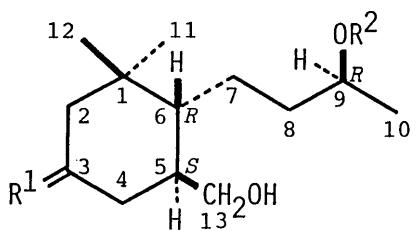


THE STRUCTURES OF TWO NEW IONONE GLUCOSIDES FROM *MELIA TOOSENDAN* AND A NOVEL TYPE OF SELECTIVE BIO-OXIDATION

Tsutomu NAKANISHI,^{*,a} Mari KONISHI,^a Hiroko MURATA,^a Akira INADA,^a Atsushi FUJII,^b Naoki TANAKA,^b and Takaji FUJIWARA^b

Faculty of Pharmaceutical Sciences, Setsunan University,^a Hirakata, Osaka 573-01 and Faculty of Science, Shimane University,^b Matsue 690, Japan

The structures of two new ionone glucosides, melia-ionosides A and B, isolated from leaves of Melia toosendan were determined based on the combined evidence of chemical, spectral, and X-ray studies. In addition, a novel type of selective bio-oxidation was found during the chemical study.


KEYWORDS *Melia toosendan*; Meliaceae; leaf; ionone glucoside; melia-ionoside A; melia-ionoside B; Molsin; bio-oxidation

A Chinese crude drug named Lian-Ye (Ren-yoh in Japanese) is the air-dried leaves of *Melia toosendan* Sieb. et Zucc.¹⁾ (Meliaceae) and is used in China as an anodyne for malaria, uredo, sting, stomach-ache caused by roundworms, etc., and as an insecticide.¹⁾ During the course of our phytochemical research on meliaceous plants, we have isolated two new ionone glucosides named as melia-ionosides A (1) and B (2), after chromatographic and HPLC separation of the MeOH extract from the leaves of *M. toosendan* (0.007 and 0.003% yields from the extr., respectively).

Both **1**, a white powder, $[\alpha]_D^{20} -35.1^\circ$ (c 0.43, Py.) and **2**, a white powder, $[\alpha]_D^{20} -9.0^\circ$ (c 0.15, Py.) gave hydroxy-bands (KBr; 3350 and 1075 cm^{-1}) in the IR spectra and had the same molecular formula, $C_{19}H_{36}O_8$, confirmed by the elemental analyses and the negative ion FAB-MS data $[(M-H)^-](100\%); m/z\ 391$. It was inferred from detailed ^1H - and ^{13}C -NMR assignments (Tables I and II), performed with the aid of ^1H - ^1H COSY, NOESY, INEPT, ^1H - ^{13}C COSY techniques, that both **1** and **2** are comprised of a β -D-glucosyl residue²⁾ and an ionone (**3**) as the common aglycone, i.e., both are isomers of ionone glucosides which differ from one another in their glucosyl positions on the aglycone.

When refluxed (4h) with 10% H_2SO_4 -MeOH (1:2), both 1 and 2 afforded the common and genuine aglycone, the ionone (3), $C_{13}H_{26}O_3$ ($M^+ = 230.188$), colorless oil, $[\alpha]_D^{20} -6.8^\circ$ (c 0.10, Py.) and one mole of D-glucose (identified by PPC, TLC, and GLC). The detailed 1H - and ^{13}C -NMR assignments (Tables I and II) indicated that the relative structure is shown in (3) or its antipode, except for the configuration of the 9-OH group on the side chain.

The whole relative structure of **3**, including the 9-OH configuration, was determined by a combination of the following chemical study and X-ray analysis. On the way to the chemical derivation, a novel type of selective bio-oxidation was found, this is also reported here. When incubated with Molsin (protease type XIII from *Aspergillus saitoi*),³⁾ the ionone (=triol) (**3**) gave the corresponding 3-keto-derivative (**4**), $C_{13}H_{24}O_3$ ($M^+=228.172$), colorless oil, $[\alpha]_D^{20} +24.6^\circ$ ($c\ 0.35, CHCl_3$) in 84% yield as a result of the novel selective bio-oxidation reaction, in which only the axial 3-OH group among three primary and secondary hydroxyls in **3** was oxidized. In a similar treatment with Molsin, both glucosides **1** and **2** also afforded **4** (61 and 78% yield, respectively), in which the usual hydrolysis followed by the selective oxidation might take place.

1: $R^1 = \alpha\text{-O-}\beta\text{-D-glucopyranosyl}$, $R^2 = H$
 2: $R^1 = \alpha\text{-OH}$, $R^2 = \beta\text{-D-glucopyranosyl}$
 3: $R^1 = \alpha\text{-OH}$, $R^2 = H$
 4: $R^1 = O$, $R^2 = H$
 5: $R^1 = NNHC_6H_3(NO_2)_2$, $R^2 = H$

Table I. ^1H -NMR (400 MHz) Data for 1, 2, and 3^a)

	1b)	2b)	3c)
2 α -H	1.95, dd, 14.0, 2.8	1.88, dd, 13.7, 3.4	1.92, dd, 13.8, 3.1
2 β -H	1.42, dd, 14.0, 3.4	1.47, dd, 13.7, 3.4	1.52, dd, 13.8, 3.4
3 β -H	4.42, tt, 3.4, 2.8	4.43, quin, 3.4	4.47, tt, 3.4, 3.1
4 α -H	2.67, ddd, 11.9, 2.8, 1.8	2.47, ddd, 13.7, 3.4, 2.4	2.52, ddd, 13.4, 3.1, 2.4
4 β -H	1.6d)	1.8d)	1.9d)
5 α -H	2.27, m, Wh/2=19.0e)	2.30, m, Wh/2=19.0e)	2.38, m, Wh/2=19.0e)
6 β -H	1.10, ddd, 10.4, 5.2, 2.6	1.15, ddd, 10.4, 5.5, 1.8	1.25, ddd, 10.6, 5.2, 2.6
7-H ₂	1.5d) and 1.7d)	1.6d) and 1.8d)	1.7d) and 1.8d)
8-H ₂	1.6d) and 1.98, m	1.7d) and 2.12, m	1.7d) and 2.06, m
9 α -H	4.0d)	4.1d)	4.06, m
13-H ₂	3.86, dd, 10.7, 6.7 4.14, dd, 10.7, 3.1	3.91, dd, 10.7, 6.1 4.09, dd, 10.7, 3.4	3.99, dd, 10.3, 6.3 4.18, dd, 10.3, 3.2
10-H ₃	1.38, d, 6.4	1.40, d, 6.1	1.40, d, 6.1
11-H ₃	1.22, s	1.32, s	1.39, s
12-H ₃	0.94, s	1.02, s	1.05, s
1'-H	4.95, d, 7.9	4.98, d, 7.9	
2'-H	4.01, dd, 7.9, 8.9	4.02, dd, 7.9, 8.9	
3'-H	4.28, t, 8.9	4.26, t, 8.9	
4'-H	4.19, dd, 8.9, 9.5	4.19, dd, 8.9, 9.2	
5'-H	3.92, ddd, 9.5, 5.5, 2.1	3.97, ddd, 9.2, 5.5, 2.4	
6'-H ₂	4.33, dd, 11.9, 5.5 4.52, dd, 11.9, 2.1	4.35, dd, 11.9, 5.5 4.54, dd, 11.9, 2.4	

a) Chemical shifts are in δ values relative to internal TMS, and are followed by multiplicities and coupling constants (Hz). Assignments for these compounds were made with the aid of ^1H - ^1H COSY, NOESY, and ^{13}C - ^1H COSY methods. b) In Py.-d₅ with few drops of D₂O. c) In Py.-d₅. d) Both multiplicity and coupling constant were obscure, due to partial overlap. e) Peak width at half height (Wh/2) is in Hz.

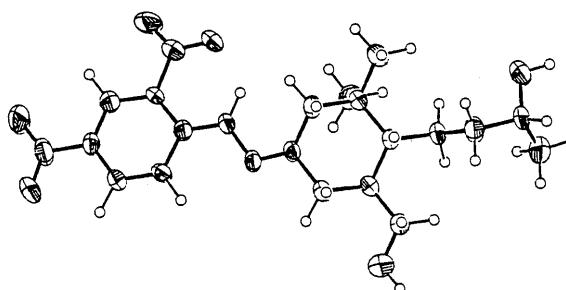


Fig. 1

Table II. ^{13}C -NMR (100.5 MHz) Data for 1-4 (δ_{C} , ppm from TMS in Py.-d₅)^a)

	1b)	2b)	3	4
1-C	34.70 (s)	34.73 (s)	34.79 (s)	39.10 (s)
2-C	46.36 (t)	47.81 (t)	48.09 (t)	56.50 (t)
3-C	73.92 (d)	66.55 (d)	66.70 (d)	211.19 (s)
4-C	34.23 (t)	38.39 (t)	38.72 (t)	45.39 (t)
5-C	37.78 (d)	37.78 (d)	38.13 (d)	44.48 (d)
6-C	48.22 (d)	48.68 (d)	48.62 (d)	46.49 (d)
7-C	25.65 (t)	24.79 (t)	25.93 (t)	25.74 (t)
8-C	41.73 (t)	38.30 (t)	41.94 (t)	41.45 (t)
9-C	67.55 (d)	76.26 (d)	67.59 (d)	67.47 (d)
10-C	24.44 (q)	21.89 (q)	24.47 (q)	24.44 (q)
11-C	23.59 (q)	23.98 (q)	23.95 (q)	20.90 (q)
12-C	31.71 (q)	31.83 (q)	31.89 (q)	29.93 (q)
13-C	65.15 (t)	65.36 (t)	65.51 (t)	63.83 (t)

a) Assignments and multiplicities (in parentheses) were determined based on INEPT and ^1H - ^{13}C COSY experiments. b) Data of the D-glucosyl parts in 1 and 2 are as follows. 1: 102.57 (d, 1'), 75.46 (d, 2'), 78.87 (d, 3'), 71.89 (d, 4'), 78.31 (d, 5'), 62.98 (t, 6') and 2: 103.52 (d, 1'), 75.20 (d, 2'), 78.35 (d, 3'), 71.68 (d, 4'), 78.14 (d, 5'), 62.75 (t, 6').

As the next step, the ketone (**4**) was, in the usual manner, transformed into the corresponding 2,4-dinitrophenylhydrazone (**5**), $C_{19}H_{28}N_4O_6$ ($M^+=408.200$), mp 148–150°C (from AcOEt), crystals of which were subjected to a single crystal X-ray analysis; Monoclinic with space group $P2_1$, $a = 15.613(3)$, $b = 8.149(1)$, $c = 8.141(1)$ Å, $\beta = 91.32(2)^\circ$, $Z = 2$, $V = 1035.5(3)$ Å 3 , $D_X = 1.309$, $D_M = 1.29(1)$ Mg m $^{-3}$. Intensities of 1504 ($F_O \geq 3\sigma F_O$) independent reflections with 2θ values up to 125° were collected on a diffractometer with graphite monochromated Cu-K α radiation, using the ω - 2θ scanning technique. The structure was solved by the direct method using the SAYTAN87 program and refined by the block diagonal least squares method to an R value of 0.062 for all non-hydrogens with anisotropic temperature factors and with isotropic ones for hydrogen atoms, which were found in the difference Fourier map.⁴⁾ Figure 1 shows a computer-generated perspective drawing (ORTEP) of the molecule (**5**), including an ionone framework with (5S, 6R, 9R) or (5R, 6S, 9S) configurations. This X-ray analysis also showed that the relative structure for the ketone (**4**) is defined as either the structure (**4**) or its optical antipode. However, the structure (**4**) had already been assigned to nigakialcohol which gives a positive CD Cotton effect ($[\theta] +310$) at 294 nm (c 0.083, EtOH).⁵⁾ The CD behavior of the ketone (**4**), $[\theta] +276$ at 294 nm (c 0.086, EtOH) was in agreement with that of nigakialcohol, indicating that the ketone had the absolute structure (**4**).

Furthermore, the accumulated evidence demonstrated that the aglycone (**3**) is assigned to the ionone structure (**3**) with (3S, 5S, 6R, 9R) chiral centers.

Finally, each location of a β -D-glucosyl residue on the aglycone (**3**) was confirmed in both glucosides (**1** and **2**) as follows. In the ^{13}C -NMR spectra (Table II), the C-3 carbon of **1** resonated downfield (by +7.22 ppm) from the corresponding signal for **3**. In contrast the C-2 and C-4 carbons of **1** resonated upfield (by -1.73 and -4.49 ppm, respectively) from those for **3**. But C-9 and both the C-8 and C-10 of **2** were respectively shifted downfield (C-9; +8.67 ppm) and upfield (C-8 and C-10; -3.64 and -2.58, respectively), compared with those for **3**. Besides, in the NOESY spectra of **1** and **2**, there was a typical cross peak between 3β -H and the glucosyl anomeric proton in **1** and between 9α -H and the glucosyl anomeric proton. These NMR studies proved that a β -D-glucosyl moiety is linked at 3α -OH of the aglycone (**3**) in **1** and at 9β -OH of **3** in **2**, respectively. Based on the accumulated evidence, the absolute structures for melia-ionosides A and B are defined as **1** and **2**.

Both glycosides **1** and **2** were found in nature for the first time. Also, their common aglycone (**3**) was a new saturated ionone. To our knowledge, this is the first report about absolute structures for glycosides of new saturated ionones.

REFERENCES AND NOTES

- 1) "Dictionary of Chinese Crude Drugs," ed. by Chiang Su New Medical College, Shanghai Scientific Technologic Publisher, Shanghai, 1977, p. 2431.
- 2) With respect to the configuration of glucose in **1** and **2**, the D form must be preferable from the viewpoint of natural occurrence. The β -orientation of the glucosyl linkages in **1** and **2** were confirmed based on large J -values of the respective anomeric protons (Table I) together with chemical shifts for the respective anomeric carbons (Table II).
- 3) The Molsin used in this work is commercially availed (Sigma Chem. Co., Lot. No. 104F-0124). A typical reaction procedure of the bio-oxidation is as follows. A suspension of Molsin (120 mg) in 0.2 M citric acid-0.2 M Na₂HPO₄ buffer (pH 4.0; 2.5 ml) was added to a solution of **3** (8.2 mg) in EtOH (0.3 ml) and the resultant mixture was stirred at 37°C for 96 h. The ketone (**4**) (6.8 mg; 84% yield) was obtained as a sole oxidation product, together with recovered starting material.
- 4) Atomic coordinates, structure and temperature factors, bond distances and angles will be deposited with the Cambridge Crystallographic Data Centre.
- 5) Y. Sugimoto, T. Sakita, T. Ikeda, Y. Moriyama, T. Murae, T. Tsuyuki, and T. Takahashi, Bull. Chem. Soc. Jpn., 52, 3027 (1979).

(Received January 22, 1990)