THREE NOVEL NAPHTHOHYDROQUINONE DIMERS FROM RUBIA ONCOTRICHA

Ya-Fang QIAO,^a Koichi TAKEYA,^a Hideji ITOKAWA^a and Yoichi IITAKA^b

Department of Pharmacognosy, Tokyo College of Pharmacy,^a Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan and Faculty of Medicine, Teikyo University,^b Ohtsuka 359, Hachioji, Tokyo 192-03, Japan

The structures of three novel dimers made up of naphthoquinone derivatives, rubioncolins A, B and C, from *Rubia oncotricha* HAND-MAZZ, were determined by various spectroscopic methods and by X-ray diffraction.

KEYWORDS rubioncolin; *Rubia oncotricha*; Rubiaceae; naphthoquinone; naphthohydroquinone; dimer; ¹³C-¹H COSY; COLOC; LSPD; X-ray diffraction

Variously substituted anthraquinones, naphthoquinones and naphthohydroquinones were obtained from species of *Rubia*, e.g. *R. cordifolia* and *R. akane*, ¹⁾ *R. cordifolia* var. *pratensis*, ²⁾ *R. oncotricha*, ³⁾ etc. However dimers consisting of naphthoquinone derivatives were not known heretofore. This is the first report of the isolation and determination of three novel naphthohydroquinone dimers from *R. oncotricha*, also giving their proton and carbon signal assignments.

The methanol extract of the roots of *R. oncotricha* collected in China was partitioned between chloroform and water, then the chloroform-soluble fraction was separately column-chromatographed (Sephadex LH-20 and Silica gel) and rubioncolins A, B and C (Fig. 1) were isolated as yellowish needles, red-yellowish prisms and pale yellowish prisms respectively.

Rubioncolin A,⁴⁾ mp 235-236°C, had a molecular formula C₃₄H₃₂O₁₀ determined from HREIMS (m/z: Calc. 600.1992, Found. 600.1992, [M]⁺), and a pair of AA'BB' type aromatic protons (Table I) were identified by the ¹H NMR spectrum and ¹H-decoupling experiments at 400 MHz in CDCl₃. That was very important information for considering rubioncolin A to be made up of two naphthoquinone derivatives. The ¹H NMR spectrum also showed a singlet signal due to one proton, double doublet signals with a 5-Hz coupling constant due to two vicinal protons, one of them linked to a sp² carbon atom, as well as four methyl and two methoxyl groups (Table I). Based on the broad-band proton-decoupling ¹³C NMR and DEPT spectra, it has two ketonic carbonyl groups, two methoxy carbonyl groups, two aromatic oxygenated-carbons and four sp³

Fig. 1. Structures of Rubioncolins A-C

quarternary carbons (Table II). Also the $^{13}\text{C-}^{1}\text{H}$ COSY and long-range $^{13}\text{C-}^{1}\text{H}$ COSY (COLOC) experiments were invaluable for building up partial substructures (Fig. 2), and giving complete proton and carbon signal assignments (Table I and II). Two and three-bond correlations from H₃-14 and H₃-15 to C-13 and C-12, and from H-12, H₃-14' and H₃-15' to C-12' and C-13' were ascertained. The existence of α , β -unsaturated ketone was indicated by a correlation signal from H-11 to C-4 in the COLOC

October 1990 2897

spectrum. The location of C-11' were suggested by the correlations from C-3, C-2, C-4', C-3' and C-16, a methoxy carbonyl group, to H-11'. The remaining carbomethoxyl group was placed at C-2' by a lower-field signal due to a chelated hydroxyl proton. Another important three-bond coupling from HO-1' to C-9' appeared in the COLOC spectrum. This provided conclusive evidence for the proton and carbon signal assignments of the partial structure. Further NOE enhancements appeared between H3-14' and H-11' (21%), H3-15' and H-11' (14%), H3-15' and H-12 (15%), H3-14 and H-12 (12%), H3-14 and H-11 (21%), and between H3-15 and H-11 (16%) in the 1D-NOE spectra. So, the relative configurations of H-11' and C-13' were assumed to be cis-form, and C-13 and C-13' to be trans-form as shown in Fig. 1, and the assignments for the four methyl groups were specified as follows, the pro-S methyl groups were CH3-14 and CH3-14', and the pro-R methyl groups were CH3-15 and CH3-15'. According to the various spectral data, the structure of rubioncolin A was concluded to be as shown in Fig. 1, and that was confirmed by X-ray diffraction (Fig. 3).

Table I. ¹H NMR Spectral Data of Rubioncolins A-C (400 MHz, CDCl₃, Coupling Constants in Hz)

H-No.	HO-1	H-5	H-6	H-7	H-8	H-11	H-12	H3-14	H ₃ -15	H ₃ -17
A		7.80 (brd, 8)	7.57 (brt, 8)	7.68 (brt, 8)	7.93 (brd, 8)	7.20 (d, 5)	2.82 (d, 5)	1.43 (s)	1.69 (s)	3.66 (s)
В	11.85 (s)	7.87 (brd, 8)	7.60 (brt, 8)	7.54 (brt, 8)	8.32 (brd, 8)	6.74 (s)		1.85 (s)	1.60 (s)	4.28 (s)
С	12.50 (s)	7.60 (brd, 8)	7.58 (brt, 8)	7.53 (brt, 8)	8.47 (brd, 8)	3.69 (2H, brs)	5.06 (m)	1.53 (d, 1.2)	1.57 (d, 1.2)	3.99 (s)
U No	HO-1'	H-5'	H-6'	H-7'	H-8'	H-11'	H-3'	H3-14'	H3-15'	H3-17'
11-110.	110-1	11-3	11-0	11-7	11-0	11-11	11-3	113-14	113-13	**3-17
A A	10.64 (s)					5.36 (s)	11-3	1.17 (s)	1.85 (s)	4.12 (s)
							11-5			

a) Assignments may be exchangeable.

Table II. ¹³C NMR Spectral Data of Rubioncolins A-C (100 MHz, CDCl₃)

C-No	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A B	191.15 157.47	62.96 101.64	133.70 113.34	81.04 149.08	127.04 121.04	134.90 129.92		127.11 124.23	135.14 126.69	133.70 123.53	146.21 80.58	52.42 93.88	72.43 84.43	32.06 24.19	26.77 22.54	168.56 170.90	53.63 52.77
С	159.81	105.79	128.88	138.40	121.02	130.76	124.80	122.51	124.89	129.39	27.67	126.28 ^{a)}	132.51 ^{b)}	18.13	25.51	172.20	52.65
C-No	. 1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	11'	12'	13'	14'	15'	16'	17'
C-No A B	154.57 158.15	2' 104.11 104.48	3' 113.33 110.61	4' 149.73 141.43	5' 121.40 121.74	6' 129.61 129.78	7' 126.87 127.53	8' 124.40 124.76	9' 125.20 125.44	122.61		12' 100.91					

a), b), c) Assignments may be exchangeable.

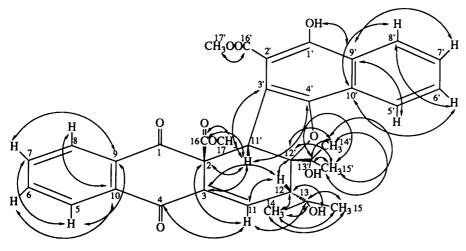


Fig. 2. ¹³C-¹H Correlations of Rubioncolin A (COLOC)

Rubioncolin B,⁵⁾ mp 235-236°C, had a molecular formula C₃₁H₂₄O₁₀ determined from EIMS (m/z: 556 [M]⁺), HREIMS (m/z: Calc. 556.1367, Found 556.1243, [M]⁺) and NMR data. Comparing the two NMR spectra indicated that the skeleton of rubioncolin B was similar to that of rubioncolin A. In the aromatic region of the ¹³C NMR spectrum, there were two oxygenated-carbons, eight quarternary carbons and two hydroxylated-carbons whose protons were chelated with ortho-positional carbomethoxyl groups respectively. That was suggested by the

hydroxyl proton signals in lower-field of the ¹H NMR spectrum (Table I). It was assumed that the above data comprised two very similar partial structures, 2-carbomethoxy-1,4-naphthohydroquinone derivatives. In the IR spectrum, the 1784 cm⁻¹ band showed five-membered ring lacton, whose location was confirmed by the two-bond correlations from H-11' to C-12', C-12 and C-3', and three-bond correlations from H-11' to C-11, C-2' and C-4' in the COLOC spectrum. Two singlets of methyl signals in the ¹H NMR spectrum were assigned to C-14 and C-15 respectively by a ¹H-¹³C COSY experiment, and they were adjacent to the

2898 Vol. 38, No. 10

same quarternary carbon C-13 confirmed by two-bond correlations from H₃-14 and H₃-15. Two- and three-bond correlations to H₋11 confirmed the location of C-3, C-4 and C-13. It was indicated that the relative configurations between H₋11' and CH₃-14, and H₋11 and CH₃-15 were in cis-form as shown in Fig. 1, because 21% and 29% NOE enhancements were found between them in the 1D-NOE spectra respectively. From the above results, the structure shown in Fig. 1 was derived, and it was established by the X-ray diffraction (Fig. 3). The proton and carbon signal assignments (Table I and II) were based on ¹³C-¹H COSY, COLOC data and LSPD with Gated Decoupling experiments (all at 500 MHz, in CDCl₃). Two- and three-bond correlations to HO-1 and HO-1' distinguished the locations between C-1 and C-1', C-2 and C-2', and C-9 and C-9' in the COLOC spectrum. The carbon signals of C-5 to 8 and C-5' to 8' were assigned by the three-bond correlation from H-7' to C-9', and two methoxycarbonyl groups by the four-bond correlation from HO-1 to C-16 in the LSPD spectrum.

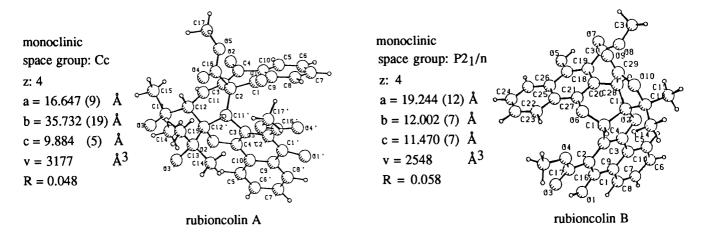


Fig. 3. Perspective View of Rubioncolins A and B

Rubioncolin C,⁶⁾ mp 171-172°C, had a molecular formula C₂₇H₂₂O₆ determined from HREIMS (m/z: Calc. 442.1414, Found 442.1366 [M]⁺), EIMS (m/z: 442 [M]⁺) and NMR spectra. A pair of AA'BB' type protons also were found as in A and B in the ¹H NMR and ¹H-decoupling spectra, but there were some difference among their coupling patterns (Table I). A multiplet signal owing to one alkene proton H-12 had vicinal couplings with two protons H₂-11 and long-range couplings with two methyl protons linked to a sp² carbon was suggested by the ¹H-decoupling experiments. They were ascribed to a prenyl group. The ¹³C NMR resonances of C-1', C-2' and C-4' comprised a 1,4-naphthoquionone oxygenated at C-2.⁷) The location of carbomethoxyl group found in the ¹³C NMR spectrum was shown to be linked to C-2 by a lower-field signal due to a chelated hydroxyl proton in the ¹H NMR spectrum. The remaining proton H-3' showed a singlet signal should be ascribed to C-3'. Also the important EIMS fragment of the 2-oxygen-1,4-naphthoquinone ion was indicated by m/z 269. In addition, a remaining carbon signal C-4 could be assigned to an oxygenated-carbon atom. So it had a structure as shown in Fig. 1.

REFERENCES AND NOTES

- 1) H. Itokawa, K. Mihara and K. Takeya, Chem. Pharm. Bull., 31, 2353 (1983).
- 2) H. Itokawa, Y.-F. Qiao and K. Takeya, Phytochemistry, 28, 3465 (1989).
- 3) H. Itokawa, Y.-F. Qiao and K. Takeya, Phytochemistry in press.
- 4) UV (MeOH) nm (ε): 220 (40143), 240 (31422), 265 (32736), 380 (4301), IR (CHCl₃) cm⁻¹: 1748, 1739 (sh), 1684, 1672 (C=O), 1648, 1622, 1602 (C=C), [α]_D +40.6° (c 0.3, CHCl₃).
- 5) UV (MeOH) nm (ε): 221 (42485), 247 (20710), 253 (22249), 262 (20592), 362 (7337), IR (CHCl₃) cm⁻¹: 1784, 1664, 1658 (sh) (C=O), 1652, 1640, 1608 (C=C), [α]_D 0° (c 0.3, CHCl₃).
- 6) UV (MeOH) nm (ε): 216 (43033), 243 (44180), 248 (47049), 259 (36967), 275 (17295), 305 (5328), 338 (6885), IR (CCl₄) cm⁻¹: 1688, 1662, 1658 (sh) (C=O), 1632, 1618, 1600, 1580 (C=C).
- 7) G. Hofle, Tetrahedron, 33, 1963 (1977).

(Received August 6, 1990)