

SYNTHESIS OF SAFRAMYCINS. IV. SELENIUM OXIDE OXIDATION OF 4-OXO-HEXAHYDRO-1,5-IMINO-3-BENZAZOCIN-7,10-DIONE; PROMISING METHOD TO CONSTRUCT SAFRAMYCINS C AND D FROM SAFRAMYCIN B¹

Naoki SAITO, Yoko OHIRA, and Akinori KUBO*

Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo 154, Japan

9-Methoxy-3,8,11-trimethyl-4-oxo-1,2,3,4,5,6-hexahydro-1,5-imino-3-benzazocin-7,10-dione (13) is oxidized to the corresponding 6-hydroxy compound (14) with selenium oxide. This is a good way to make saframycins C (3) and D (4) from saframycin B (2).

KEYWORDS saframycin; preparation; hydroxylation; selenium oxide oxidation; stereoselective synthesis; redox reaction

Recently we totally synthesized (\pm)-saframycin B (2),² one of the antitumor antibiotics saframycins A-D (1-4)³ and renieramycins A-F (5-10)⁴ (Chart 1). Here we report the synthesis of saframycins C (3) and D (4), involving the first successful construction of the unique ABC ring systems of 3 and 4 from the *p*-quinone (13) by stereoselectively introducing the hydroxy function at the C-6 position⁵ using selenium oxide.

The partial demethylation of the readily available tricyclic lactam (11)⁶ with boron tribromide in dichloromethane at -78°C for 1 h gave the phenol (12)⁷ (mp 199-201°C) (73% yield). Oxidation of 12 with 10N HNO₃ gave the *p*-quinone (13)⁷ (mp 150-152°C) (87% yield). The hydroxy function was introduced at the C-6 position by selenium oxide oxidation. Treating 13 with selenium oxide (3 eq) in dioxane under reflux for 4 h afforded the alcohol (14)⁷ (mp 175.5-178°C) (80% yield).⁸ Oxidation of the phenol (12) with selenium oxide in dioxane under reflux for 5 h afforded 14 in 71% yield.⁹ The ¹H NMR spectrum of 14 displayed H-6 as a doublet at δ 4.797 (*J* = 1 Hz), whereas the ¹H NMR spectrum of 21 (vide infra) showed the H-6 as a doublet at δ 5.102 (*J* = 6.8 Hz).¹⁰ Acetylation of 14 with acetic anhydride in acetic acid at 100°C for 2 h afforded 15⁷ (mp 182-184°C) (91% yield), whose ¹H NMR spectrum indicated a low-field shift of the signal of the H-6 proton (δ 5.960, *J* = 1.7 Hz). Treating 13 with selenium oxide in methanol under reflux for 30 h gave 16⁷ (mp 158-159°C) (61% yield), ¹H NMR (CDCl₃): δ 1.985 (3H, s, quinone-CH₃), 2.642 (3H, s, amine-CH₃), 2.949 (1H, d, *J* = 13.2 Hz, 2-H α), 3.580 (1H, dd, *J* = 1.5, 0.5 Hz, 5-H), 3.599 (3H, s, OCH₃), 3.960 (1H, dd, *J* = 13.2, 5.4 Hz, 2-H β), 3.980 (3H, s, OCH₃), 4.046 (1H, dd, *J* = 5.4, 0.5 Hz, 1-H), 4.261 (1H, d, *J* = 1.5 Hz, 6-H). Introduction of a hydroxy function (or methoxyl group) at the C-6 position occurred cleanly from the less hindered α -face. This is a promising method to make saframycin C and renieramycin A from saframycin B (Chart 2).

Then we studied the conversion of 14 into the hydroquinone (18) (Chart 3). Initial attempts to oxidize 14 by conventional methods using Cu(OAc)₂, PCC, PDC, and other oxidants failed. Only the starting material was recovered. However, treatment of 14 with selenium oxide in *p*-xylene under reflux for 3 h afforded the unstable ketone (17)⁷ (mp 230-235°C (dec.)) (7.3% yield), IR (KBr): 1725, 1660, 1645 cm⁻¹, and 18⁷ (mp 232.5-234°C) (29.6% yield), IR (KBr): 3300-2500, 1670, 1625 cm⁻¹; UV λ max (log ϵ) nm: 241 (3.93), 283 (3.95), 374 (3.71); EI-MS (m/z): 306 (M⁺); ¹H NMR

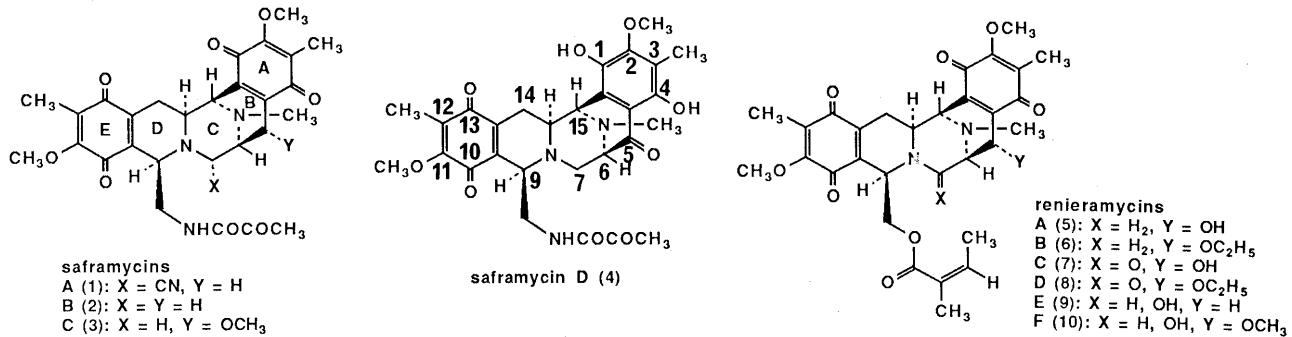


Chart 1

(400 MHz, CDCl_3): 2.198 (3H, s, Ar CH_3), 2.550 (3H, s, amine- CH_3), 2.915 (3H, s, amide- CH_3), 3.299 (1H, dd, $J = 12.2, 1.2$ Hz, 2- $\text{H}\alpha$), 3.886 (3H, s, OCH_3), 3.924 (1H, dd, $J = 1.2, 0.5$ Hz, 5-H), 4.043 (1H, dd, $J = 12.2, 5.2$ Hz, 2- $\text{H}\beta$), 4.386 (1H, ddd, $J = 5.2, 1.2, 1.2$ Hz, 1-H), 5.580 (1H, br s, OH), 11.521 (1H, br s, OH). The intramolecular redox reaction of **14** produced **18**.¹¹ Hydrogenation of **17** with 10% Pd/C in ethyl acetate gave **18** in 98% yield. Its spectra were identical with those of an authentic sample described above. Thus we efficiently synthesized the hydroquinone (**18**), embodying all of the skeletal features of the "right half" of saframycin D (**4**).

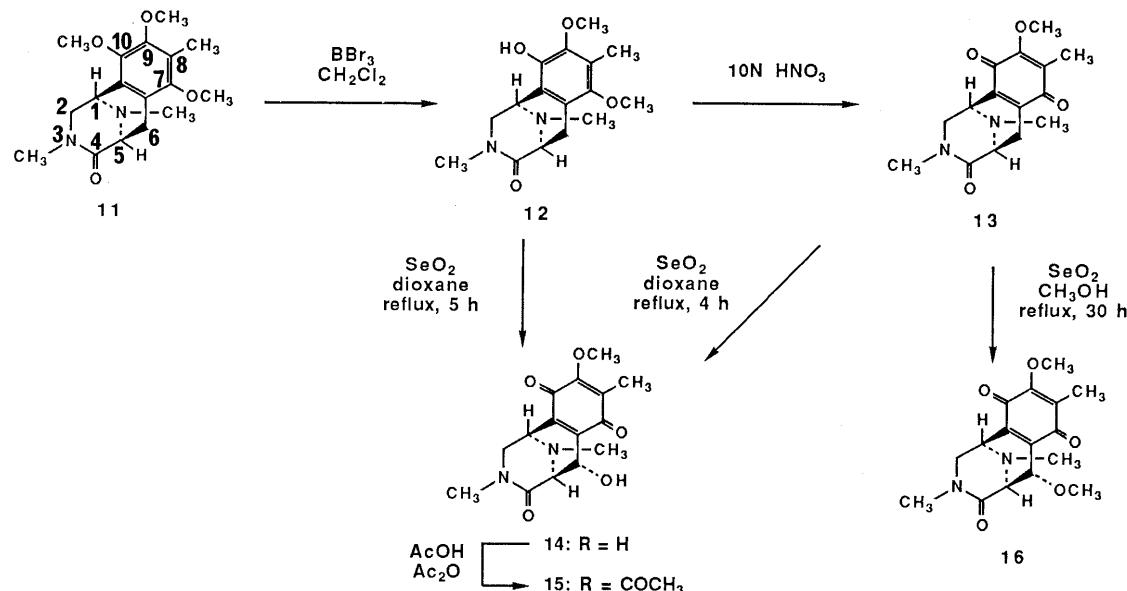


Chart 2

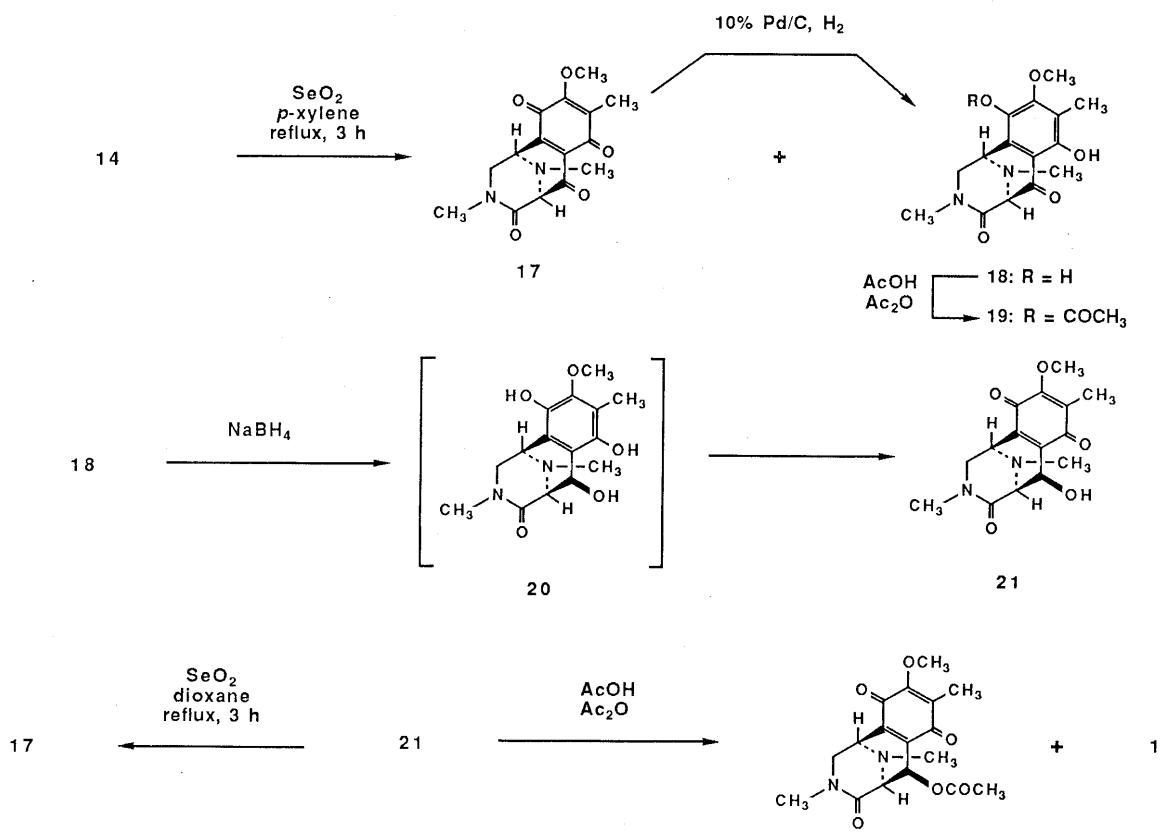


Chart 3

Finally, we synthesized the alcohol (**21**), with the stereochemistry of the C-6 position epimeric to that of saframycins. Reduction of **18** with sodium borohydride in ethanol at room temperature for 1 h accompanied by auto-oxidation (through **20**) gave **21**⁷ (mp 157-159°C) (81% yield) as the sole product. The stereochemical course of this reaction could be rationalized as proceeding through a hydride attack from the less hindered α -face. Treatment of **21** with selenium oxide in dioxane under reflux for 3 h afforded **17** (57.4% yield) and **18** (7.5% yield). The oxidation was especially rapid for an axial alcohol (**21**) because steric strain was relieved in going from the reactant to the product. Acetylation of **21** with acetic anhydride in acetic acid at 100°C for 1 h afforded **22**⁷ (mp 183-185°C) (5.4% yield), ¹H NMR δ 6.070 (1H, d, J = 7.3 Hz, 6-H) and **19**⁷ (mp 176-177.5°C) (75.5% yield) which was identical in all respects with **19** prepared from **18** (acetic anhydride, acetic acid, 100°C, 2 h, 76% yield).

Efforts to apply this transformation to the total syntheses of saframycins (**3**, **4**) and renieramycins (**5-10**) are under intensive investigation in our laboratories.

ACKNOWLEDGMENT We are grateful for financial support from the Ministry of Education, Science, and Culture of Japan in the form a Grant-in-Aid (63571010) for Scientific Research.

REFERENCES AND NOTES

- 1) This paper is dedicated to Professor Shin-ichiro Sakai (Chiba University) on the occasion of his 60th birthday.
- 2) A. Kubo, N. Saito, H. Yamato, K. Masubuchi, and M. Nakamura, *J. Org. Chem.*, **53**, 4295 (1988). For an alternative total synthesis of (\pm)-**2**: see T. Fukuyama and R. Sachleben, *J. Am. Chem. Soc.*, **104**, 4975 (1982).
- 3) T. Arai, K. Takahashi, A. Kubo, S. Nakahara, S. Saito, K. Aiba, and C. Tamura, *Tetrahedron Lett.*, 2355 (1979); T. Arai, K. Takahashi, A. Kubo, and S. Nakahara, *Experientia*, **36**, 1025 (1980); A. Kubo, N. Saito, Y. Kitahara, K. Takahashi, Y. Yazawa, and T. Arai, *Chem. Pharm. Bull.*, **35**, 440 (1987).
- 4) Renieramycins A-D were first isolated from the sponge *Reniera* sp. and the relative stereochemistry differed only at the point of attachment of the side chain at the C-9 position; J. M. Frincke and D. J. Faulkner, *J. Am. Chem. Soc.*, **104**, 265 (1982). Recently, He and Faulkner reported the isolation of a new series of renieramycins E and F, and determined that the stereochemistry of all renieramycins is the same as that of saframycins; H. He and D. J. Faulkner, *J. Org. Chem.*, **54**, 5822 (1989).
- 5) For simplicity, the proper IUPAC names and numbering systems for all tricyclic lactam intermediates are used in this paper.
- 6) H. Kurihara and H. Mishima, *Tetrahedron Lett.*, **23**, 3639 (1982); H. Kurihara, H. Mishima, and M. Arai, *Heterocycles*, **24**, 1549 (1986). A. Kubo, N. Saito, H. Yamato, R. Yamauchi, K. Hiruma, and S. Inoue, *Chem. Pharm. Bull.*, **36**, 2607 (1988).
- 7) All structural assignments were confirmed by proton magnetic resonance, infrared, ultraviolet, and mass spectra. The molecular composition of the compound given with the chemical formula was determined by elemental analysis.
- 8) In the chemistry of tetrasubstituted *p*-benzoquinones, duroquinone and 2,3-dimethyl-1,4-naphthoquinone are known to react with a variety of nucleophiles such as enolates or amines to give side-chain oxidation products.¹² In terms of natural product synthesis, this internal redox strategy has been used to convert nanaomycin A to nanaomycin D.¹³
- 9) A preliminary experiment for the introduction of a hydroxy function at the C-6 position of the phenol (**12**) was carried out using lead tetraacetate oxidation: see H. Hara, H. Shinoki, O. Hoshino, and B. Umezawa, *Heterocycles*, **20**, 2149 (1983); Treatment of **12** with lead tetraacetate in dichloromethane gave the *p*-quinone (**13**) (51% yield) and the *p*-quinol acetal (**23**,⁷) mp 166-168°C (43% yield) which was identical in all respects with **23** prepared by DDQ oxidation in methanol¹⁴ from **13** (87% yield). Homolytic bromination of **12** with bromine in carbon tetrachloride followed by solvolysis also failed. On the other hand, exposure of **23** to molecular oxygen in a dimethyl sulfoxide-*tert*-butyl alcohol (4:1) solution containing potassium *tert*-butoxide (1.5 eq)¹⁵ gave the phenol (**24**), mp 203-205°C (13% yield) (Chart 4). Acetylation of **24** with acetic anhydride in pyridine afforded **25**⁷ (mp 208-209°C) (68% yield) whose ¹H NMR spectrum indicated a low-field shift of the singlet of H-6 proton (**24**: δ 4.82; **25**: δ 6.05). Presented at 20th Congress of Heterocyclic Chemistry, Gifu, Abstr. p 185, Oct. (1989).
- 10) The ¹H NMR spectrum of **13** showed the 6-H β signal at δ 2.747 (1H, dd, J = 20.5, 1.7 Hz) and 6-H α signal at δ 2.760 (1H, dd, J = 20.5, 6.1 Hz).
- 11) Photochemical intramolecular redox reaction of the 1,4-benzoquinone: see K. A. Abdulla, A. L. Abdul-Rahman, R. Al-Hamday, and Z. Y. Al-Saigh, *J. Prakt. Chem.*, **324**, 498 (1982).
- 12) K. T. Findly, "The Chemistry of the Quinonoid Compounds", Vol. 2, ed. by S. Patai, John Wiley and Sons, Inc., New York, 1974; p 877.
- 13) S. Omura, H. Tanaka, Y. Okada, and H. Marumo, *J. Chem. Soc., Chem. Commun.*, 320 (1976); T. Li and R. H. Ellison, *J. Am. Chem. Soc.*, **100**, 6264 (1978). Recently, this redox strategy has been used in the total synthesis of pleurotin; D. J. Hart, H. Huang, R. Krishnamurthy, and T. Schwartz, *J. Am. Chem. Soc.*, **111**, 7507 (1989).
- 14) K. A. Parker and S. Kang, *J. Org. Chem.*, **45**, 1218 (1980); S. Danishefsky, E. M. Berman, M. Ciufolini, S. J. Etheredge, and B. E. Segmuller, *J. Am. Chem. Soc.*, **107**, 3891 (1985).
- 15) J. Gutzwiller and M. R. Uskokovic, *J. Am. Chem. Soc.*, **100**, 576 (1978).

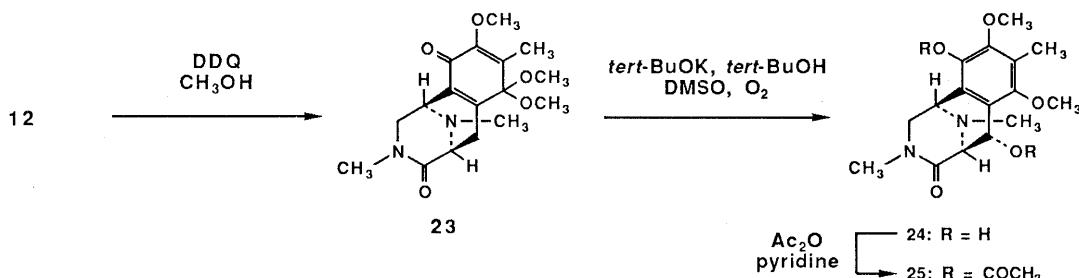


Chart 4

(Received January 11, 1990)