

Studies on Cytotoxic Constituents in Pericarps of *Mallotus japonicus*. IV

Munehisa ARISAWA,^{*a} Akio FUJITA,^a Toshimitsu HAYASHI,^a Naokata MORITA,^a Tohru KIKUCHI,^b and Yasuhiro TEZUKA^b

Department of Medicinal Resources, Faculty of Pharmaceutical Sciences,^a and Department of Natural Product Chemistry, Research Institute for Wakan-Yaku (Oriental Medicine),^b Toyama Medical and Pharmaceutical University, 2630, Sugitani, Toyama 930-01, Japan. Received July 8, 1989

Two new phloroglucinol derivatives, isomallotolerin (1) and isomallotochromanol (2), were isolated from the cytotoxic fraction of the pericarps of *Mallotus japonicus*. The new derivatives were identified as 3-(3-methyl-2-hydroxybut-3-enyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phlorisobutyrophenone (1) and 6-acetyl-5,7-dihydroxy-8-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-2,2-dimethyl-3-hydroxychroman (2) from chemical and spectral data. Isomallotolerin and its acetate were found to be cytotoxic to KB cell line.

Keywords *Mallotus japonicus*; Euphorbiaceae; phloroglucinol derivative; cytotoxicity; ¹³C-NMR

Previously, we reported several cytotoxic phloroglucinol derivatives in pericarps of *Mallotus japonicus* MUELL. ARG. (Euphorbiaceae).¹⁻³⁾ In a continuing search for cytotoxic constituents in the CHCl₃-soluble fraction of the pericarps of *M. japonicus*, two new compounds named isomallotolerin (1) and isomallotochromanol (2) were isolated. We wish to report the structural elucidation and the cytotoxic activities of these new compounds. Separation of the extract of *M. japonicus* by column chromatography on Si gel³⁾ yielded 2 and a mixture of 1 and mallotolerin (3). The isolation of 1 was performed by high-performance liquid chromatography (HPLC).

Compound 1, C₂₆H₃₂O₉, gave a positive FeCl₃ reaction. The ultraviolet (UV) spectrum was similar to that of 3. The proton nuclear magnetic resonance (¹H-NMR) spectrum closely resembled that of 3, except for the appearance of the signals of an isopropyl ketone group at δ 1.19 (6H, d, $J=6.7$ Hz) and 4.05 ppm (1H, sept, $J=6.7$ Hz) instead of the signals of a propyl ketone. The carbon-13 nuclear magnetic resonance (¹³C-NMR) spectrum of 1 was also similar to that of 3, except for the appearance of the carbon signals of an isopropyl group at δ 18.93(q), 19.12(q) and 38.97 ppm(d) instead of the signals of a propyl group. The mass spectrum (MS) of 1 showed a molecular ion peak at m/z 488 and prom-

inent peaks at m/z 274, 259, 221, 209, 196 and 181, indicating a 3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl moiety.¹⁻³⁾ Reductive alkaline cleavage of 1 afforded 2,6-dihydroxy-3-methyl-4-methoxyacetophenone.¹⁾ From these chemical and spectral data and from biosynthetic considerations, the structure of 1 is proposed to be 3-(3-methyl-2-hydroxybut-3-enyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phlorisobutyrophenone, and it was named isomallotolerin (1). A Cotton effect was not detected in a circular dichroism (CD) study on its benzoate^{4,5)} and 1 was converted into the L-menthoxyacetyl derivatives, which showed two peaks on HPLC, the areas of which were equal.⁶⁾ From these results, the allylic alcohol on its side chain is considered to be racemic.

Compound 2, C₂₄H₂₈O₉, also gave a positive FeCl₃ reaction. The UV, IR and MS were similar to those of mallotochromanol (4). The ¹H-NMR spectrum closely resembled that of 4 with a slight difference in the methylene signals at δ 3.07 (1H, dd, $J=15.1, 8.3$ Hz) and 3.18 ppm (1H, dd, $J=15.1, 9.3$ Hz) and a methine proton at δ 4.87 ppm (1H, dd, $J=9.3, 8.3$ Hz). The signal of the methylene protons between the rings of 4 shifted upfield on acetylation, whereas the signal of the methylene protons between the rings of 2 showed a down-

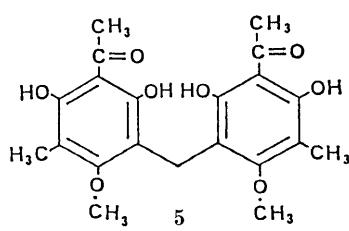
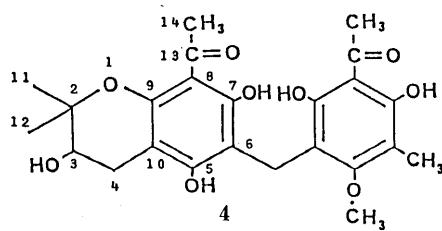
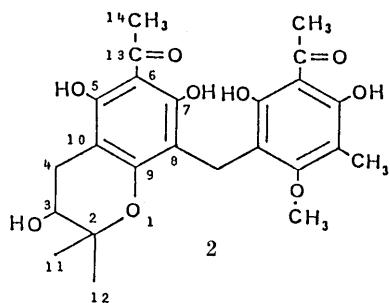
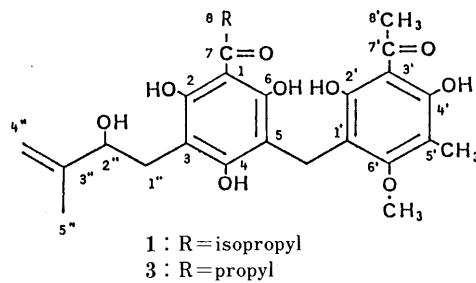





Chart 1

TABLE I. ^{13}C -NMR Chemical Shifts of **1**—**4**

Carbon No.	1 ^{a)}	3 ^{b)}	2 ^{c)}	4 ^{b)}
1	104.32 ^{d)}	104.94 ^{d)}		
2	159.68 ^{e)}	159.71 ^{e)}	69.96	78.49
3	106.31 ^{d)}	106.07 ^{d)}	89.96	68.49
4	159.79 ^{e)}	159.81 ^{e)}	26.99	26.09
5	104.61 ^{d)}	105.32 ^{d)}	154.54	160.72
6	160.12 ^{e)}	160.12 ^{e)}	104.77	105.20
7	211.87	207.55	158.69	160.91
8	38.97	46.04	101.52	105.01
9	18.93	18.13	165.05	155.08
10	19.12	14.02	103.66	99.47
11			22.94	22.02
12			26.34	24.84
13			202.46	203.79
14			32.44	32.89
1'	108.53	108.73	112.10	108.79
2'	157.16	157.39	163.54	157.22
3'	108.67	109.15	108.22	108.79
4'	162.02	162.47	158.97	162.56
5'	109.17	109.48	108.57	109.95
6'	159.99	159.90	163.65	159.95
7'	205.57	205.62	204.68	205.56
8'	33.50	33.77	33.09	33.75
1''	29.20	29.31		
2''	78.11	78.16		
3''	146.81	146.75		
4''	110.02	110.67		
5''	18.10	18.39		
Ar-CH ₂ -Ar	16.83	17.04	16.85	16.55
Ar-Me	8.52	8.82	8.84	8.27
OMe	61.58	61.83	60.01	61.81

a) Measured in $\text{CDCl}_3 + \text{CD}_3\text{OD}$. b) Measured in CDCl_3 . c) Measured in $\text{DMSO}-d_6$. d, e) Assignments may be interchanged.

TABLE II. Cytotoxicities of Phloroglucinol Derivatives Against KB Cells

Compound	ED ₅₀ ($\mu\text{g}/\text{ml}$)	Compound	ED ₅₀ ($\mu\text{g}/\text{ml}$)
1	0.84	1-Hexaacetate	1.5
2	>20	2-Tetraacetate	8.5
3	0.95	3-Hexaacetate	3.5
4	>20	4-Pentaacetate	8.6

field shift like that found in mallotophenone **5** after conversion to acetates.¹⁾ The ^{13}C -NMR spectrum was also similar to that of **4**, except for the signal due to C-3 which was shifted significantly downfield in comparison with that of **4**. The assignment of the ^1H - and ^{13}C -NMR signals of **2** was done by means of two-dimensional NMR with long range ^1H - ^{13}C shift correlation and by making use of the deuterium induced up-field shifts of alcoholic carbons in the ^{13}C -NMR spectrum.⁷⁾ From these spectral data, the structure of **2** is proposed to be 6-acetyl-5,7-dihydroxy-8-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-2,2-dimethyl-3-hydroxychroman, and it was named isomallotochromanol (**2**). The hydroxy group on the chroman ring is considered to be racemic based on the CD study⁸⁾ and separation of diastereomeric derivatives by HPLC, as in the case of compound **1**.

The isolated compounds **1**, **2** and their acetates were tested for cytotoxic activity in the KB system.¹⁾ While both **2** and its tetraacetate were inactive, as was **4**, **1** and its

hexaacetate showed significant cytotoxicity with ED₅₀ of 0.84 and 1.5 $\mu\text{g}/\text{ml}$, respectively. Further cytotoxic constituents of this plant are now under investigation.

Experimental

General Procedures All melting points were determined on a Yanagimoto micro melting point apparatus and are recorded uncorrected. UV and IR spectra were recorded on a Hitachi 220S double beam spectrophotometer and 260-10 infrared spectrometer with polystyrene calibration at 1601 cm^{-1} , respectively. Specific rotations were determined on a JASCO DIP-140 digital polarimeter. ^1H - and ^{13}C -NMR spectra were taken on a Varian XL-200 spectrometer at 200 and 50.3 MHz, respectively, and 2D-NMR spectra were taken on a JEOL JNM-GX 400 spectrometer with tetramethylsilane as an internal standard. The chemical shifts are recorded in δ (ppm) values. Mass spectra were obtained on a JEOL JMS-D-200 mass spectrometer operating at 70 eV. HPLC was performed on a Shimadzu LC-6A liquid chromatograph with an SPD-MIA spectrophotometric detector.

Extraction and Separation The extraction and separation of the dried pericarps of *M. japonicus* have been described previously.¹⁻³⁾ The 1% MeOH/CHCl₃ eluent (26 g) was rechromatographed on a silica gel column (benzene : AcOEt = 4 : 1) to give **2** (25 mg). The crude **1** and **3** from the 15% AcOEt/hexane eluate of the rechromatography on a silica gel column³⁾ were purified by preparative HPLC (column, Cosmobil 5C₁₈ 20 mm i.d. \times 25 cm; solvent, CHCl₃ : MeOH : 0.005 M phosphate buffer = 1 : 35 : 5; flow rate 5 ml/min; detection, UV 282 nm) to give **1** (13 mg, t_R 110 min) and **3** (30 mg, t_R 115 min), respectively.

Isomallotolerin (1) Yellow needles, mp 216—217 $^{\circ}\text{C}$ (CHCl₃). $[\alpha]_D^{23} \pm 0^{\circ}$ ($c = 0.63$, CHCl₃). *Anal.* Calcd for C₂₆H₃₂O₉: C, 63.91; H, 6.61. Found: C, 63.72; H, 6.55. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 285 (4.04), 323 (3.86). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3440 (OH), 3280, 1620 (C=O), 1605, 1420, 1300, 1280, 1145. ^1H -NMR (CDCl₃) δ : 1.19 (6H, d, $J = 6.7\text{ Hz}$, Me \times 2), 1.86 (3H, s, 5'-Me), 2.12 (3H, s, 5'-Me), 2.69 (1H, dd, $J = 15.0, 8.9\text{ Hz}$, 1''-Ha), 2.73 (3H, s, Ac), 3.14 (1H, dd, $J = 15.0, 1.8\text{ Hz}$, 1''-Hb), 3.74 (2H, s, Ar-CH₂-Ar), 3.98 (3H, s, OMe), 4.05 (1H, sept, $J = 6.7\text{ Hz}$, 8-H), 4.32 (1H, br d, $J = 8.9\text{ Hz}$, 2''-H), 4.90 (1H, br s, 4''-Ha), 5.03 (1H, br s, 4''-Hb). MS m/z 488 (M⁺), 470, 417, 274, 259, 221, 209, 196, 181. High-resolution MS measurement m/z 488.2079 (C₂₆H₃₂O₉ requires 488.2044). ^{13}C -NMR see Table I.

Acetylation of 1 Compound **1** was treated overnight with Ac₂O and pyridine at room temperature, and the reaction mixture was worked up as usual to give a hexaacetate as a colorless oil. ^1H -NMR (CDCl₃) δ : 1.10 (6H, d, $J = 6.8\text{ Hz}$, Me \times 2), 1.71 (3H, s, Me), 1.94 (3H, s, OAc), 2.06 (3H, s, Ar-Me), 2.13 (3H, s, OAc), 2.14 (3H, s, OAc), 2.23 (3H, s, OAc), 2.26 (3H, s, OAc), 2.29 (3H, s, OAc), 2.36 (3H, s, Ac), 2.56 (1H, m, 1''-Ha), 2.82 (1H, m, 1''-Hb), 2.88 (1H, m, 8-H), 3.56 (3H, s, OMe), 3.67 (2H, s, Ar-CH₂-Ar), 4.80 (2H, br s, 4''-H₂), 5.28 (1H, dd, $J = 7.3, 6.6\text{ Hz}$, 2''-H). MS m/z : 740 (M⁺).

Isomallotochromanol (2) Yellow needles, mp 150—152 $^{\circ}\text{C}$ (MeOH). $[\alpha]_D^{23} \pm 0^{\circ}$ ($c = 0.27$, EtOH). *Anal.* Calcd for C₂₄H₂₈O₉: C, 62.59; H, 6.09. Found: C, 62.48; H, 6.09. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 288 (4.40), 345 (3.74). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3480 (OH), 3430, 2930, 1630 (C=O), 1595, 1440, 1370, 1130, 1095. ^1H -NMR (CDCl₃) δ : 1.25 (3H, s, Me), 1.41 (3H, s, Me), 2.14 (3H, s, Ar-Me), 2.68 (3H, s, Ac), 2.71 (3H, s, Ac), 3.07 (1H, dd, $J = 15.1, 8.3\text{ Hz}$, 4-Ha), 3.18 (1H, dd, $J = 15.1, 9.3\text{ Hz}$, 4-Hb), 3.98 (3H, s, OMe), 3.70 (2H, d, $J = 1.71\text{ Hz}$, Ar-CH₂-Ar), 4.87 (1H, dd, $J = 9.3, 8.3\text{ Hz}$, 3-H). MS m/z : 460 (M⁺), 265, 209, 196, 181. High-resolution MS measurement m/z 460.1712 (C₂₄H₂₈O₉ requires 460.1732). ^{13}C -NMR see Table I.

Acetylation of 2 After acetylation as described for **1**, a tetraacetate was obtained as a colorless oil. ^1H -NMR (CDCl₃) δ : 1.00 (3H, s, Me), 1.02 (3H, s, Me), 2.03 (3H, s, Ar-Me), 2.09 (3H, s, OAc), 2.27 (6H, s, OAc \times 2), 2.30 (3H, s, OAc), 2.36 (3H, s, Ac), 2.39 (3H, s, Ac), 2.92 (1H, dd, $J = 15.7, 9.5\text{ Hz}$, 4-Ha), 3.00 (1H, dd, $J = 15.7, 8.4\text{ Hz}$, 4-Hb), 3.67 (1H, d, $J = 15.8\text{ Hz}$, Ar-HCH-Ar), 3.72 (3H, s, OMe), 3.90 (1H, d, $J = 15.8\text{ Hz}$, Ar-HCH-Ar), 4.55 (1H, m, 3-H). MS m/z : 628 (M⁺), 570, 528, 486, 249, 238, 209, 196.

Preparation of Benzoates of 1 and 2 Two drops of benzoyl chloride were added to a dry pyridine solution of **1** (5 mg), with ice cooling. The reaction mixture was evaporated *in vacuo* to obtain the crude benzoate, which was purified by preparative TLC with benzene-AcOEt (19 : 1) as the developing solvent. Recrystallization from MeOH gave the benzoate as colorless prisms, mp 110—112 $^{\circ}\text{C}$. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 233. Similar treatment of **2** (5 mg) gave its benzoate as colorless prisms, mp 94—96 $^{\circ}\text{C}$. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 234. These benzoates were examined by CD (EtOH) but showed no Cotton effect.

Analysis of L-Methoxyacetyl Derivatives of 1 and 2 Two drops of L-menthoxycetyl chloride were added to a dry pyridine solution of **1** (3 mg), at room temperature. After 12 h, water was added to the solution and the solvent was removed *in vacuo*. The residue was dissolved in chloroform (5 ml) and washed with water (3 ml \times 2). After being dried (Na_2SO_4), the solution was evaporated *in vacuo* and the residue was purified by preparative TLC with hexane-ethyl acetate (10:3) as the developing solvent. The diastereomeric mixture was obtained as a colorless viscous oil, which showed two peaks (t_R 18 and 19 min, respectively), the areas of which were equal on HPLC, under the following conditions: column, TSKgel Silica-60 (4.6 mm i.d. \times 250 nm); mobile phase, cyclohexane-ether (9:1); flow rate, 0.5 ml/min; temperature, 32 °C; detection, UV 254 nm. Similar treatment of **2** gave its L-menthoxycetyl derivative as a colorless viscous oil, which showed two peaks (t_R 12 and 13 min, respectively) the areas of which were equal on HPLC, under the following conditions: column, Cosmosil 5C₁₈ (4.6 mm i.d. \times 150 mm); mobile phase, acetonitrile-H₂O (99:1); flow rate, 1.0 ml/min; temperature, 32 °C; detection, UV 254 nm.

Reductive Alkaline Cleavage Reductive alkaline cleavage was carried out as described previously.¹⁾

Cytotoxicity Test The test employing KB cell line was carried out as

described previously.¹⁾

Acknowledgments The authors thank Mr. M. Morikoshi, analytical center of our University, for measurement of mass spectra.

References and Notes

- 1) M. Arisawa, A. Fujita, R. Suzuki, T. Hayashi, N. Morita, N. Kawano, and S. Koshimura, *J. Nat. Prod.*, **48**, 455 (1985).
- 2) M. Arisawa, A. Fujita, M. Saga, T. Hayashi, N. Morita, N. Kawano, and S. Koshimura, *J. Nat. Prod.*, **49**, 298 (1986).
- 3) A. Fujita, T. Hayashi, M. Arisawa, M. Shimizu, and N. Morita, *J. Nat. Prod.*, **51**, 708 (1988).
- 4) N. Harada, J. Iwabuchi, Y. Yokota, H. Uda, and K. Nakanishi, *J. Am. Chem. Soc.*, **103**, 5590 (1981).
- 5) N. C. Gonnella, K. Nakanishi, V. S. Martin, and K. B. Sharpless, *J. Am. Chem. Soc.*, **104**, 3775 (1982).
- 6) R. A. Halpin, S. F. El-Naggar, K. M. McCombe, K. P. Vyas, D. R. Boyd, and D. M. Jerina, *Tetrahedron Lett.*, **23**, 1655 (1982).
- 7) P. E. Pfeffer, K. M. Valentine, and F. W. Parrish, *J. Am. Chem. Soc.*, **101**, 1265 (1979).
- 8) N. Harada and K. Nakanishi, *Accounts Chem. Res.*, **5**, 257 (1972).