard; s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; m, multiplet; br, broad. Mass spectra (MS) were obtained with a JEOL JMS-01SG or JMS-G300 mass spectrometer. Merck silica gel (Kieselgel 60 Art. 7734) was employed for column chromatography.

3-Allyl-2-mercaptothieno[3,2-d]pyrimidin-4(3H)-one(5b) (General Procedure) A solution of methyl 3-aminothiophene-2-carboxylate (4a) (26.00 g) and allylisothiocyanate (32.68 g) in n-PrOH (200 ml) was refluxed for 24 h and then the solvent was removed in vacuo. A 10% NaOH solution was added to the residue and the mixture was washed with AcOEt. The aqueous layer was acidified with 10% HCl solution, and the resulting

TABLE X. Spectral Data for Various Substituted 2,3-Dihydro-5H-thiazolothienopyrimidin-5-ones (6, 11, and 16)

zompa.	IR (CHCl ₃)		NMR
No.	cm ⁻¹	Solvent	δ : ppm
6a	1690 (sh), 1680 ^{a)}	DMSO-d ₆	3.58 (2H, t, $J = 7.5$ Hz, NCH ₂ CH ₂ S), 4.44 (2H, t, $J = 7.5$ Hz, NCH ₂ CH ₂ S), 7.22 and 8.11 (each 1H, d, $J = 5.1$ Hz, ArH × 2)
6b	1670 ^{a)}	CDCl ₃	1.60 (3H, d, $J = 6.0$ Hz, CH ₃), 3.95—4.33 (2H, m, NCH ₂ CHS), 4.43—4.77 (1H, m, NCH ₂ CHS), 7.14 and 7.74 (each 1H, d, $J = 5.1$ Hz, ArH × 2)
6с	1658 ^{a)}	CDCl ₃	1.10 (3H, t, $J = 7.4$ Hz, CH_2CH_3), 1.91 (2H, q, $J = 7.4$ Hz, CH_2CH_3), 3.89 (1H, q, $J = 6.9$ Hz, NCH_2CH_3), 4.20 (1H, dd, $J = 12.0$, 6.0 Hz, NCH_2CH_3), 4.61 (1H, dd, $J = 12.0$, 7.8 Hz, NCH_2CH_3), 7.20 and 7.75 (each 1H, d, $J = 5.4$ Hz, $ArH \times 2$)
6d	1670	CDCl ₃	4.50 (1H, dd, $J=12.3$, 7.8 Hz, NCHCHS), 4.91 (1H, dd, $J=12.3$, 7.5 Hz, NCHCHS), 5.18 (1H, dd, $J=7.8$, 7. Hz, NCH ₂ CHS), 7.23 and 7.76 (each 1H, d, $J=5.4$ Hz, ArH × 2), 7.33—7.57 (5H, m, PhH × 5)
6e	1671 ^{a)}	CDCl ₃	1.67 (6H, s, $\overline{CH_3} \times 2$), 4.29 (2H, s, NCH ₂), 7.20 and 7.74 (each 1H, d, $J = 5.7$ Hz, ArH × 2)
6f	1672 ^{a)}	CDCl ₃	1.59 (3H, d, J = 6.3 Hz, CH ₃), 3.03 (1H, d, J = 11.7 Hz, NCHCHS), 3.84 (1H, dd, J = 11.7, 7.8 Hz, NCHCHS) 5.29 (1H, q, J = 6.6 Hz, NCHCHS), 7.18 and 7.76 (each 1H, d, J = 5.4 Hz, ArH × 2)
6g	1725 (sh), 1675	CDCl ₃	3.28 (1H, dd, $J=11.1$, 1.8 Hz, NCHCHS), 4.12 (1H, dd, $J=11.1$, 8.4 Hz, NCHCHS), 6.16 (1H, dd, $J=8.4$, 1. Hz, NCHCHS), 7.23 and 7.74 (each 1H, d, $J=5.4$ Hz, ArH \times 2)
6h	1680 (sh), 1665	CDCl ₃	2.59 (3H, s, ArCH ₃), 3.48 (2H, t, $J = 7.5$ Hz, NCH ₂ CH ₂ S), 4.53 (2H, t, $J = 7.5$ Hz, NCH ₂ CH ₂ S), 6.88 (1H, s, ArH)
6i	1680 (sh), 1665	CDCl ₃	1.57 (3H, d, $J = 6.3$ Hz, CH ₃), 2.57 (3H, d, $J = 2.4$ Hz, ArCH ₃), 3.90—4.31 (2H, m, NCH ₂ CHS), 4.44—4.74 (1H m, NCH ₂ CHS), 6.85 (1H, d, $J = 2.4$ Hz, ArH)
6 j	1675 (sh), 1670	CDCl ₃	1.57 (3H, d, $J = 6.0$ Hz, CH ₃), 2.57 (3H, s, ArCH ₃), 2.98 (1H, d, $J = 11.7$ Hz, NCHCHS), 3.80 (1H, dd, $J = 11.7$ Hz, NCHCHS), 5.27 (1H, q, $J = 6.9$ Hz, NCHCH ₂ S), 6.88 (1H, s, ArH)
6k	1805, 1690, 1608 ^{a)}	DMSO-d ₆	0.82—1.10 (6H, m, CH ₃ ×2), 1.43—1.97 (3H, m, CH ₂ CHMe ₂), 2.57 (3H, d, <i>J</i> =1.5 Hz, ArCH ₃), 3.33 (1H, d, <i>J</i> =11.7 Hz, SCHCHN), 3.80 (1H, dd, <i>J</i> =11.7, 7.5 Hz, SCHCHN), 4.96—5.28 (1H, m, SCHCHN), 6.99 (1H, d, <i>J</i> =1.5 Hz, ArH)
6 l	1680 (sh), 1665	CDCl ₃	1.35 (3H, t, <i>J</i> = 7.5 Hz, CH ₂ CH ₃), 2.91 (2H, q, <i>J</i> = 7.5 Hz, CH ₂ CH ₃), 3.48 (2H, t, <i>J</i> = 7.5 Hz, NCH ₂ CH ₂ S), 4.5 (2H, t, <i>J</i> = 7.5 Hz, NCH ₂ CH ₂ S), 6.91 (1H, s, ArH)
6m	1670	CDCl ₃	1.59 (3H, d, J = 6.9 Hz, CH ₃), 2.32 (3H, s, ArCH ₃), 3.90—4.30 (2H, m, NCH ₂ CHS), 4.44—4.76 (1H, m, NCH ₂ CHS), 7.37 (1H, s, ArH)
6n	1670	CDCl ₃	2.20 and 2.48 (each 3H, s, ArCH ₃ × 2), 3.48 (3H, t, $J = 7.5$ Hz, NCH ₂ CH ₂ S), 4.55 (2H, t, $J = 7.5$ Hz, NCH ₂ -CH ₂ S)
6 0	1665, 1655 (sh)	CDCl ₃	1.57 (3H, d, $J = 6.3$ Hz, CH ₃), 2.21 and 2.47 (each 3H, s, ArCH ₃ × 2), 3.38—4.30 (2H, m, NCH ₂ CHS), 4.43—4.74 (1H, m, NCH,CHS)
11a	1665 ^a)	DMSO- d_6	3.50 (2H, t, $J = 7.2 \text{Hz}$, NCH ₂ CH ₂ S), 4.33 (2H, t, $J = 7.2 \text{Hz}$, NCH ₂ CH ₂ S), 7.52 and 8.42 (each 1H, d, $J = 3.0 \text{Hz}$, ArH × 2)
11b	1680 (sh), 1675	CDCl ₃	1.57 (3H, d, $J = 6.3$ Hz, CH ₃), 3.85—4.20 (2H, m, NCH ₂ CHS), 4.37—4.70 (1H, m, NCH ₂ CHS), 7.31 and 8.21 (each 1H, d, $J = 3.3$ Hz, ArH × 2)
11c	1675	CDCl ₃	1.38 (3H, d, J = 6.6 Hz, CH ₃), 2.89 (3H, s, ArCH ₃), 3.80—4.13 (2H, m, NCH ₂ CHS), 4.32—4.62 (1H, m, NCH ₂ CHS), 6.96 (1H, s, ArH)
11d	1670	DMSO- d_6	1.47 (3H, d, J=6.3 Hz, CH ₃), 2.50 (3H, s, ArCH ₃), 3.87—4.56 (3H, m, NCH ₂ CHS), 8.15 (1H, s, ArH)
11e	1705 (sh), 1670	CDCl ₃	1.64 (6H, s, CH ₃ × 2), 2.60 (3H, s, ArCH ₃), 4.16 (2H, s, NCH ₂ CS), 7.97 (1H, s, ArH)
11f	1675	CDCl ₃	1.34 (3H, t, J =7.5 Hz, CH_2CH_3), 3.07 (2H, q, J =7.5 Hz, CH_2CH_3), 3.41 (2H, t, J =7.2 Hz, NCH_2CH_2S), 4.4 (2H, t, J =7.2 Hz, NCH_2CH_2S), 8.00 (1H, s, ArH)
11g	1670	CDCl ₃	1.32 (3H, t, $J=7.5$ Hz, CH_2CH_3), 1.55 (3H, d, $J=6.3$ Hz, CH_3), 3.05 (2H, q, $J=7.5$ Hz, CH_2CH_3), 3.80—4.17 (2H, m, NCH_2CHS), 4.33—4.64 (1H, m, NCH_2CHS), 7.97 (1H, s, ArH)
11h	1675 ^{a)}	CDCl ₃	1.33 (3H, t, $J = 7.7$ Hz, CH_2CH_3), 1.64 (6H, s, $CH_3 \times 2$), 3.07 (2H, q, $J = 7.7$ Hz, CH_2CH_3), 4.18 (2H, s, NCH_3CH_3), 8.01 (1H, s, ArH)
11i	1675	CDCl ₃	2.50 and 2.82 (each 3H, s, ArCH ₃ × 2), 3.34 (2H, t, $J = 7.2$ Hz, NCH ₂ CH ₂ S), 4.24 (2H, t, $J = 7.2$ Hz, NCH ₂ CH ₂ S)
11j	1775	CDCl ₃	1.54 (3H, d, $J = 6.3$ Hz, CH ₃), 2.50 and 2.83 (each 3H, s, ArCH ₃ × 2), 3.78—4.12 (2H, m, NCH ₂ CHS), 4.28—4.78 (1H, m, NCH ₂ CHS)
11k	1675	CDCl ₃	1.62 (6H, s, $CH_3 \times 2$), 2.50 and 2.74 (each 3H, s, $ArCH_3 \times 2$), 4.10 (2H, s, NCH_2CS)
111 16a	1690 1685 ^{a)}	$CDCl_3$ DMSO- d_6	3.45 (2H, t, $J=7.5$ Hz, NCH ₂ CH ₂ S), 4.45 (2H, t, $J=7.5$ Hz, NCH ₂ CH ₂ S), 8.01 (1H, s, ArH) 3.58 (2H, t, $J=7.5$ Hz, NCH ₂ CH ₂ S), 4.42 (2H, t, $J=7.5$ Hz, NCH ₂ CH ₂ S), 7.34 and 7.37 (each 1H, d, $J=6.0$ Hz, ArH ~ 2)
10	1.6.609)	DMcO 1	Hz, ArH×2)
16b	1660 ^{a)}	$DMSO-d_6$	1.50 (3H, d, $J = 6.0$ Hz, CH ₃), 4.01—4.68 (3H, m, NCH ₂ CHS), 7.33 and 7.43 (each 1H, d, $J = 5.7$ Hz, ArH × 1.58 (3H, d, $J = 6.0$ Hz, CH ₃), 2.52 (3H, d, $J = 1.8$ Hz, ArCH ₃), 3.90—4.28 (2H, m, NCH ₂ CHS), 4.41—4.72 (1H ₃), 4.41—4.41 (1H ₃), 4.41 (1H
16c	1675, 1665 (sh) ^{a)}	CDCl ₃	1.38 (3H, d, J = 6.0 Hz, CH ₃), 2.32 (3H, d, J = 1.8 Hz, ArCH ₃), 3.90—4.28 (2H, m, NCH ₂ CHS), 4.41—4.72 (1H m, NCH ₂ CHS), 6.65 (1H, d, J = 1.8 Hz, ArH) 1.57 (3H, d, J = 6.3 Hz, CH ₃), 2.48 (3H, d, J = 1.8 Hz, ArCH ₃), 3.89—4.27 (2H, m, NCH ₂ CHS), 4.40—4.73 (1H m, NCH ₂ CHS), 4.40—4.40 (1H m, NCH ₂ CHS), 4.40—4.40 (1H m, NCH ₂ CHS), 4.40
16d	1680, 1660 ^{a)}	CDCl ₃	m, NCH ₂ CHS), 7.01 (1H, d, $J=1.8$ Hz, ArH)

TABLE XI. Spectral Data for Various Polymethylene Condensed Thienopyrimidines (19, 20, and 21)

Compd.	IR (CHCl ₃)		NMR
No.	cm ⁻¹	Solvent	δ: ppm
19a	1680 (sh), 1670, 1655 (sh)	CDCl ₃	2.11—2.48 (2H, m, 7-CH ₂), 3.17 (2H, t, J =8.0 Hz, 8-CH ₂), 4.22 (2H, t, J =7.4 Hz, 6-CH ₂), 7.26 and 7.75 (each 1H, d, J =5.4 Hz, ArH×2)
19b	1675, 1660	CDCl ₃	(each 1H, d, $J = 5.4$ Hz, $J = 1.81$ Hz), 290—3.12 (2H, m, 9-CH ₂), 4.02—4.24 (2H, m, 6-CH ₂), 7.24 and 7.74 (each 1H, d, $J = 5.4$ Hz, ArH×2)
19c	1665	CDCl ₃	1.63-2.00 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.96-3.17 (2H, m, 10-CH ₂), 4.30-4.55 (2H, m, 6-CH ₂), 7.25 and 7.75 (each 1H, d, $J = 5.4$ Hz, ArH × 2)
19d	1660	CDCl ₃	2.08-2.50 (2H, m, 7-CH ₂), 2.59 (3H, d, $J=1.8$ Hz, ArCH ₃), 3.16 (2H, t, $J=8.0$ Hz, 8 -CH ₂), 4.21 (2H, $J=7.1$ Hz, 6 -CH ₂), 6.94 (1H, d, $J=1.8$ Hz, ArH)
19e	1665	CDCl ₃	1.77—2.11 (4H, m, 7-CH ₂ , 8-CH ₂), 2.59 (3H, s, ArCH ₃), 2.80—3.02 (2H, m, 9-CH ₂), 3.93—4.13 (2H, m, 6-CH ₂), 6.92 (1H, s, ArH)
19f	1660	CDCl ₃	1.67 - 1.96 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.59 (3H, d, $J = 1.5$ Hz, ArCH ₃), 2.93—3.17 (2H, m, 10-CH ₂), 4.30—4.53 (2H, m, 6-CH ₂), 6.91 (1H, d, $J = 1.5$ Hz, ArH)
19g	1660	CDCl ₃	1.60—1.75 (4H, m, 8-CH ₂ , 9-CH ₂), 1.75—2.18 (4H, m, 7-CH ₂ , 10-CH ₂), 2.59 (3H, s, ArCH ₃), 2.92—3.13 (2H, m, 11-CH ₂), 4.26—4.46 (2H, m, 6-CH ₂), 6.95 (1H, s, ArH)
19h	1665	CDCl ₃	1.24—1.68 (6H, m, 8-CH ₂ , 9-CH ₂ , 10-CH ₂), 1.80—2.15 (4H, m, 7-CH ₂ , 11-CH ₂), 2.59 (3H, s, ArCH ₃), 2.93—3.11 (2H, m, 12-CH ₂), 4.26—4.43 (2H, m, 6-CH ₂), 6.94 (1H, s, ArH)
19i	1665	CDCl ₃	1.36 (3H, t, J =7.5 Hz, ArCH ₂ CH ₃), 2.07—2.51 (2H, m, 7-CH ₂), 2.93 (2H, q, J =7.5 Hz, ArCH ₂ CH ₃), 3.15 (2H, t, J =8.1 Hz, 8-CH ₂), 4.20 (2H, t, J =6.9 Hz, 6-CH ₂), 6.98 (1H, s, ArH)
19j	1665	CDCl ₃	1.36 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 1.80—2.10 (4H, m, 7-CH ₂ , 8-CH ₂), 2.74—3.08 (4H, m, ArCH ₂ CH ₃ , 9-CH ₂), 4.00—4.19 (2H, m, 6-CH ₂), 6.95 (1H, s, ArH)
19k	1665	CDCl ₃	1.37 (3H, t, $J = 7.5$ Hz, ArCH ₂ CH ₃), 1.85 (6H, br s, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.93 (2H, q, $J = 7.5$ Hz, ArCH ₂ ·CH ₃), 2.94—3.15 (2H, m, 10-CH ₂), 4.33—4.50 (2H, m, 6-CH ₂), 6.97 (1H, s, ArH)
191	1665	CDCl ₃	2.09—2.53 (2H, m, 7-CH ₂), 2.25 and 2.49 (each 3H, s, ArCH ₃ × 2), 3.18 (2H, t, J =7.7 Hz, 8-CH ₂), 4.21 (2H, t, J =7.1 Hz, 6-CH ₂)
19m	1665	CDCl ₃	(211, 1, 3 = 1.112, 3 = 0.112) 1.77—2.10 (4H, m, 7-CH ₂ , 8-CH ₂), 2.24 and 2.48 (each 3H, s, ArCH ₃ × 2), 2.88—3.13 (2H, m, 9-CH ₂), 4.01—4.20 (2H, m, 6-CH ₂)
19n	1660	CDCl ₃	1.85 (6H, br s, 7-CH ₂ , 8-CH ₂), 2.25 and 2.48 (each 3H, s, ArCH ₃ × 2), 2.96—3.20 (2H, m, 10-CH ₂), 4.33—4.52 (2H, m, 6-CH ₂)
20a	1690 (sh), 1675, 1630	CDCl ₃	2.05—2.43 (2H, m, 7-CH ₂), 3.06 (2H, t, J =8.0 Hz, 8-CH ₂), 4.10 (2H, t, J =7.1 Hz, 6-CH ₂), 7.43 and 8.25 (each 1H, d, J =3.6 Hz, ArH×2)
20b	1690 (sh), 1670, 1610	CDCl ₃	1.74 - 2.15 (4H, m, 7-CH ₂ , 8-CH ₂), 2.82 - 3.03 (2H, m, 9-CH ₂), 3.95 - 4.14 (2H, m, 6-CH ₂), 7.42 and 8.25 (each 1H, d, $J = 3.6$ Hz, ArH × 2)
20c	1675	CDCl ₃	1.67—2.01 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.85—3.13 (2H, m, \pm 10-CH ₂), 4.18—4.34 (2H, m, 6-CH ₂), 7.43 and 8.24 (each 1H, d, $J = 3.6$ Hz, ArH × 2)
20d	1685, 1670, 1625	CDCl ₃	2.02—2.41 (2H, m, 7-CH ₂), 2.64 (3H, s, ArCH ₃), 3.06 (2H, t, J =7.8 Hz, 8-CH ₂), 4.08 (2H, t, J =7.4 Hz, 6-CH ₂), 7.98 (1H, s, ArH)
20e	1665, 1605	CDCl ₃	1.80—2.05 (4H, m, 7-CH ₂ , 8-CH ₂), 2.63 (3H, s, ArCH ₃), 2.80—3.03 (2H, m, 9-CH ₂), 3.93—4.14 (2H, m, 6-CH ₂), 8.00 (1H, s, ArH)
20f	1675 (sh), 1665	CDCl ₃	1.67—2.00 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.63 (3H, s, ArCH ₃), 2.88—3.11 (2H, m, 10-CH ₂), 4.17—4.39 (2H, m, 6-CH ₂), 7.98 (1H, s, ArH)
20g	1670, 1625	CDCl ₃	1.36 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 2.01—2.40 (2H, m, 7-CH ₂), 3.03 (2H, t, $J=6.3$ Hz, 8-CH ₂), 3.11 (2H, q, $J=7.5$ Hz, ArCH ₂ CH ₃), 4.08 (2H, t, $J=7.3$ Hz, 6-CH ₂), 8.03 (1H, s, ArH)
20h	1723, 1631 ^{a)}	$DMSO\text{-}d_6$	1.29 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 1.75—2.04 (4H, m, 7-CH ₂ , 8-CH ₂), 3.10—3.33 (2H, m, 9-CH ₂), 3.26 (2H, q, $J=7.5$ Hz, ArCH ₂ CH ₃), 3.85—4.04 (2H, m, 6-CH ₂), 8.54 (1H, s, ArH)
20i	1665	CDCl ₃	1.37 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 3.65—4.64 (2H, m, 6-CH ₂), 6.54 (1H, 3, 7HH) 1.37 (3H, t, $J=7.5$ Hz, ArCH ₂ CH ₃), 1.65—2.38 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.88—3.08 (2H, m, 10-CH ₂), 3.15 (2H, q, $J=7.5$ Hz, ArCH ₂ CH ₃), 4.16—4.40 (2H, m, 6-CH ₂), 8.02 (1H, s, ArH)
20j	1665, 1630	CDCl ₃	CH_2), 5.15 (2H, q, $3 = 7.5$ Hz, $AIC \underline{H}_2$ CH ₃), 4.10 = 4.40 (2H, iii, $6 = CH_2$), 6.02 (1H, s, $7IH_3$) 1.99—2.35 (2H, m, 7-CH ₂), 2.56 and 2.89 (each 3H, s, $ArCH_3 \times 2$), 3.02 (2H, t, $J = 8.0$ Hz, 8-CH ₂), 4.03 (2H, t, $J = 7.4$ Hz, 6-CH ₃)
20k	1670, 1610	CDCl ₃	$(2H, t, 3 = 7.4 Hz, 6-CH_2)$ 1.78—2.03 (4H, m, 7-CH ₂ , 8-CH ₂), 2.55 and 2.88 (each 3H, s, ArCH ₃ × 2), 2.75—2.98 (2H, m, 9-CH ₂), 3.87—4.08 (2H, m, 6-CH ₂)
201	1665	CDCl ₃	1.64 - 1.97 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.56 and 2.88 (each 3H, s, ArCH ₃ × 2), 2.78—3.08 (2H, m, 10-CH ₂), 4.10—4.35 (2H, m, 6-CH ₂)
20m	1690 (sh), 1680, 1630	CDCl ₃	CH_2), 4.10—4.35 (2H, m, 0-CH ₂) 2.04—2.43 (2H, m, 7-CH ₂), 3.11 (2H, t, J =7.8 Hz, 8-CH ₂), 4.09 (2H, t, J =7.2 Hz, 6-CH ₂), 8.04 (1H, s, ArH)
20n	1675	CDCl ₃	1.68—2.00 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.94—3.17 (2H, m, 10-CH ₂), 4.20—4.39 (2H, m, 6-CH ₂), 8.03 (1H, s, ArH)
21a	1665	CDCl ₃	(2.10-2.48 (2H, m, 7-CH2), 3.17 (2H, t, J=8.0 Hz, 8-CH2), 4.20 (2H, t, J=6.8 Hz, 6-CH2), 7.17 and 7.47 (each 1H, d, J=6.0 Hz, ArH×2)
21b	1675	CDCl ₃	(each 1H, d, $J = 0.0$ Hz, AH1×2) 1.82—2.20 (4H, m, 7-CH ₂ , 8-CH ₂), 2.86—3.13 (2H, m, 9-CH ₂), 3.99—4.20 (2H, m, 6-CH ₂), 7.14 and 7.47 (each 1H, d, $J = 6.0$ Hz, ArH×2)
21c	1660	CDCl ₃	(each 1H, d, $J = 0.0$ Hz, A1H × 2) 2.56—2.92 (2H, m, 7-CH ₂), 2.58 (3H, d, $J = 1.5$ Hz, ArCH ₃), 3.15 (2H, t, $J = 8.0$ Hz, 8-CH ₂), 4.16 (2H, t, $J = 7.2$ Hz, 6-CH ₃), 6.73 (1H, d, $J = 1.5$ Hz, ArH)
21d	1670	CDCl ₃	2.06-2.45 (2H, m, 7-CH ₂), 2.52 (3H, d, $J=1.5$ Hz, ArCH ₃), 3.15 (2H, t, $J=7.8$ Hz, 8-CH ₂), 4.18 (2H, t,
21e	1665	CDCl ₃	J=7.5 Hz, 6-CH ₂), 7.10 (1H, d, $J=1.5$ Hz, ArH) 1.84—2.10 (4H, m, 7-CH ₂ , 8-CH ₂), 2.51 (3H, d, $J=1.5$ Hz, ArCH ₃), 2.87—3.10 (2H, m, 9-CH ₂), 3.97—4.16 (2H, m, 6-CH ₂), 7.08 (1H, d, $J=1.5$ Hz, ArH)
21f	1665	CDCl ₃	4.16 (2H, m, 6-CH ₂), 7.08 (1H, d, $J = 1.5$ Hz, ArH) 1.70—1.98 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.50 (3H, d, $J = 1.2$ Hz, ArCH ₃), 2.97—3.16 (2H, m, 10-CH ₂), 4.28—4.50 (2H, m, 6-CH ₂), 7.07 (1H, d, $J = 1.2$ Hz, ArH)

TABLE XI. (continued)

Compd	IR (CHCl ₃)		NMR						
No.	cm ⁻¹	Solvent	δ: ppm						
21g	1665	CDCl ₃	1.35 (6H, d, $J = 7.2$ Hz, CH(C $\underline{\text{H}}_3$) ₂), 2.09—2.45 (2H, m, 7-CH ₂), 2.96—3.39 (3H, m, C $\underline{\text{H}}$ (CH ₃) ₂ , 8-CH ₂), 4.18 (2H, t, $J = 7.2$ Hz, 6-CH ₂), 7.16 (1H, s, ArH)						
21h	1665	CDCl ₃	1.36 (6H, d, $J = 6.9$ Hz, $CH(CH_3)_2$), 1.80—2.15 (4H, m, 7-CH ₂ , 8-CH ₂), 2.84—3.36 (3H, m, $CH(CH_3)_2$)						
21i	1665	CDCl ₃	9-CH ₂), 3.95—4.19 (2H, m, 6-CH ₂), 7.15 (1H, s, ArH) 1.35 (6H, d, <i>J</i> =7.2 Hz, CH(CH ₃) ₂), 1.63—1.97 (6H, m, 7-CH ₂ , 8-CH ₂ , 9-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 1.63—1.97 (6H, m, 7-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 1.63—1.97 (6H, m, 7-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 1.63—1.97 (6H, m, 7-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 1.63—1.97 (6H, m, 7-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 1.63—1.97 (6H, m, 7-CH ₂), 2.90—3.38 (3H, m, CH-CH ₂), 2.90—3.90 (3H, m, CH ₂), 2.90—3.90 (3H, m, CH ₂), 2.90 (3H, m, CH ₂), 2.90 (3H, m, CH ₂), 2.90 (3H, m, CH ₂						
21j	1670	CDCl ₃	(CH ₃) ₂ , 10-CH ₂), 4.27—4.50 (2H, m, 6-CH ₂), 7.14 (1H, s, ArH) 2.08—2.45 (2H, m, 7-CH ₂), 3.15 (2H, t, $J = 7.8$ Hz, 8-CH ₂), 4.18 (2H, t, $J = 7.4$ Hz, 6-CH ₂), 7.30 (1H, s, ArH)						

a) KBr.

precipitate was collected by filtration and recrystallized from MeOH to give 5b (17.52 g, 47%) as colorless needles. Other compounds (5, 10 and 15) were similarly prepared. Other data are listed in Tables IV—IX.

Methyl 3-Isothiocyanato-5-methylthiophene-2-carboxylate(7h) (General Procedure) A solution of CSCl₂ (2.5 ml) in CHCl₃ (60 ml) and then a solution of methyl 3-amino-5-methylthiophene-2-carboxylate (4h) (5.00 g) in CHCl₃ (30 ml) were added dropwise to an aqueous NaHCO₃ solution [prepared from NaHCO₃ (3.70 g) and water (23 ml)] at room temperature and the whole was stirred at room temperature for 4 h. The organic layer was separated and the aqueous layer was extracted with CHCl₃. A residue obtained from the CHCl₃ extracts was chromatographed on silica gel and eluted with CHCl₃—hexane (1:1) to give 7h (6.80 g, 93%) as yellow needles. Other compounds (7, 12 and 17) were similarly prepared. Other data are listed in Tables IV—IX.

2-Mercapto-3-(2-methyl-2-propenyl)thieno[3,2-d]pyrimidin-4(3H)-one (5e) (General Procedure) A mixture of $7a^{2b}$ (2.00 g), 2-methylallylamine hydrochloride (1.30 g) and Et_3N (2.03 g) in CH_2Cl_2 (30 ml) was refluxed for 1 h. After evaporation of the solvent, 10% NaOH solution was added and the mixture was washed with AcOEt. The aqueous layer was acidified with 10% HCl solution and the resulting crystalline solid was collected by filtration. Recrystallization from EtOH afforded 5e (1.72 g, 72%) as colorless needles. Other compounds (10e, h, k) were similarly prepared. Other data are listed in Tables IV—VII.

3-(2-Hydroxybutyl)-2-mercaptothieno[3,2-d]pyrimidin-4(3H)-one (8c) (General Procedure) A solution of $7a^{2b}$ (1.02 g) in tetrahydrofuran (THF) (5 ml) was added dropwise to a stirred solution of 1-amino-2-butanol (0.8 ml) in THF (25 ml) at room temperature. The mixture was stirred for 2.5 h, then THF was evaporated off *in vacuo*, and 10% NaOH solution was added to the residue. The mixture was washed with AcOEt. The aqueous layer was acidified with 10% HCl solution and the resulting crystalline solid was collected. Recrystallization from MeOH gave 8c (0.67 g, 51%) as colorless prisms. Other compounds (8, 13 and 18) were similarly prepared. Other data are listed in Tables IV—IX.

2,3-Dihydro-2-methyl-5*H***-thiazolo**[**3,2-a**]**thieno**[**3,2-d**]**pyrimidin-5-one (6b) (General Procedure)** A solution of **5b** (2.00 g) in AcOH (20 ml) was refluxed for 2.5 h, with bubbling of anhydrous hydrogen chloride, and then allowed to stand at room temperature overnight. Water (ca. 70 ml) was added to the mixture, the resulting precipitate was filtered off, and the filtrate was extracted with CHCl₃. A residue obtained from the CHCl₃ extracts was chromatographed on silica gel and eluted with AcOEt—hexane (1:1). Recrystallization from CH₂Cl₂—hexane gave **6b** (1.38 g, 69%) as colorless needles. Other compounds **(6b, e, i, m, o, 11b—e, g, h, j, k** and **16b—d)** were similarly prepared. Other data are listed in Tables I and X.

2,3-Dihydro-5*H*-thiazolo[3,2-*a*]thieno[3,2-*d*]pyrimidin-5-one (6a) (General Procedure) A solution of 8a^{1b} (1.50 g) and methanesulfonic acid (15 ml) was heated at 120—130 °C for 30 min and then poured into ice-water (*ca.* 60 ml). The mixture was neutralized with 10% NaOH solution. The resulting precipitate was collected by filtration, washed with water and recrystallized from EtOH to give 6a (1.00 g, 72%) as colorless needles. Other compounds (6c, d, f—h, j—l, n, 11a, f, i and 16a) were similarly prepared. Other date are listed in Tables I and X.

6,7,8,9-Tetrahydro-4*H*-pyrido[1,2-*a*]thieno[3,2-*d*]pyrimidin-4-one (19b) (General Procedure) POCl₃ (1 ml) was added dropwise to a solution of 4a (1.50 g) and 2-piperidone (1.10 g) in 1,2-dichloroethane (8 ml) and the whole was refluxed for 10 min. The reaction mixture was poured into icewater, basified with saturated NaHCO₃ solution, and extracted with CH₂Cl₂. A residue obtained from the CH₂Cl₂ extracts was recrystallized from AcOEt to afford 19b (1.40 g, 71%) as colorless needles. Other

compounds (19—21, except 20m, n and 21j) were similarly prepared. Other data are listed in Tables II and XI.

8-Chloro-2,3-dihydro-5*H*-thiazolo[3,2-a]thieno[3,4-d]pyrimidin-5-one (11 l) (General Procedure for 16e and 20m) NCS (200 mg) was added to a solution of 11a (300 mg) in CHCl₃ (15 ml) and the whole was refluxed for 5 h. After cooling, the reaction mixture was poured into ice-water and extracted with CH₂Cl₂. A residue obtained from the CH₂Cl₂ extracts was recrystallized from EtOH to give 11 l (270 mg, 80%) as colorless needles. Other compounds (16e and 20m) were similarly prepared. Other data are listed in Tables I, II, X, and XI.

1-Chloro-7,8,9,10-tetrahydro-4*H*-azepino[1,2-a]thieno[3,4-d]pyrimidin-4-one (20n) SO₂Cl₂ (300 mg) was added dropwise to a stirred solution of 20c (500 mg) in CHCl₃ (20 ml) at room temperature. After being stirred for 4 h, the mixture was poured into saturated NaHCO₃ solution and extracted with CH₂Cl₂. A residue obtained from the CH₂Cl₂ extracts was chromatographed on silica gel and eluted with AcOEt-hexane (2:1). Recrystallization of the product from AcOEt-hexane gave 20n (301 mg, 52%) as colorless needles. Compound 21j was similarly prepared. Other data are listed in Tables I, II, X, and XI.

2-Bromomethyl-2,3-dihydro-5*H***-thiazolo**[3,2-*a*]**thieno**[3,2-*d*]**pyrimidin-5-one (22)** A solution of bromine (2.30 ml) in AcOH (15 ml) was added dropwise to an ice-cooled suspension of **5b** (10.00 g) in AcOH (80 ml) during 10 min and then the whole was stirred at room temperature for 1 h. The resulting crystalline solid was collected by filtration, washed with AcOH and Et₂O, and dried to give crude dibromide intermediate (16.78 g). K_2CO_3 (6.16 g) was added to a suspension of the dibromide in acetone (50 ml) at 0°C. Water (*ca.* 150 ml) was gradually added to the reaction mixture at 0°C, and the whole was stirred for 5 min. The precipitate was collected by filtration and recrystallized from MeOH to afford **22** (11.59 g, 86%) as colorless needles. mp 145—148 °C. *Anal.* Calcd for $C_9H_7BrN_2OS_2$: C, 35.65; H, 2.33; Br, 26.35; N, 9.24; S, 21.15. Found: C, 35.76; H, 2.25; Br, 26.67; N, 9.23; S, 21.41. IR (SR): 1670 cm⁻¹. NMR (DMF-SR) S: 3.98—4.11 (2H, m, CH₂Br), 4.38—4.72 (3H, m, NCH₂CHS), 7.24 and 8.15 (each 1H, d, S) S: 4Hz, ArH × 2). MS S: 304 (S).

2,3-Dihydro-2-methylene-5*H***-thiazolo[3,2-***a***]thieno[3,2-***d***]pyrimidin-5one (23)** A mixture of **22** (5.00 g) and morpholine (30 ml) was heated to 100 °C for 15 min with stirring, and then cooled. Water was added to the reaction mixture and the resulting precipitate was collected by filtration. Recrystallization from MeOH gave **23** (2.38 g, 65%) as colorless needles. mp 175—177 °C. *Anal.* Calcd for $C_9H_6N_2OS_2$: C, 48.63; H, 2.72; N, 12.60; S, 28.85. Found: C, 48.53; H, 2.58; N, 12.60; S, 28.64. IR (KBr): 1680 cm⁻¹. NMR (DMSO- d_6) δ : 5.09—5.20 (2H, m, NCH₂), 5.41—5.53 and 5.53—5.67 (each 1H, m, =CH₂), 7.27 and 8.15 (each 1H, d, J=5.4 Hz, ArH × 2). MS m/z: 222 (M⁺).

2-Methyl-5*H***-thiazolo[3,2-***a***]thieno[3,2-***d***]pyrimidin-5-one (24) A solution of 23 (506 mg) in concentrated H_2SO_4 (2 ml) was stirred at 40 °C for 15 min and the mixture was poured into ice-water. The solution was extracted with CHCl₃ and the extract was dried over MgSO₄. Evaporation of the solvent gave the crystalline residue, which was recrystallized from CHCl₃-hexane to afford 24 (417 mg, 82%) as colorless needles. mp 200—202 °C.** *Anal.* **Calcd for C_9H_6N_2OS_2: C, 48.63; H, 2.72; N, 12.60; S, 28.85. Found: C, 48.52; H, 2.77; N, 12.64; S, 29.03. IR (KBr): 1695, 1680 cm⁻¹ (sh). NMR (CDCl₃) \delta: 2.04 (3H, d, J=1.5 Hz, CH₃), 7.27 and 7.85 (each 1H, d, J=5.4 Hz, ArH × 2), 7.70 (1H, d, J=1.5 Hz, NCH=CS). MS m/z: 202 (M⁺).**

Gastric Secretion in Pylorus-Ligated Rats Sprague Dawley (Charles River Co., Ltd.) male rats, weighing 200—230 g, were divided into groups of four animals each and fasted for 24 h with free access to water before the

experiment. The animals were anesthetized with ether and the pylorus was ligated by the method of Shay $et~al.^{6}$) A dose of $50\,\mathrm{mg/kg}$ of a test compound suspended in 0.5% carboxymethylcellulose solution was given intraduodenally immediately after ligation of the pylorus in a volume of $2\,\mathrm{ml/kg}$ of body weight. Four hours later, the animals were sacrificed by carbon dioxide. The gastric contents were centrifuged at $3000\,\mathrm{rpm}$ for $10\,\mathrm{min}$, after which the volume of gastric juice was measured. The volume was then expressed as $\mathrm{ml}/100\,\mathrm{g}$ body weight.

References

- a) Part I: M. Sugiyama, T. Sakamoto, K. Tabata, K. Endo, K. Ito, M. Kobayashi and H. Fukumi, *Chem. Pharm. Bull.*, 37, 2091 (1989);
 b) H. Fukumi, M. Sugiyama and T. Sakamoto, *ibid.*, 37, 1197 (1989).
- 2) For thiazolo[3,2-a]thieno[2,3-d]pyrimidine derivatives, see: a) M. B. Devani, C. J. Shishoo, U. S. Pathak, S. H. Parikh, G. F. Shah and A. C. Padhya, J. Pharm. Sci., 65, 660 (1976); b) F. Kienzle, A. Kaiser and R. E. Minder, Helv. Chim. Acta, 66, 148 (1983); c) F. Sauter and W. Deinhammer, Monatsh. Chem., 105, 452 (1974); d) F. Sauter, W. Deinhammer and K. Danksagmüller, ibid., 105, 863 (1974); e) Idem, ibid., 105, 882 (1974); f) F. Sauter, W. Deinhammer and P. Stanetty,

- ibid., 105, 1258 (1974); g) M. S. Manhas and S. G. Amin, J. Heterocycl. Chem., 13, 903 (1976); h) H. K. Gakhar, S. Bhardwaj and P. Baveja, Indian J. Chem. Sect. B, 15B, 347 (1977).
- For polymethylene condensed thieno[2,3-d]pyrimidine derivatives, see: a) P. Blaskiewicz, H. Vorbrueggen and H. Koch, Ger. Patent 2411273 (1975) [Chem. Abstr., 83, 206324f (1975)]; b) K. Csukonyi, J. Lázár, G. Bernáth, I. Hermecz and Z. Mészáros, Monatsh. Chem., 117, 1295 (1986); c) V. I. Shvedov, I. A. Kharizomenova and A. N. Grinev, Khim. Geterotsikl. Soedin., 1975, 765 [Chem. Abstr., 83, 164119k (1975)]; d) I. Lalezari and M. H. Jabari-Sahbari, J. Heterocycl. Chem., 15, 873 (1978).
 D. C. H. Sun, "Etiology and Pathology of Peptic Ulcer. In
- D. C. H. Sun, "Etiology and Pathology of Peptic Ulcer. In Gastroenterology," Vol. 1 (3rd ed.), ed. by H. L. Bockus, Saunders Co., Philadelphia, 1974, pp. 579—610.
- A) J. M. Cargill, N. Peden, J. H. B. Saunders and K. G. Wormsley, Lancet, 1978(II), 1113; b) D. F. Martin, D. Hollanders, S. J. May, M. M. Ravenscroft, D. E. F. Tweedle and J. P. Miller, ibid., 1981(I), 7.
- 6) H. Shay, S. A. Komarov, S. S. Fels, D. Meranze, M. Gruenstein and H. Siplet, *Gastroenterology*, 5, 43 (1945).