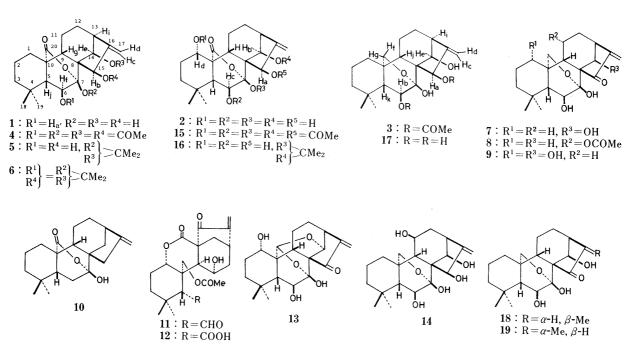
Studies on the Diterpenoid Constituents of *Rabdosia ternifolia*: Structural Elucidation of New Diterpenoids, Rabdoternins A, B and C

Yoshio Takeda,*,a Ko-ichi Takeda,a Tetsuro Fujita,a,i) Sun Han-Dong,b and Yoshinori Minamic

Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770, Japan, Kunming Institute of Botany, Academia Sinica, Kunming, Yunnan, China, and Research Laboratory, Taiho Pharmaceutical Co., Ltd., Tokushima 771–01, Japan. Received August 8, 1989

Three new diterpenoids, rabdoternins A (1), B (2) and C (3) have been isolated from the dried leaves of *Rabdosia ternifolia* (D. DON) HARA. Their structures have been elucidated on the basis of spectroscopic and chemical evidence.


Keywords Rabdosia ternifolia; Labiatae; rabdoternin A; rabdoternin B; rabdoternin C; diterpenoid; ent- 7β ,20-epoxy-kaur-16-en- 7α -ol; structure elucidation

During the course of our studies on biologically active diterpenoids from the plants of the genus $Rabdosia^{2}$ (Labiatae), we have isolated over forty new diterpenoids, some of which showed antibacterial and antitumor activities.³⁾ From R. ternifolia (D. DON) HARA, we have already isolated a new diterpenoid, isodonoic acid (12), together with known compounds, longikaurin A (7), longikaurin E (8) and isodonal (11).⁴⁾ In this study, we examined the diterpenoid constituents of the dried leaves of the title plant collected in Yunnan, China and isolated three new diterpenoids, rabdoternins A (1), B(2) and C (3),⁵⁾ together with two known compounds, oridonin (9)⁶⁾ and ponicidin (13).⁷⁾ This paper describes the structural elucidation of the new compounds.

The new compounds, rabdoternins A (1), B (2) and C (3), were isolated from the methanolic extract of the dried leaves of R. ternifolia according to the procedures described in the experimental section in yields of 0.0020, 0.0014 and 0.0018%, respectively.

Rabdoternin A (1), mp 250-252 °C, $[\alpha]_D$ -45.6° (MeOH), was obtained as colorless needles and was assigned the molecular formula $C_{20}H_{28}O_6$ on the basis of its high resolution mass spectrum (high-MS) and elemental analysis. Rabdoternin A (1) did not show any absorption maximum above 220 nm in the ultraviolet (UV) spectrum.

It contained an exo-methylene group [$\delta_{\rm H}$ 5.32 ($\rm H_d$) and 5.65 (H_c); $\delta_{\rm C}$ 110.4 (t) and 159.1 (s)] and a lactone group [$v_{\rm max}$ $1725 \,\mathrm{cm}^{-1}$; δ_{C} 175.4 (s)] as partial structures, as judged from its infrared (IR) spectrum, and proton and carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) spectra (Tables I and II). The presence of hydroxyl groups in the structure of 1 was suggested from the fact that strong absorption bands (v_{max} 3425 and 3225 cm⁻¹) were observed in the IR spectrum and the three proton signals due to three secondary carbinyl protons were observed at $\delta_{\rm H}$ 4.26 (1H, dd, J=4 and 4 Hz, changed to d, J=4 Hz on addition of $D_2O; H_f), 4.84 (1H, s; H_e), and 5.65 (2H, s; H_b, H_c) in the$ ¹H-NMR spectrum. The ¹³C-NMR spectrum showed the presence of three secondary carbinyl carbon atoms (δ_c 71.7, 72.4 and 74.7) and a ketalic carbon atom (δ_c 107.8), suggesting that there are four hydroxyl groups in the structure of 1 and that three of them are secondary and one is tertiary. In addition to the signals described above, the ¹³C-NMR spectrum showed signals due to two methyl groups, five methylene groups, three methine groups and three quaternary carbon atoms. Acetylation of 1 with a mixture of acetic anhydride and pyridine gave the tetraacetate (4). The ¹H-NMR spectrum of 1 showed two singlets at $\delta_{\rm H}$ 0.94 and 1.12 (each 3H, s) due to tertiary methyl groups. The spectral features mentioned above are like

© 1990 Pharmaceutical Society of Japan

Table I. 1H-NMR Spectral Data^{a)} for Rabdoternins A (1), B (2), C (3), Longikaurin A (7), and Their Derivatives

Proton	1	2	3	4	5 ^{b)}	6^{b}	7	15 ^{b)}	16	17
1-H		3.52 (m) ^{c)}						4.76 (dd, 5.5, 11.5)	3.60 (m) ^{c)}	
4-Me,	0.94 (s)	0.98 (s)	0.96 (s)	0.85 (s)	0.86 (s)	0.84 (s)	1.06 (s)	0.78 (s)	0.96 (s)	1.12 (s)
-	1.12 (s)	1.14 (s)	1.17 (s)	1.04 (s)	0.99 (s)	1.04 (s)	1.26 (s)	1.04 (s)	1.20 (s)	1.20 (s)
5-H	1.74 (d, 4)	1.78 (d, 4)	1.75 (dd, 1.5, 7.5)	1.85 (d, 6)					1.75 (d, 5.5)	1.56 (d, 6)
6-H	4.26^{d}	4.24^{d}	5.87 (d, 7.5)	6.18 (d, 6)	3.87^{d}	3.98 (d, 6)	4.20^{d}	6.23 (d, 5.5)	4.19^{d}	$4.20 \ (m)^{d}$
	(dd, 4, 4)	(dd, 4, 4)			(dd, 6, 3)		(dd, 6.5, 11)		(dd, 5.5, 5)	
9-H	2.88	3.12	2.50	2.89	2.48			2.96 (dd, 7, 12)	3.03	
		(dd, 6, 12)	(dd, 5.5, 12.5)	(dd, 6, 13)	(dd, 6, 14)				(dd, 6.5, 13)	
13-H			2.79 (br d, 10)	2.73 (d, 10)	2.68 (d, 8)		3.18 (br d, 9.5)	2.63 (br d, 10.5)	2.76 (br d, 9)	2.84 (br d, 8)
14-H	4.84 (s)	4.94 (s)	5.00 (s)	5.32 (s)	4.34 (s)	4.24 (s)	5.13 (brs)	5.33 (s)	4.61 (s)	4.92 (s)
15-H	5.65 (s)	5.66 (br s)	6.70 (t, 2)	6.51 (t, 2)	4.98 (m)	5.22 (m)		6.08 (brs)	5.49 (t, 2.5)	5.65 (s)
17-H ₂	5.32 (s)		5.27 (d, 2)	5.26 (brs)	5.24 (m)	5.13 (m)	5.51 (brs)	5.09 (d, 1)	5.31 (m)	5.32 (br s)
	5.65 (s)	5.66 (brs)	5.43 (brs)	5.44 (br s)	5.30 (m)	5.22 (m)	6.28 (br s)	5.24 (br s)	5.62 (br s)	5.65 (s)
20-H ₂	. ,		3.92 (dd, 1.5, 9.5)				3.95 (dd, 1.5, 10)			3.98 (d, 10)
			4.23 (dd, 1, 9.5)				4.16 (br d, 10)			4.17 (dd, 2, 10)
ОН	6.42 (s)	4.70 (d, 10)		3.18 (d, 3)		6.89 (d, 10)		5.82 (d, 3)	6.56 (m)
	8.70 (br s)	6.35 (s)			4.28 (d, 3)		7.37 (m)		9.09 (d, 5)	$7.84 (2 \times OH, m)$
		8.90 (brs)					9.02 (m)			8.38 (m)
		9.30 (d, 4)								
MeCO-		, , ,	2.15 (s)	1.99, 2.02				2.01, 2.03, 2.04,		
			2.33 (s)	2.21, 2.35 (s)				2.10, 2.21 (s)		
Me C)				1.48 (s)	1.56 (6H, s)			1.45 (s)	
,C ,					1.72 (s)	1.63 (s)			1.79 (s)	
Me´ `C)_					1.73 (s)				

a) Unless otherwise noted, spectra were measured in C_5D_5N . Multiplicity and J values (in Hz) are parentheses. Abbreviations: s, singlet; br s, broad singlet; d, doublet; br d, broad doublet; t, triplet; dd, doublet of doublets; m, multiplet. b) Measured for CDCl₃ solution. c) The signals changed to dd on addition of D_2O : 2, J=8 and 8 Hz; 16, J=6 and 11.5 Hz. d) The signals changed to d on addition of D_2O : 1, J=4 Hz; 2, J=4 Hz; 5, J=6 Hz; 7, J=6.5 Hz; 17, J=6.5 Hz; 17, J=6.5 Hz.

Table II. Carbon-13 Chemical Shifts $(\delta)^{al}$ of Rabdoternins A (1), B (2) and C (3)

Carbon	1	2	31.9 (t) ^{d)} 15.2 (t)	
1	32.3 (t) ^{b)}	73.4 (d)		
2	17.2 (t)	$32.8 (t)^{c}$		
3	40.9 (t)	39.2 (t)	41.7 (t)	
4	34.3 (s)	34.1 (s)	33.7 (s)	
5	54.7 (d)	55.0 (d)	54.1 (d)	
6	71.7 (d)	72.0 (d)	74.1 (d) ^{e)}	
7	107.8 (s)	108.4 (s)	97.9 (s)	
8	53.6 (s)	53.4 (s)	52.3 (s)	
9	42.7 (d)	44.5 (d)	46.9 (d)	
10	44.8 (s)	48.4 (s)	36.1 (s) 18.9 (t) 31.7 (t) ^{d)}	
11	19.2 (t)	20.9 (t)		
12	$29.6 (t)^{b}$	31.0 (t) ^{c)}		
13	45.4 (d)	45.5 (d)	45.5 (d)	
14	74.7 (d)	74.7 (d)	75.5 (d)	
15	72.4 (d)	72.5 (d)	$73.8 (d)^{e}$	
16	159.1 (s)	159.3 (s)	158.8 (s)	
17	110.4 (t)	110.1 (t)	111.1 (t)	
18	31.4 (q)	31.1 (q)	33.1 (q)	
19	21.1 (q)	20.9 (q)	22.5 (q)	
20	175.4 (s)	176.1 (s)	66.7 (t)	
CH₃CO			21.3, 22.0 (q)	
CH ₃ CO			170.6, 170.9 (s)	

a) The spectra were measured for C_5D_5N solutions. The assignments were based on proton noise decoupling, off resonance decoupling and single frequency selective decoupling experiments, and comparison of the data with those of closely related compounds. Multiplicity is given in parentheses: s, singlet; d, doublet; t, triplet; q, quartet. b-e) The assignments with the same superscript might be reversed.

those observed for longikaurin A $(7)^{9}$ except for the appearance of the signals due to a lactone carbonyl group and a secondary carbinyl carbon atom in 1 instead of those due to a methylene group having an oxygen atom on it (C-20) and a ketone group (C-15) in the ¹H- and ¹³C-NMR spectra. This suggested that rabdoternin A (1) has *ent*- 7β ,20-epoxy-kaur-16-en- 7α -ol-20-one (10) or its enantiomer

as its basic skeleton. The location of one of three secondary hydroxyl groups and the stereochemistry around this group were deduced as follows. In the ¹H-NMR spectrum of 1, irradiation at the frequency of H_f collapsed the signals due to H_i at $\delta_{\rm H}$ 1.74 and H_a at $\delta_{\rm H}$ 9.14 to singlets. On irradiation at the frequency of H_i or H_a , H_f collapsed to a doublet (J =4 Hz) in each case. On the other hand, nuclear Overhauser enhancement(NOE)s for H_f (9.5%) and H_i (10%), and for H_f (13.6%) were observed on irradiation at δ_H 1.12 and 0.94, separately. On irradiation at the frequency of H_i, NOE (11.1%) for H_g at $\delta_{\rm H}$ 2.88 was also observed. Thus, an axial hydroxyl group located at C-6 β in ring B, which takes a boat conformation. Additionally, a methine proton, H_i takes β -axial configuration at C-5 and a methine proton, H_{p} , showing NOE from H_{i} , is located at the 1,3- β -diaxial position at C-9. The locations of the remaining two secondary hydroxyl groups were deduced from the following results. In the ¹H-NMR spectrum of 1, the chemical shifts and coupling pattern of H_b and H_e are analogous to the signals due to 15α -H and 14α -H of rubescensin C (14) $[\delta_{\rm H}]$ 5.34 (15 α -H) and 4.50 (14 α -H)],⁸⁾ leading to the presumption that two hydroxyl groups might be located at C- 15β and C-14 β . This presumption was confirmed as follows. In the ¹H-NMR spectrum of the tetraacetate (4), H_c at δ_H 5.44 and H_d at $\delta_{\rm H}$ 5.26 collapsed to doublets ($J=2~{\rm Hz}$) and H_e at δ_H 5.32 became sharp on irradiation at the frequency of H_i at δ_H 2.73. On the other hand, H_d collapsed to a doublet (J=1 Hz) and H_c became sharp when the frequency of H_b at δ_H 6.51 was irradiated. Thus, H_b was assigned to 15-H, which is allylic to the exo-methylene group, and H_e was assigned to 14α -H which has a dihedral angle of ca. 90° to 13-H (H_i). Treatment of 1 with 2,2-dimethoxypropane in the presence of p-toluenesulfonic acid in N,Ndimethylformamide (DMF) gave the 7;14-acetonide (5) and 6;15, 7;14-diacetonide (6). In the ¹H-NMR spectrum of 5,

NOEs for H_b at δ_H 4.98 (8.6%) and H_e at δ_H 4.34 (9.1%) were observed on irradiation at δ 1.48 and 1.72, respectively. The configurations of the hydroxyl groups at C-14 and C-15 were thus determined as β . On the basis of these findings, the structure of rabdoternin A should be represented as ent-7 β ,20-epoxy-kaur-16-en-6 α ,7 α ,14 α -tetraol-20-one (1) or its enantiomer. The absolute stereochemistry will be described later.

Rabdoternin B (2), mp 262-265 °C, $[\alpha]_D -72.5$ ° (MeOH), was obtained as colorless needles. The molecular formula, C₂₀H₂₈O₇, determined on the basis of its elemental analysis and high-MS, has one more oxygen atom compared with that of 1. Rabdoternin B (2) contained a lactone group [13 C-NMR $\delta_{\rm C}$ 176.1 (s)], an *exo*-methylene group [1 H-NMR $\delta_{\rm H}$ 5.33 and 5.66; 13 C-NMR $\delta_{\rm C}$ 110.1 (t) and 159.3 (s)] and hydroxyl groups (IR 3570, 3420 and 3260 cm⁻¹) as partial structures as in the case of 1. The ¹³C-NMR spectrum further showed signals due to four secondary carbinyl carbon atoms ($\delta_{\rm C}$ 72.0, 72.5, 73.4 and 74.7) and a ketalic carbon atom ($\delta_{\rm C}$ 108.4) in addition to the signals due to two methyl groups, four methylene groups, three methine groups and three quaternary carbon atoms. Besides singlets [$\delta_{\rm H}$ 0.98 and 1.14 (each 3H, s)] due to two tertiary methyl groups, the ¹H-NMR spectrum of 2 showed signals due to four secondary carbinyl protons [δ_H 3.52 (m, changed to dd, J=8 and 8 Hz on addition of D_2O); H_d , 4.24 (dd, J=4 and 4 Hz, changed to d, J=4 Hz on addition of D_2O); H_c , 4.94 (s); H_b , and 5.66 (s), H_a]. The spectral features mentioned above are like those of 1 except for the appearance of a new signal at $\delta_{\rm H}$ 3.52 (H_d) due to a proton on carbon having a secondary hydroxyl group in the 1H-NMR spectrum, and an increment of the number of secondary carbinyl carbon atoms by 1 and a decrease in that of methylene group by 1 were observed in the ¹³C-NMR spectrum. Acetylation of 2 with a mixture of acetic anhydride and pyridine gave the pentaacetate (15) and the treatment of 2 with 2,2-dimethoxypropane in the presence of p-toluenesulfonic acid in DMF gave the 7;14-acetonide (16). These data suggested that rabdoternin B might have a structure in which a secondary hydroxyl group was introduced into the structure of rabdoternin A (1). The location of the secondaryl hydroxyl group was presumed to be located at C-1 α from the analogy of the chemical shift and the coupling pattern with those of oridonin (9) $[\delta_{\rm H}\,3.64$ (1H, dd, J=8 and 8 Hz), 1-H].⁶⁾ This presumption was further supported by the fact that the ¹³C-NMR signals due to C-2 and C-10 resonated 15.6 and 3.6 ppm downfield compared to those of 1 and finally confirmed by the finding that NOE (4%) was observed for the signal at $\delta_{\rm H}$ 3.52 on irradiation at $\delta_{\rm H}$ 1.78 in the ¹H-NMR spectrum of 2 and a NOE (7.6%) for the signal at $\delta_{\rm H}$ 3.03 was observed on irradiation at δ 3.60 (1-H) in the ¹H-NMR spectrum of 16. The stereochemistry of the hydroxyl groups at C-14 and C-15 was supported by the fact that NOEs for $H_{\rm a}$ at $\delta_{\rm H}$ 5.49 (5.9%) and H_b at δ_H 4.61 (12.8%) were observed on irradiation at δ_H 1.45 and 1.79, respectively, in the ¹H-NMR spectrum of 16. Thus, the structure of rabdoternin B should be represented as ent-7\beta,20-epoxy-kaur-16-en- 1β ,6 α ,7 α ,14 α ,15 α -pentaol-20-one (2) or its enantiomer. The absolute stereochemistry will be described later.

Rabdoternin C⁵⁾ (3), mp 222—224 °C, $[\alpha]_D$ –112.5° (MeOH), was obtained as colorless granules. The molecular

formula was determined as C₂₄H₃₄O₇ on the basis of elemental analysis and high MS. Besides singlets due to two tertiary methyl groups ($\delta_{\rm H}$ 0.96 and 1.17) and two acetyl groups ($\delta_{\rm H}$ 2.15 and 2.33), the ¹H-NMR spectrum showed signals due to an exo-methylene group [$\delta_{\rm H}$ 5.27 (1H, d, J= 2 Hz); H_d and 5.43 (1H, brs); H_c], a methylene group having an oxygen functional group [δ_H 3.92 (1H, dd, J=9.5and 1.5 Hz; H_f and 4.23 (1H, dd, J = 9.5 and 1 Hz); H_a , and three secondary carbinyl protons on carbons having a hydroxyl group or an acetoxy group [δ_H 5.00 (1H, s); H_e , 5.87 (1H, d, J = 7.5 Hz); H_b and 6.70 (1H, t, J = 2 Hz); H_a]. The ¹³C-NMR spectrum showed the presence of a methylene carbon atom having an oxygen function ($\delta_{\rm C}$ 66.7), three secondary carbinyl carbon atoms ($\delta_{\rm C}$ 73.8, 74.1 and 75.5), and a ketatic carbon atom ($\delta_{\rm C}$ 97.9) in addition to the signals due to an \emph{exo} -methylene group [$\delta_{\rm C}$ 111.1 (t) and 158.8 (s)], four methyl groups, five methylene groups, three methine groups and three quaternary carbon atoms. These spectral data are very like those of longikaurin A (7) except for the disappearance of the signal due to a ketone group (C-15) and the appearance of the signals due to a methine group having an oxygen functional group and two acetyl groups in the ¹H- and ¹³C-NMR spectra. This suggested that rabdoternin C has a structure in which the ketone group at C-15 in 7 is reduced to an allylic alcohol and then two of the three secondary hydroxyl groups are acetylated. Lithium aluminum hydride reduction of 3 gave deacetylrabdoternin C (17), which was treated under the conditions of the garryfoline-cuauchichicine rearrangement¹⁰⁾ to give 16R- and 16S-dihydrolongikaurin A (18 and 19).9) This fact confirmed the locations of the secondary carbinyl groups, β -orientation of the carbinyl group at C-15 and the absolute stereochemistry in the structure of rabdoternin C. Finally, the locations of two acetyl groups were determined as follows. One acetyl group was located on OH-6 β since the corresponding carbinyl proton signal (H_b) in 3 showed a downfield shift ($\delta_{\rm H}$ 5.87) compared with those of 1, 7 and 17 in the ¹H-NMR spectra. On the other hand, another acetyl group was determined to be located on OH-15 β on the basis of the fact that the corresponding signal ($\delta_{\rm H}$ 6.70) in 3 showed a similar chemical shift to that of 4 and a downfield shift compared with that of 17. Thus, the structure of rabdoternin C is represented as ent-7β,20-epoxy-kaur-16en- 6α , 7α , 14α , 15α -tetraol 6, 15-diacetate (3).

The absolute stereochemistry of rabdoternins A (1) and B (2), which had remained obscure, was elucidated to be as pictured on the basis of the fact that 1 and 2 showed negative plane curves, as in the case of rabdoternin C (3), in the optical rotatory dispersion (ORD) spectra.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on Hitachi EPI-S 2 spectrometer or Hitachi 215 spectrometer. $^1\text{H-NMR}$ spectra were taken with a JEOL PS 100, JEOL JNM FX 100 or JEOL JNM FX 200 spectrometer. $^{13}\text{C-NMR}$ spectra were taken with either of the latter two Fourie transform (FT) instruments for solutions in $C_5D_5\text{N}$. Tetramethylsilane was used as an internal standard and chemical shifts are given in δ (ppm) values. MS were determined with a JEOL JMS D-300 spectrometer. UV spectra were recorded with a Hitachi 330 spectrophotometer. Optical rotations and ORD spectra were taken with a JASCO ORD/UV-5 spectrometer. Kiesel gel 60 (0.063—0.200 mm, Merck) was used for column chromatography and precoated Silica gel 60 F_{254} plates (0.25 and 0.5 mm in thickness) were used for thin layer chromatography

(TLC) and preparative layer chromatography. Extracts were dried over anhydrous sodium sulfate or magnesium sulfate.

Isolation of Diterpenoids Dried leaves (9.1 kg) of Rabdosia ternifolia (D. DON) HARA, collected in Yunnan, China, were extracted with MeOH (36 l) at room temperature for 10 d. The MeOH extract was concentrated in vacuo to about 1.8 l. H₂O (0.2 l) was added to the concentrated solution and the resulting 90% MeOH solution was partitioned with n-hexane (2 1×3). The 90% MeOH layer was concentrated in vacuo. The residue was partitioned between EtOAc (total 3 l) and H₂O (1.5 l). The dried EtOAc extract was evaporated in vacuo to give a residue (338.7 g), wheih was chromatographed over silica gel (3 kg) with a mixture of CHCl₃ and Me₂CO as the eluant, with increasing Me₂CO content. The slower eluate (15 g) at 15% acetone content was rechromatographed on a silica gel (500 g) column with CHCl₃-MeOH (19:1). The earlier eluate (3.1 g) was repeatedly purified by chromatography on silica gel [solvent: CHCl₃-Me₂CO; Et₂O] and finally recrystallized from MeOH to give rabdoternin C (3) (165 mg). The slower eluate (5.1 g) was further separated by chromatography over silica gel (250 g) with CHCl₃-Me₂CO as the eluant, with increasing Me₂CO content, and the product was recrystallized from MeOH to give rabdoternin A (1) (182 mg) and rabdoternin B (2) (123 mg). The earlier eluate (5 g) at 20% Me₂CO content was further chromatographed twice with CHCl₃-Me₂CO as the eluant and the product was recrystallized from MeOH to give ponicidin (13) (365 mg). The eluate at 30% Me₂CO content gave a residue (40.8 g), an aliquot (3 g) of which was further purified by chromatography on silica gel and by recrystallization of the product to give oridonin (9) (1.07 g). The properties of the isolated diterpenoids are as follows.

Rabdoternin A (1), mp 250—252 °C, [α]²⁴ (nm) -40.4° (620), -45.6° (590), -56.0° (550), -69.0° (500), -115.9° (400) (c=0.19, MeOH). UV $\lambda_{\max}^{\text{MeOH}}$: no absorption maxima above 220 nm. IR ν_{\max}^{KBr} cm⁻¹: 3425, 3225, 1725, 1660, 1640. ¹H-NMR: see Table I. ¹³C-NMR: see Table II. MS m/z: 364.1896 (M)⁺. Calcd for C₂₀H₂₈O₆: 364.1886. *Anal.* Calcd for C₂₀H₂₈O₆: C, 65.91; H, 7.74. Found: C, 65.54; H, 7.80.

Rabdoternin B (2), mp 262—265 °C. [α]²⁰ (nm) -62.1° (620), -72.5° (590), -77.7° (550), -93.3° (500), -155.4° (400) (c=0.19, MeOH). UV λ_{max}^{MeOH} : no absorption maxima above 220 nm. IR ν_{max}^{KBr} cm⁻¹: 3570, 3420, 3260, 1745, 1665, 1650. 1 H-NMR: see Table I. 13 C-NMR: see Table II. MS m/z: 380.1849 (M) $^{+}$. Calcd for $C_{20}H_{28}O_{7}$: 380.1834. *Anal.* Calcd for $C_{20}H_{28}O_{7}$: 0, 63.14; H, 7.42. Found: C, 63.20; H, 7.49.

Rabdoternin C (18), mp 222—224 °C [α]²⁶ (nm) -107.1° (620), -112.5° (590), -133.9° (550), -166.1° (500), -294.6° (400) (c = 0.56, MeOH). UV $\lambda_{\max}^{\text{MeOH}}$, no absorption maxima above 220 nm. IR $\nu_{\max}^{\text{CHCl}_3}$ cm $^{-1}$: 3600—3150, 1730, 1260. ¹H-NMR: see Table II. ¹³C-NMR: see Table II. MS m/z: 434.2279 (M) $^{+}$. Calcd for C₂₄H₃₄O₇: 434.2304. *Anal*. Calcd for C₂₄H₃₄O₇: C, 66.34; H, 7.89. Found: C, 66.54; H, 8.19.

Oridonin (9), mp 243—249 °C, $[\alpha]_{\rm D}^{20}$ –68.0° (c=0.20, MeOH) and ponicidin (13), mp 241—242 °C, $[\alpha]_{\rm D}^{20}$ –130° (c=0.12, MeOH) were identical with authentic samples on the basis of mixed melting point determination and comparisons of IR and ¹H-NMR spectra.

Rabdoternin A **Tetraacetate (4)** Rabdoternin A (1) (20 mg) was acetylated with a mixture of acetic anhydride (0.2 ml) and pyridine (0.2 ml) at room temperature for 24 h. Excess MeOH was added to the reaction mixture and the solvent was removed *in vacuo*. The residue (34.5 mg) was purified by preparative layer chromatography (solvent: Et₂O) to give the tetraacetate (4) as an amorphous powder. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1770, 1740, 1660, 1600, 1380. ¹H-NMR: see Table I. MS m/z: 532.2279 (M)⁺. Calcd for $C_{28}H_{36}O_{10}$: 532.2252.

7;14-Monoacetonide (5) and 6;15,7;14-Diacetonide (6) of Rabdoternin A (1) Rabdoternin A (1) (20.8 mg) was dissolved in DMF (0.5 ml) and 2,2-dimethoxypropane (0.5 ml) and p-toluenesulfonic acid (0.5 mg) were added. The mixture was heated at 82 °C for 6.5 h. The solvent was removed in vacuo and the residue was partitioned between CHCl₃ and H₂O. The CHCl₃ extract was washed successively with saturated NaHCO₃ aqueous solution and H₂O, dried, and evaporated in vacuo to give a residue (26.0 mg), which was separated by preparative layer chromatography (solvent: Et₂O). The band showing an Rf value of 0.6 gave 5 (19.5 mg) and the band showing an Rf value of 0.7 gave 6 (3.6 mg).

the band showing an Rf value of 0.7 gave **6** (3.6 mg). 7;14-Monoacetonide (**5**): IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3580, 3460, 1750, 1660, ¹H-NMR (CDCl₃): see Table I. MS m/z: 404.2241. Calcd for C₂₃H₃₂O₆: 404.2199. 6;15,7;14-Diacetonide (6): IR $v_{max}^{CHCl_3}$ cm $^{-1}$: 1750, 1665. 1 H-NMR: see Table I. MS m/z: 444.2491. Calcd for $C_{26}H_{36}O_{6}$: 444.2473.

Rabdoternin B Pentaacetate (15) Rabdoternin B **(2)** (19.0 mg) was acetylated with a mixture of acetic anhydride (0.5 ml) and pyridine (0.5 ml) at room temperature for 24 h. The reaction mixture was treated and purified as above to give the pentaacetate **(15)** (17.1 mg). IR $v_{\text{max}}^{\text{CHCl}}$ cm⁻¹: 1780, 1750, 1730, 1660, 1230, 1205. ¹H-NMR: see Table I. MS m/z: 590.2365 (M)⁺. Calcd for $C_{30}H_{38}O_{12}$: 590.2363.

Rabdoternin B 7;14-Monoacetonide (16) A mixture of rabdoternin B (2) (17.6 mg), 2,2-dimethoxypropane (0.5 ml) and p-toluenesulfonic acid (1 mg) was heated at 84 °C for 6 h. Work-up as before gave a residue, which was purified by preparative layer chromatography (CHCl₃–Me₂CO, 93:7) to give the 7;14-monoacetonide (16) (14.2 mg) as an amorphous powder. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3475, 3425, 3200, 1720, 1660, 1370, 1225. ¹H-NMR see Table I. MS m/z: 420.2153 (M)⁺. Calcd for C₂₃H₃₂O₇: 420.2148.

Conversion of Rabdoternin C (3) to Dihydrolongikaurin A (18 and 19) suspension of LiAlH₄ (150 mg) in anhydrous Et₂O (15 ml) was added dropwise to a solution of rabdoternin C (72 mg) in anhydrous Et₂O (20 ml). The mixture was refluxed for 2 h. To the cooled mixture, EtOAc (25 ml) was added. The separated organic layer was washed successively with 2 N HCl and H₂O, dried and evaporated in vacuo to give a residue (50 mg), which was purified on a silica gel (10 g) column with CHCl₃-Me₂CO as the eluant with increasing Me₂CO content. The eluate at 20% Me₂CO content gave the deacetyl derivative (17) (19 mg) (¹H-NMR: see Table I). The deacetyl derivative (17) (19 mg) was dissolved in MeOH (2 ml), then 20% HCl aqueous solution (6 ml) was added and the mixture was stirred at room temperature for 39 h. Excess H₂O was added and the mixture was extracted with EtOAc. The EtOAc extract was washed successively with saturated NaHCO3 aqueous solution and H2O, dried and evaporated in vacuo. The residue was separated by preparative layer chromatography [solvent: CHCl₃-Me₂CO 9:1, developed three times] to give 16S-dihydrolongikaurin A (19) (3.9 mg) and 16R-dihydrolongikaurin A (18) (8.7 mg) as syrups. Both compounds were identical with authentic samples on the basis of comparisons of the IR, ORD and ¹H-NMR spectra.

Acknowledgements The authors thank to Mr. Zhou Jun, Director of Kunming Institute of Botany, and Mr. T. Suzue and Mr. H. Minami, Taiho Pharmaceutical Co., Ltd. for encouragement throughout this work. Thanks are also due to the staff of the Analytical Centre of this Faculty for measurements of elemental analyses, NMR spectra and mass spectra.

References and Notes

- 1) Present address: Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan.
- 2) H. Hara, Jpn. J. Bot., 47, 193 (1972).
- E. Fujita and M. Node, "Progress in the Chemistry of Organic Natural Products," Vol. 46, ed. by W. Herz, H. Grisebach, G. W. Kirby and Ch. Tamm, Springer-Verlag, Vienna and New York, 1984, pp. 77—157 and references cited therein.
- H. D. Sun, Z. W. Lin, Y. Minami, Y. Takeda and T. Fujita, *Yakugaku Zasshi*, 102, 887 (1982).
- 5) This compound was tentatively reported as rabdoternin E: see T. Fujita, Y. Takeda, K. Takeda, H. D. Sun, and Y. Minami, Abstract of Papers, 1984 International Chemical Congress of Pacific Basin Societies, Honolulu, December 1984, 10E72.
- E. Fujita, T. Fujita, H. Katayama, M. Shibuya, and T. Shingu, J. Chem. Soc. (C), 1970, 1674.
- 7) E. Fujita, M. Taoka, M. Shibuya, T. Fujita, and T. Shingu, J. Chem. Soc., Perkin Trans. 1, 1973, 2277.
- H. D. Sun, J. H. Chao, Z. W. Lin, T. Marunaka, Y. Minami, and T. Fujita, Chem. Pharm. Bull., 30, 341 (1982).
- a) Y. Takeda, T. Fujita, and T. Shingu, J. Chem. Soc., Perkin Trans.
 1, 1988, 379; b) T. Fujita, Y. Takeda, and T. Shingu, J. Chem. Soc., Chem. Commun., 1980, 205.
- a) C. Djerassi, C. R. Smith, A. E. Lipman, S. K. Figdor, and J. Herran, J. Am. Chem. Soc., 77, 4801 (1955); b) Idem, ibid., 77, 6633 (1955); c) M. F. Barnes and J. MacMillan, J. Chem. Soc. (C), 1967, 361.