Synthesis of Novel Monobactams Bearing an (R)-1-Hydroxyethyl Group and an (S)-1-Carbamoyloxyethyl Group at the $C_{3,4}$ -Positions

Kikoh Obi,1) Yoshio Ito, and Shiro Terashima*

Sagami Chemical Research Center, 4-4-1 Nishi-Ohnuma, Sagamihara, Kanagawa 229, Japan. Received September 19, 1989

Various structural types of monobactams bearing an (R)-1-hydroxyethyl and an (S)-1-carbamoyloxyethyl group at the $C_{3,4}$ -positions, respectively, could be synthesized from (3S,4S)-4-[(S)-1-benzyloxyethyl]-3-[(R)-1-hydroxyethyl]-2-azetidinone. These synthetic studies explored several novel methods applicable to construct substituted carbamoyloxy groups.

Keywords monobactam; carbapenem; (R)-1-hydroxyethyl group; (S)-1-carbamoyloxyethyl group; (3S,4S)-4-[(S)-1-benzyloxyethyl]-3-[(R)-1-hydroxyethyl]-2-azetidinone; p-nitrophenyl carbonate; carbamoylation; sulfonation; 2-azetidinone-1-sulfonate; antibacterial activity

In 1981, the unique monocyclic β -lactam antibiotics classified afterwards as monobactams were independently discovered by research groups at Squibb²⁾ and Takeda.³⁾ Since then, numerous chemical modifications of those natural antibiotics have been studied extensively at the C₃-amido side chain and C₄-substituents,⁴⁾ culminating in the successful developments of aztreonam (1)⁵⁾ and carmonum (2)⁶⁾ at Squibb and Takeda, respectively. These novel monobactams (1 and 2) have already been brought into clinical use.

On the other hand, it is well known that the carbapenems represented by imipenem (3), which characteristically have an (R)-1-hydroxyethyl group at the C₆-position, exhibit prominent antibacterial activity as well as broad spectra. As shown in Chart 1, we have recently succeeded in developing an efficient synthetic route to the carbapenem key intermediate (4) starting from (S)-ethyl lactate (5). Our scheme features the highly stereoselective [2+2]-cycloaddition reaction of the imine (6) with diketene, and proceeds through the novel monocyclic β -lactam (8) carry-

ing an (R)-1-hydroxyethyl group at the C_3 -position.

Considering the availability of a large quantity of 8 and the prominent antibacterial properties of 1—3, we designed the novel monobactams (9), which may be readily constructed from 8.9 We were very much interested in the antibacterial properties of 9 since they carry an (R)-1-hydroxyethyl and an (S)-1-carbamoyloxyethyl group at the $C_{3,4}$ -positions, respectively, and their absolute configurations at the $C_{3,4}$ -positions are identical with those of 3.

We wish to report on the synthesis of various structural types of 9 which could be achieved by applying several novel methods to construct substituted carbamoyloxy groups.

Results and Discussion

The syntheses of **9** commence with transposition of the protective groups involved in **8**, readily obtainable from **5**, according to the established reaction scheme. As shown in Chart 2, in order to introduce a carbamoyl group into the C_4 -side chain of **8**, the (R)-1-hydroxyethyl group present at

Chart 1

918 Vol. 38, No. 4

Chart 2

the C_3 -position was first protected in the form of a tetrahydropyran-2-yl (THP) ether in 98% yield. Subsequent hydrogenolysis of the benzyl ether of 10 afforded the 4-[(S)-1-hydroxyethyl]-2-azetidinone (11) in a quantitative yield. Treatment of 11 with p-nitrophenyl chloroformate in the presence of 4-N,N-dimethylaminopyridine (DMAP) gave rise to the p-nitrophenyl carbonate (12), the key synthetic intermediate of 9, 10 in 97% yield.

Reactions of 12 with excess amounts of ammonia, methylamine and dimethylamine in methanol room temperature cleanly produced the corresponding carbamates (13a-c) in 89—98% yields, respectively. 10) After removal of the THP groups of 13a-c, the secondary alcohols formed were again protected with benzyloxycarbonyl chloride (Z-Cl) in the presence of DMAP, giving the carbamates (14a-c) in 58—71% yields. Sulfonation of 14a—c with sulfur trioxide pyridine complex (SO₃-Py)^{5,6)} followed by treatment with tetrabutylammoniun hydrogensulfate afforded the ammonium salts (15a-c) in 81-93% yields. These salts (15a-c) could be easily purified by column chromatography on silica gel. Reductive removal of the Z groups of 15a—c and subsequent treatment with ion exchange resin [AG50W-X2(K⁺-form)] furnished the desired potassium salts of the monobactams (9a-c) in excellent yields.

Among 9a—c so far obtained, only the monosubstituted carbamate derivative (9b) was found to exhibit marginal antibacterial activity (vide infra). Accordingly, further synthetic studies on 9 were attempted, mainly employing monosubstituted amines for the carbamate formation. Thus, novel monobactams (9d—k) could be prepared from 12 similarly to 9a—c by using benzyl glycinate, benzyl N-methyl-glycinate, 11 1-benzyloxycarbonylpiperazine, 12 2-(aminomethyl)pyridine, cyclopropylamine, ethanolamine, aniline, and p-fluoroaniline as amine counterparts, respectively. 13 These compounds were employed as representative monosubstituted amines, which may cover a wide range of structural variations. In the syntheses of 9j,k, heating of a mixture of 12 and aniline or p-fluoroaniline

without solvent at 60 °C was necessary for carbamate formation because of the lower nucleophilicity of the aniline derivatives.

As shown in Chart 3, the ammonium salt (15g) obtained from 12 and 2-aminomethylpyridine by way of 13g and 14g was also derived to the intramolecular ammonium salt (16) by sequential hydrogenolysis and methylation. These two steps gave 80% and 93% yields, respectively.

Next, with the aim of obtaining 9 in which one of the two substituents of the carbamoyl group (X or Y) involves an oxygen functionality, the N-methoxy carbamate (141) was synthesized from 12 and methoxyamine similarly to 14a—c, as shown in Chart 4. Sulfonation of 141 as done for 14a—c was found to produce the mono- and the diammonium salts (17 and 151) in 36% and 41% yields, respectively. The structures of these salts could be assigned at the stages of 18 and 91 based on the nuclear magnetic resonance (NMR) spectra. This result clearly shows that the nitrogen atom of the N-methoxycarbamate moiety is more nucleophilic than that of the β -lactam ring. These ammonium salts (17 and 151) were directly derived to the mono- and the dipotassium salts (18 and 91) in the same manner as described for the syntheses of 9a—c. 14)

In order to avoid the double sulfonation, preparation of the N-benzyl-N-alkoxycarbamates (14m,n) was next attempted. Toward this end, N-benzyl-methoxyamine¹⁵⁾ and N-benzyl-benzyloxyamine were subjected to the carbamate formation. Unexpectedly, these amines were found not to react with 12. After experimentation, it was found that the desired protected carbamates (14m, n) could be effectively

Chart 5

produced from 11 by way of the chloroformate (19). As shown in Chart 5, treatment of 11 with trichloromethyl chloroformate in pyridine gave rise to 19,¹⁶⁾ which without isolation was allowed to react with the amine derivatives to yield 13m,n. Sequential acidic removal of the THP groups and benzyloxycarbonylation gave 14m,n in good combined yields from 11. Similarly to 9a—c, these compounds (14m,n) were derived to 9m,n. Further hydrogenolysis of 9n over 20% palladium on charcoal (Pd—C) under hydrogen at 2 atm pressure produced 90 having an N-hydroxycarbamate moiety.¹⁷⁾ When 9m,n were treated under more forcing conditions for hydrogenolysis, reductive removal of the sulfonate moieties preceded the desired cleavage of the N-benzyl groups.

As mentioned above, we have succeeded in preparing various structural types of optically active monobactams (9a-o and 16) bearing an (R)-1-hydroxyethyl group and an (S)-1-carbamoyloxyethyl group at the $C_{3,4}$ -positions. In the course of these synthetic studies employing 8 as a starting material, several novel methods applicable to the construction of substituted carbomoyloxy groups were developed. These novel monobactams (9a-o and 16) were subjected to evaluation of *in vitro* antibacterial activity along with 18. However, contrary to our expectation, only 9b was found to possess a very weak antibacterial activity against *Escherichia coli* NIHJ ($12.5 \mu g/ml$)¹⁸⁾ and *Proteus mirabilis* IID994 ($50 \mu g/ml$).

Experimental

All melting points were determined with a Yamato MP-21 melting point apparatus and are uncorrected. Infrared (IR) spectral measurements were carried out with a JASCO A-202 diffraction grating infrared spectrometer. $^1\text{H-NMR}$ spectra were measured with Hitachi R-90H (90 MHz) and Bruker AM spectrometers (400 MHz). All signals were expressed as ppm downfield from tetramethylsilane used as an internal standard (δ -value). Mass spectra (MS) were taken with a Hitachi RMU-6MG mass spectrometer and Hitachi M-80A mass spectrometer [secondary ion mass spectrometry (SIMS)]. Measurements of optical rotation were performed with a Horiba SEPA 200 automatic digital polarimeter. Wakogel C-300 was used as an adsorbent for column chromatography.

(3S,4S)-4-[(S)-1-Benzyloxyethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (10) A mixture of (3S,4S)-4-[(S)-1-benzyloxyethyl]-3-[(R)-1-hydroxyethyl]-2-azetidinone (8)⁸⁾ (1.00 g, 4.01 mmol), 3,4-dihydro-2H-pyran (1.83 ml, 20.1 nmol), and pyridinium p-toluene-

sulfonate (60 mg) in CH₂Cl₂ (10 ml) was stirred at room temperature for 2 h, and then diluted with CH₂Cl₂ (30 ml). The organic layer was washed successively with H₂O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration *in vacuo* gave an oily residue, which was purified by column chromatography (SiO₂, hexane–AcOEt (7:3)) to give **8** as a colorless oil (1.31 g, 98%). IR (neat): 2950, 1760 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.24 (3H, d, J=5.9 Hz, CH₃), 1.33 (3H, d, J=6.4 Hz, CH₃), 1.47—1.73 (6H, m, (CH₂)₃), 2.77—2.85 (1H, m, C₃-H), 3.41—3.60 (4H, m, C₄-H, CHO-THP and OCH₂), 4.07 (1H, d q, J=each 6.4 Hz, CHO-Bn), 4.40 (1H, d, J=11.6 Hz, OCHPh), 4.68 (1H, d, J=11.6 Hz, OCHPh) 4.74 (1H, br s, OCHO), 6.07 (1H, br s, NH), 7.32 (5H, s, C₆H₅). MS m/z: 248 (M-THP)⁺.

o: X=OH

(3S,4S)-3-[(R)-1-Tetrahydropyran-2-yloxyethyl]-4-[(S)-1-hydroxyethyl]-2-azetidinone (11) A mixture of 10 (5.33 g, 16.0 mmol), 5% Pd–C (0.30 g) and 5 drops of 1 N HCl in tetrahydrofuran (THF) (30 ml) was stirred at room temperature for 5.5 h under a hydrogen atmosphere. The catalyst was filtered off and the filtrate was concentrated *in vacuo* to give 11 as a colorless oil (3.85 g, quantitative yield). IR (neat): 3300, 2950, 1740 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.25 (1.5H, d, J=6.2 Hz, CH₃CHO-THP), 1.27 (1.5H, d, J=6.2 Hz, CH₃CHO-THP), 1.35 (3H, d, J=6.8 Hz, CH₃CHOH), 1.41—1.80 (6H, m, (CH₂)₃), 2.93 (1H, dd, J=2.2, 5.5 Hz, C₃-H), 3.42—4.10 (5H, m, C₄-H, 2×CHO and OCH₂), 4.72 (1H, br s, OCHO), 6.17 (1H, br s, NH). MS m/z: 244 (M+1)⁺, 142 (M-THPO)⁺.

(3S,4S)-3-[(R)-1-Tetrahydropyran-2-yloxyethyl]-4-[(S)-1-(p-nitrophenoxycarbonyloxy)ethyl]-2-azetidinone (12) 4-Nitrophenyl chloroformate (4.78 g, 23.7 mmol) was added to a solution of 11 (3.85 g, 15.8 mmol) in pyridine (14 ml) at 0 °C under an argon atmosphere. After stirring at room temperature for 17 h, the mixture was diluted with AcOEt (250 ml). The ethyl acetate solution was washed successively with H₂O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo followed by purification by column chromatography (SiO₂, CH₂Cl₂-AcOEt (3:1)) gave 12 as a pale yellow caramel (6.25 g, 97%). IR (neat): 2750, 1760, 1710, 1530, 1220 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.29 (1.5H, d, J=6.6 Hz, CH₃CHO-THP), 1.38 (1.5H, d, J= 6.6 Hz, CH₃CHO-THP), 1.48 (1.5H, \overline{d} , \overline{J} =6.4 Hz, CH₃CHO), 1.62 (1.5H, d, J = 6.4 Hz, CH_3CHO), 1.58—1.83 (6H, m, $(CH_2)_3$), 2.89—3.02 (1H, m, C_3 -H), 3.42 $\overline{-3.56}$ (1H, m, C_4 -H), 3.77 $\overline{-3.92}$ (2H, m, OCH₂), 4.13 (1H, dq, J = each 6.6 Hz, THP-OCH), 4.73 (1H, br s, OCHO), 4.87 (1H, dq, J =each 6.4 Hz, CHOCO), 6.24 (1H, br s, NH), 7.39, 8.29 (4H, two d, J = each9.2 Hz, C_6H_4). MS m/z: 270 (M – NO₂ – C_6H_4O)

(3S,4S)-4-[(S)-1-Carbamoyloxyethyl]-3-[(\dot{R})-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13a) A 28% aqueous solution of ammonia (0.5 ml) was added to a solution of 12 (0.158 g, 0.39 mmol) in MeOH (2 ml). The reaction mixture was stirred at room temperature for 2 h, then concentrated in vacuo to give a residue, which was purified by column chromatography (SiO₂, hexane-AcOEt (3:7)) to give 13a as a colorless oil (0.099 g, 89%). ¹H-NMR (CDCl₃) δ : 1.23—1.84 (12H, m, 2×CH₃ and (CH₂)₃), 2.88—2.97 (1H, m, C₃-H), 3.49—3.87 (2H, m, OCH₂), 3.78 (1H, dd, J=2.2, 6.6 Hz, C₄-H), 3.98—4.24 (1H, m, THP-OCH), 4.71 (1H, br s, OCHO), 4.76 (1H, dq, J=each 6.6 Hz, CHOCO), 6.08 (1H, br s, NH). The

carbamates (13b,c) were prepared from 12 in a similar manner to that described above.

(3S,4S)-4-[(S)-1-(N-Methylcarbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13b) Prepared from 12 (0.433 g, 1.08 mmol) and a 40% aqueous solution of methylamine (2 ml) as a colorless oil (0.318 g, 98%). IR (neat): 3300, 2950, 1760, 1710, 1250 cm⁻¹.

¹H-NMR (CDCl₃) δ: 1.22 (12H, m, 2 × CH₃ and (CH₂)₃), 2.79 (3H, d, J=4.8 Hz, N-CH₃), 2.89—2.99 (1H, m, C₃-H), 3.43—3.85 (2H, m, OCH₂), 3.70 (1H, dd, J=2.0, 6.6 Hz, C₄-H), 3.95—4.24 (1H, m, THP-OCH), 4.73 (2H, br s, NH and OCHO), 4.82 (1H, dq, J=each 6.6 Hz, CHOCO), 6.15 (1H, br s, NH and OCHO). MS m/z: 199 (M-THPO)⁺.

(3S,4S)-4-[(S)-1-(N,N-Dimethycarbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13c) Prepared from 12 (0.970 g, 2.38 mmol) and a 40% aqueous solution of dimethylamine (8 ml) as a colorless oil (0.716 g, 96%). 1 H-NMR (CDCl₃) δ: 1.22—1.89 (12H, m, 2 × CH₃ and (CH₂)₃), 2.90 (6H, s, NMe₂), 2.93 (1H, dd, J=2.2, 6.6 Hz, C₃-H), 3.68—3.86 (2H, m, OCH₂), 3.82 (1H, dd, J=2.2, 6.4 Hz, C₄-H), 4.06—4.24 (1H, m, THP-OCH), 4.74 (1H, br s, OCHO), 4.85 (1H, dq, J=each 6.4 Hz, CHOCO), 6.21 (1H, br s, NH).

(3S,4S)-4-[(S)-1-(N-(Benzyloxycarbonylmethyl)carbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-lyoxyethyl]-2-azetidinone (13d) Triethylamine (0.22 ml, 1.57 mmol) was added to a mixture of 12 (0.536 g, 1.31 mmol) and the p-toluenesulfonic acid salt of benzyl glycinate (0.530 g, 1.57 mmol) in MeOH (5 ml) at 0 °C. The mixture was stirred at the same temperature for 0.5 h, then at room temperature for 3.5 h. Concentration of the mixture in vacuo followed by purification by column chromatography (SiO₂, hexane–AcOEt (7:3)) gave 13d as a pale yellow oil (0.517 g, 91%). IR (neat): 3340, 1760, 1720, 1520, 1220 cm⁻¹. 1 H-NMR (CDCl₃) δ : 1.22—1.78 (12H, m, 2 × CH₃ and (CH₂)₃), 2.86—2.94 (1H, m, C₃-H), 3.41—3.86 (3H, m, C₄-H and OCH₂), 3.98 (2H, d, J=5.7 Hz, NCH₂COO), 4.01—4.23 (1H, m, THP-OCH), 4.72 (1H, br s, OCHO), 4.82 (1H, dq, J=each 6.6 Hz, CHOCO), 5.18 (2H, s, PhCH₂), 5.34 (1H, br s, NH), 6.22 (1H, br s, NH), 7.35 (5H, s, C₆H₅). MS m/z: 349 (M – THP)+, 333 (M – THPO)+. The carbamates (13e, 1) were prepared from 12 in a similar manner to that described above.

(3S,4S)-4-[(S)-1-(N-Benzyloxycarbonylmethyl-N-methylcarbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13e) Prepared from 12 (0.894 g, 2.19 mmol), the p-toluenesulfonic acid salt of benzyl N-methylglycinate¹¹⁾ (1.54 g, 4.38 mmol), and triethylamine (0.61 ml, 4.38 mmol) as a pale yellow oil (0.884 g, 90%). IR (neat): 2950, 1750, 1710, 1450, 1380, 1150 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.22—1.79 (12H, m, 2×CH₃ and (CH₂)₃), 2.88—2.96 (1H, m, C₃-H), 2.97 (3H, s, NMe), 3.44—3.85 (3H, m, C₄-H and OCH₂), 3.92—4.24 (3H, m, NCH₂COO and THP-OCH), 4.72—4.89 (2H, m, OCHO and CHOCO), 5.18 (2H, s, PhCH₂), 6.02 (1H, br s, NH), 7.36 (5H, s, C₆H₅). MS m/z: 449 (M+1)⁺.

(3S,4S)-4-[(S)-1-((4-Benzyloxycarbonylpiperazin-1-yl)carbonyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13f) 1-Benzyloxycarbonylpiperazine¹²⁾ (0.916 g, 4.16 mmol) was added to a solution of 12 (0.850 g, 2.08 mmol) in MeOH (5 ml) at 0 °C, and the mixture was stirred at the same temperature for 1 h. Concentration of the mixture in vacuo gave a residue which was purified by column chromatography (SiO₂, hexane–AcOEt (6:4)) to give 13f as a colorless oil (0.929 g, 91%). IR (neat): 2950, 1760, 1690, 1430, 1230 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.22—1.80 (12H, m, $2 \times \text{CH}_3$ and (CH₂)₃), 2.88—2.95 (1H, m, C₃-H), 3.47—3.65 (10H, m, OCH₂ and piperazine), 3.72 (1H, dd, J=2.2, 6.6 Hz, C₄-H), 3.98—4.23 (1H, m, THP-OCH), 4.72 (1H, br s, OCHO), 4.88 (1H, dq, J=each 6.6 Hz, CHOCO), 5.15 (2H, s, PhCH₂), 6.13 (1H, br s, NH), 7.35 (5H, s, C₆H₅). MS m/z: 489 (M)⁺, 404 (M-THP)⁺. The carbamates (13g—i) were prepared in a similar manner to that described above.

(3S,4S)-4-[(S)-1-(N-(Pyridin-2-ylmethyl)carbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13g) Prepared from 12 (0.822 g, 2.01 mmol) and 2-(aminomethyl)pyridine (0.414 ml, 4.02 mmol) as a pale yellow oil (0.728 g, 96%). IR (neat): 3300, 2950, 1750, 1710, 1250 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.22—1.86 (12H, m, 2 × CH₃ and (CH₂)₃), 2.89—2.94 (1H, m, C₃-H), 3.55—4.23 (4H, m, C₄-H, OCH₂ and THP-OCH), 4.47 (2H, d, J=5.5 Hz, NCH₂), 4.73 (1H, br s, OCHO), 4.83 (1H, dq, J=each 6.6 Hz, CHOCO), 5.93 (1H, br s, NH), 6.44 (1H, br s, NH), 7.12—7.29 (2H, m, C₃-H and C₅-H of the pyridine ring), 7.67 (1H, ddd, J=1.8, 7.7, 7.7 Hz, C₄-H of the pyridine ring), 8.53 (1H, d, J=4.8 Hz, C₆-H of the pyridine ring). MS m/z: 276 (M – THPO) +

(3S,4S)-4-[(S)-1-(N-Cyclopropylcarbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13h) Prepared from 12 (0.520 g, 1.27 mmol) and cyclopropylamine (0.176 ml, 2.54 mmol) as a colorless oil (0.377 g, 91%). IR (neat): 3300, 2950, 1760, 1710, 1520, 1260, 1220 cm $^{-1}$. H-NMR (CDCl₃) δ : 0.45—0.85 (4H, m, CH₂CH₂), 1.24—1.81 (12H, m,

 $^2\times$ CH₃ and (CH₂)₃), 2.49—2.64 (1H, m, NCH), 2.86—2.98 (1H, m, C₃-H), 3.49—4.11 (3H, m, THP-OCH and OCH₂), 3.69 (1H, dd, J=2.2, 6.6 Hz, C₄-H), 4.70—4.91 (3H, m, CHOCO, OCHO and NH), 6.02 (1H, br s, NH). MS m/z: 327 (M+1)⁺, 225 (M-THPO)⁺.

(3S,4S)-4-[(S)-1-(N-(2-Hydroxyethyl)carbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13i) Prepared from 12 (0.802 g, 1.96 mmol) and ethanolamine (0.237 ml, 3.92 mmol) as a colorless oil (0.600 g, 93%). IR (neat): 3300, 2950, 1760, 1710, 1520, 1260, 1220 cm $^{-1}$. 1 H-NMR (CDCl₃) δ: 1.22 $^{-1}$.80 (12H, m, 2×CH₃ and (CH₂)₃), 2.88 $^{-2}$.97 (1H, m, C₃-H), 3.32 $^{-3}$.44 (2H, m, NCH₂CH₂), 3.56 $^{-3}$.89 (5H, C₄-H, OCH₂ and NCH₂CH₂O), 4.00 $^{-4}$.24 (1H, m, THP-OCH), 4.68 $^{-5}$.01 (2H, m, OCHO and CHOCO), 5.20 (1H, br s, NH), 6.41 (1H, br s, NH). MS m/z: 245 (M $^{-1}$ HP) $^{+}$, 229 (M $^{-1}$ HPO) $^{+}$.

(3S,4S)-4-[(S)-1-(N-Methoxycarbamoyloxy)ethyl]-3-[(R)-1-tetrahydropyran-2-yloxyethyl]-2-azetidinone (13 l) Prepared from 12 (0.490 g, 1.20 mmol), methoxylamine hydrochloride (0.301 g, 3.60 mmol), and triethylamine (0.5 ml, 3.60 mmol) as a colorless oil (0.323 g, 85%). IR (neat): 3300, 2950, 1750, 1440, 1380, 1250 cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 1.23—1.82 (12H, m, 2 × CH₃ and (CH₂)₃), 2.87—2.98 (1H, m, C₃-H), 3.34—3.87 (3H, m, C₄-H and OCH₂), 3.74 (3H, s, OMe), 4.00—4.24 (1H, m, THP-OCH), 4.72 (1H, br s, OCHO), 4.91 (1H, dq, J=6.4, 6.6 Hz, CHOCO), 6.06 (1H, br s, NH), 7.48 (1H, br s, NH). MS m/z: 215 (M – THPO) ⁺.

 $(3S,4S)-4-[(S)-1-(N-Benzyl-N-benzyloxycarbamoyloxy)ethyl]-3-[(\dot{R})-1-(\dot{$ tetrahydropyran-2-yloxyethyl]-2-azetidinone (13n) Trichloromethyl chloroformate¹⁶⁾ (80 μ l, 0.67 mmol) was added to a mixture of 11 (0.326 g, 1.34 mmol) and pyridine (0.108 ml, 1.34 mmol) in CH_2Cl_2 (7.5 ml) at 0 °C under an argon atmosphere. 16) The mixture was stirred at the same temperature for 1.5 h. A solution of N-benzyl benzyloxyamine¹³ (0.629 g, 2.95 mmol) in CH₂Cl₂ (2 ml) was added to the reaction mixture at 0 °C. After being stirred at the same temperature for 0.5 h, the mixture was diluted with CH₂Cl₂ (100 ml), washed successively with H₂O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo followed by column chromatography (SiO₂, hexane-AcOEt (3:1)) of the residue gave 13n as a colorless oil (0.440 g, 68%). IR (neat): 3300, 2960, 1760, 1710, 1450, 1380, 1240 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.25—1.82 $(12H, m, 2 \times CH_3 \text{ and } (CH_2)_3), 2.81 - 2.90 (1H, m, C_3 - H), 3.49 - 4.23 (4H, m, C_3 - H), 3.40 - 4.23 (4H, m, C_3 - H), 3.20 - 4.23 (4H, m, C_3 - H), 3.20 - 4.23 (4H, m, C_3 - H), 3.20 - 4.23 (4H, m, C_3$ m, THP-OCH, C₄-H and OCH₂), 4.59 (2H, s, NCH₂Ph), 4.62—5.03 (2H, m, CHOCO and OCHO), 4.74 (2H, s, OCH₂Ph), 5.56 (1H, br s, NH), 7.32 $(10H, s, 2 \times C_6H_5)$. MS m/z: 482 (M)⁺

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-carbamoyloxyethyl]-2-azetidinone (14a) A mixture of 13a (0.212 g, 0.74 mmol) and methanolic 1 N HCl (0.5 ml) in MeOH (10 ml) was stirred at room temperature for 0.5 h. Neutralization with triethylamine followed by concentration in vacuo gave a yellow oily residue. Benzyloxycarbonyl chloride (0.48 ml, 3.33 mmol) was added to a mixture of the residue and DMAP (0.451 g, 3.70 mmol) in CH₂Cl₂ (4.5 ml) at 0 °C. After being stirred at room temperature for 13 h, the mixture was diluted with CH₂Cl₂ (60 ml). The dichloromethane layer was separated, washed successively with H₂O, 0.5 N HCl, and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo gave an oily residue which was purified by column chromatography (SiO2, hexane-AcOEt (3:7)) to give 14a as a colorless needles (0.177 g, 71%). Recrystallization from AcOEt-Et₂O gave an analytical sample of 14a as colorless needles, mp 137-139 °C and $[\alpha]_D^{20}$ +11.6° $(c=0.92, \text{CHCl}_3)$. IR (KBr): 3470, 3280, 1750, 1690, 1270 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.21 (3H, d, $J=6.6\,\text{Hz}$, Me), 1.43 (3H, d, J=6.4 Hz, Me), 2.99-3.10 (1H, m, C₃-H), 3.63 (1H, dd, J=2.4, Me)6.8 Hz, C₄-H), 4.65—4.86 (3H, m, CHOCO and NH₂), 5.03—5.19 (3H, m, PhCH₂ and Z-OCH), 6.39 (1H, br s, NH), 7.35 (5H, s, C_6H_5). MS m/z: 336 $(M)^+$, 185 $(M-ZO)^+$. Anal. Calcd for $C_{16}H_{20}N_2O_6$: C, 57.13; H, 5.99; N, 8.33. Found: C, 56.89; H, 5.98; N, 8.20. The carbamates (14b-h, l, n) were prepared in the same manner as described above.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-methyl-carbamoyloxy)ethyl]-2-azetidinone (14b) Prepared from 13b (0.318 g, 1.06 mmol) as a colorless oil (0.253 g, 68%). IR (neat): 3400, 1750, 1700, 1270 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.20 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.75 (3H, d, J=5.1 Hz, NMe), 2.99—3.11 (1H, m, C₃-H), 3.63 (1H, dd, J=2.4, 6.6 Hz, C₄-H), 4.67—4.89 (2H, m, CHOCO and NH), 5.03—5.19 (3H, m, PhCH₂ and Z-OCH), 6.09 (1H, br s, NH), 7.36 (5H, s, Ph). MS m/z: 350 (M)⁺, 199 (M – ZO)⁺.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-N,N-dimethyl-carbamoyloxy)ethyl]-2-azetidinone (14c) Prepared from 13c (0.716 g, 2.27 mmol) as a colorless oil (0.479 g, 58%). IR (neat): 3250, 1750, $1680 \,\mathrm{cm^{-1}}$. H-NMR (CDCl₃) δ : 1.22 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.88 (6H, s, Me₂N), 2.99—3.11 (1H, m, C₃-H), 3.67 (1H, dd, J=2.4, 6.6 Hz, C₄-H), 4.82 (1H, dq, J=6.4, 6.6 Hz, CHOCO),

5.05—5.27 (3H, m, PhCH₂ and Z-OCH), 6.00 (1H, br s, NH), 7.36 (5H, s, Ph), MS m/z: 365 (M)⁺. 213 (M -151)⁺.

(3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-benzyloxycarbonylmethyl)carbamoyloxy)ethyl]-2-azetidinone (14d) Prepared from 13d (0.691 g, 1.54 mmol) as a colorless oil (0.671 g, 90%). IR (neat): 3350, 1750, 1720, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.20 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.95—3.11 (1H, m, C₃-H), 3.63 (1H, dd, J=2.2, 6.8 Hz, C₄-H), 3.95 (2H, d, J=5.7 Hz, NCH₂COO), 4.83 (1H, dq, J=6.4, 6.8 Hz, CHOCO), 5.01—5.29 (6H, m, NH, Z-OCH and $2 \times PhCH_2$), 6.11 (1H, br s, NH), 7.35 (10H, s, $2 \times Ph$). MS m/z: 407 (M-Ph)⁺, 333 (M-ZO)⁺.

(3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-benzyloxycarbonylmethyl-*N*-methylcarbamoyloxy)ethyl]-2-azetidinone (14e) Prepared from 13e (0.691 g, 1.54 mmol) as a colorless oil (0.544 g, 70%). IR (neat): 1750, 1700, 1450, 1380, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.11 (3H, d, J=6.4 Hz, Me), 1.43 (3H, d, J=6.4 Hz, Me), 2.95 (3H, s, NMe), 2.91—3.08 (1H, m, C₃-H), 3.60—3.72 (1H, m, C₄-H), 4.05 (2H, s, NCH₂COO), 4.74—4.89 (1H, m, CHOCO), 5.03—5.22 (5H, m, 2×PhCH₂ and Z-OCH), 6.03 (1H, br s, NH), 7.35 (10H, s, 2×Ph). MS m/z: 498 (M)⁺, 347 (M-ZO)⁺.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-((4-benzyloxycarbonylpiperazin-1-yl)carbonyloxy)ethyl]-2-azetidinone (14f) Prepared from 13f (0.885 g, 1.81 mmol) as a colorless oil (0.751 g, 77%). IR (neat): 3300, 1770, 1700, 1460, 1430, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.22 (3H, d, J=6.2 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.97—3.10 (1H, m, C₃-H), 3.44 (8H, s, piperazine), 3.67 (1H, dd, J=2.4, 6.6 Hz, C₄-H), 4.85 (1H, dq, J=6.4, 6.6 Hz, CHOCO), 5.03—5.34 (5H, m, 2×PhCH₂ and ZOCH), 6.08 (1H, br s, NH), 7.35 (10H, s, 2×C₆H₅). MS m/z: 539 (M)⁺, 388 (M – Z)⁺.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-pyridin-2-ylmethyl)carbamoyloxy)ethyl]-2-azetidinone (14g) Prepared from 13g (0.726 g, 1.92 mmol) as a pale yellow oil (0.591 g, 72%). IR (neat): 3300, 2930, 1760, 1520, 1385, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.22 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.98—3.08 (1H, m, C₃-H), 3.63 (1H, dd, J=2.2, 7.3 Hz, C₄-H), 4.45 (2H, d, J=5.5 Hz, NCH₂COO), 4.84 (1H, dq, J=6.4, 7.3 Hz, CHOCO), 4.96—5.26 (3H, m, PhCH₂ and Z-OCH), 5.87 (1H, br s, NH), 6.45 (1H, br s, NH), 7.12—7.26 (2H, m, C₃-H and C₅-H of the pyridine ring), 7.35 (5H, s, C₆H₅), 7.57—7.76 (1H, m, C₄-H of the pyridine ring), 8.53 (1H, d, J=4.8 Hz, C₆-H of the pyridine ring). MS m/z: 427 (M)⁺, 276 (M – ZO)⁺.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-cyclopropylcarbamoyloxy)ethyl]-2-azetidinone (14h) Prepared from 13h (0.336 1.03 mmol) as a colorless oil (0.314 g, 81%). IR (neat): 3300, 3030, 1760, 1510, 1390, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.44—0.83 (4H, m, CH₂CH₂), 1.21 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.47—2.67 (1H, m, NCH), 2.98—3.11 (1H, m, C₃-H), 3.64 (1H, dd, J=2.5, 6.6 Hz, C₄-H), 4.66—5.19 (5H, m, CHOCO, Z-OCH, PhCH₂ and NH), 6.02 (1H, br s, NH), 7.36 (5H, s, C₆H₅). MS m/z: 376 (M)⁺, 225 (M-ZO)⁺.

(3S,4S)-4-[(S)-1-(N-(2-Benzyloxycarbonyloxyethyl)carbamoyloxy)ethyl]-3-[(R)-1-(benzyloxycarbonyloxy)ethyl]-2-azetidinone (14i) Treatments of 13i (0.615 g, 1.86 mmol) in a similar manner to that described for the preparation of 14a effected simultaneous benzyloxycarbonylation of the primary and secondary alcohols, giving 14i as a colorless oil (0.699 g, 73%). IR (neat): 3330, 2970, 1750, 1690, 1520, 1380, 1250 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 1.19 (3H, d, J=6.6 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 2.95—3.08 (1H, m, C₃-H), 3.33—3.51 (2H, m, NCH₂CH₂O), 3.59 (1H, dd, J=2.2, 7.0 Hz, C₄-H), 4.16—4.29 (2H, m, NCH₂CH₂O), 4.73—5.29 (6H, m, CHOCO, Z-OCH and 2 × PhCH₂), 6.05 (1H, br s, NH), 7.35 (5H, s, C₆H₅), 7.37 (5H, s, Ph). MS m/z: 514 (M) $^{+}$.

(35,45)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-phenyl-carbamoyloxy)ethyl]-2-azetidinone (14j) A mixture of 12 (0.539 g, 1.32 mmol) and aniline (5 ml) was stirred at 60 °C for 10 h, and then diluted with AcOEt (150 ml). The ethyl acetate solution was washed successively with 1 n HCl, H₂O, and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo gave crude 13j as a dark red oil which was dissolved in MeOH (12 ml). Methanolic 1 n HCl (2 ml) was added to the methanolic solution. After being stirred at room temperature for 1 h, the mixture was neutralized with triethylamine and diluted with AcOEt (70 ml). The ethyl acetate solution was washed successively with H₂O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo followed by column chromatography (SiO₂, hexane—AcOEt (1:10)) of the residue gave a colorless oil. Benzyloxycarbonyl chloride (0.942 ml, 6.60 mmol) was added to a mixture of the colorless oil and DMAP (0.855 g, 7.26 mmol) in CH₂Cl₂ (11 ml) at 0 °C.

After being stirred at room temperature for 16 h, the mixture was diluted with $\mathrm{CH_2Cl_2}$ (60 ml). The organic layer was separated, washed successively with $\mathrm{H_2O}$ and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration *in vacuo* gave an oily residue which was purified by column chromatography (SiO₂, hexane–AcOEt (6:4)) to give **14j** as a colorless oil (0.289 g, 53%). IR (neat): 3310, 2980, 1750, 1590, 1530, 1440, 1250 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.27 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.4 Hz, Me), 3.03—3.14 (1H, m, C₃-H), 3.70 (1H, dd, J=2.4, 6.6 Hz, C₄-H), 4.84—5.27 (4H, m, CHOCO, Z-OCH and PhCH₂), 6.23 (1H, br s, NH), 6.76 (1H, br s, NH), 7.23—7.35 (10H, m, $2 \times C_6 H_5$). MS m/z: 412 (M)⁺.

(3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-(4-fluorophenyl)carbamoyloxy)ethyl]-2-azetidinone (14k) Prepared from 12 (0.749 g, 1.83 mmol) in a similar manner to that described for the preparation of 14j. The compound (14k) was obtained as a colorless oil (0.482 g, 61%). IR (neat): 3330, 3000, 1760, 1670, 1540, 1510, 1390, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.27 (3H, d, J=6.4 Hz, Me), 1.44 (3H, d, J=6.2 Hz, Me), 3.02—3.15 (1H, m, C₃-H), 3.70 (1H, dd, J=2.4, 6.6 Hz, C₄-H), 4.84—5.20 (4H, m, CHOCO, Z-OCH and PhCH₂), 6.22 (1H, br s, NH), 6.74 (1H, br s, NH), 6.88—7.39 (4H, m, C₆H₄F), 7.35 (5H, s, C₆H₅). MS m/z: 430 (M)⁺.

(3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-methoxycarbamoyloxy)ethyl]-2-azetidinone (14l) Prepared from 13l (0.289, 0.91 mmol) as a colorless oil (0.197 g, 59%). IR (neat): 3320, 1760, 1385, 1270 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.32 (3H, d, J=6.4 Hz, Me), 1.41 (3H, d, J=6.6 Hz, Me), 2.88—3.00 (1H, m, C₃-H), 3.73 (1H, dd, J=2.2, 5.9 Hz, C₄-H), 3.80 (3H, s, OMe), 4.18 (1H, dq, J=6.4, 5.9 Hz, CHOCO), 4.94 (1H, dq, J=each 6.6 Hz, Z-OCH), 5.29 (2H, s, PhCH₂), 6.13 (1H, br s, NH), 7.39 (6H, s, C₆H₅ and NH). MS m/z: 366 (M)⁺.

(3S, 4S) - 4 - [(S) - 1 - (N-Benzyl-N-methoxycarbamoyloxyethyl] - 3 - [(R) - (N-Benzyl-N-methoxycarbamoyloxyethyl) - (R) - [(R) - (N-Benzyl-N-methoxycarbamoyloxyethyl) - (R) - [(R) - (N-Benzyl-N-methoxycarbamoyloxyethyl) - (R) - [(R) - (N-Benzyl-N-methoxycarbamoyloxyeth(benzyloxycarbonyloxy)ethyl]-2-azetidinone (14m) Trichloromethyl chloroformate (0.11 ml, 0.92 mmol) was added to a mixture of 11 (0.445 g, 1.83 mmol) and pyridine (0.148 ml, 1.83 mmol) in CH₂Cl₂ (10 ml) at 0 °C under an argon atmosphere, and the mixture was stirred at the same temperature for 2.5 h. A solution of N-benzylmethoxyamine¹⁵⁾ (0.552 g, $4.03\,\mathrm{mmol}$) in $\mathrm{CH_2Cl_2}$ (3 ml) was added to the reaction mixture. The mixture was stirred at 0 °C for 0.5 h, then diluted with CH₂Cl₂ (100 ml). The dichloromethane solution was washed successively with H2O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo followed by column chromatography (SiO2, hexane-AcOEt (3:2)) of the residue gave 13m as a colorless oil. A mixture of 13m and methanolic 1 N HCl (2.5 ml) in MeOH (15 ml) was stirred at room temperature for 1 h. The mixture was neutralized with triethylamine and diluted with AcOEt (100 ml). The ethyl acetate solution was washed successively with H2O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo gave a colorless oil. Benzyloxycarbonyl chloride (1.09 ml, 0.77 mmol) was added to a mixture of the colorless oil and DMAP (1.03 g, 8.42 mmol) in CH₂Cl₂ (11 ml) at 0 °C. After being stirred at room temperature for 18 h, the mixture was diluted with CH₂Cl₂ (80 ml). The dichloromethane solution was washed successively with H2O and saturated NaCl, then dried over anhydrous MgSO₄. Filtration and concentration in vacuo followed by purification by column chromatography (SiO₂, hexane-AcOEt (3:1)) gave 14m as a colorless oil (0.376 g, 45%). IR (neat): 3300, 3000, 1765, 1740, 1710, 1450, 1380, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.23 (3H, d, J=6.4 Hz, Me), 1.41 (3H, d, J = 6.4 Hz, Me), 2.90 - 3.03 (1H, m, C₃-H), 3.54 - 3.67 (1H, m, C₄-4.5)H), 3.60 (3H, s, OMe), 4.61 (2H, s, NCH₂Ph), 4.74-5.23 (4H, m, CHOCO, Z-OCH and PhCH₂), 5.82 (1H, br s, NH), 7.31 (5H, s, C₆H₅), 7.35 (5H, s, C_6H_5). MS m/z: 305 (M-ZO)⁺.

(3S,4S)-4-[(S)-1-(N-Benzyl-N-benzyloxycarbamoyloxy)ethyl]-3-[(R)-1-(benzyloxycarbonyloxy)ethyl]-2-azetidinone (14n) Prepared from 13n (0.395 g, 0.82 mmol) as a colorless oil (0.310 g, 71%). IR (neat): 3300, 3050, 1770, 1750, 1710, 1450, 1380, 1260 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.20 (3H, d, J=6.4 Hz, Me), 1.41 (3H, d, J=6.4 Hz, Me), 2.88—3.01 (1H, m, C₃-H), 3.55 (1H, dd, J=2.4, 7.5 Hz, C₄-H), 4.56 (2H, s, NCH₂Ph), 4.73 (2H, s, OCH₂Ph), 4.69—5.19 (4H, m, CHOCO, Z-OCH and PhCH₂), 5.54 (1H, br s, NH), 7.32 (10H, s, 2 × C₆H₅), 7.35 (5H, s, C₆H₅). MS m/z: 532 (M)⁺, 381 (M-ZO)⁺.

Tetrabutylammonium (3S,4S)-3-[(R)-1-(Benzyloxycarbamoyloxy)ethyl]-4-[(S)-1-carbamoyloxyethyl]-2-azetidinone-1-sulfonate (15a) A mixture of 14a (0.107 g, 0.32 mmol) and SO₃-Py (0.204 g, 1.28 mmol) in N,N-dimethylformamide (DMF) (0.5 ml) was stirred at 50 °C for 6 h. Tetrabutylammonium hydrogensulfate (0.109 g, 0.32 mmol) and 0.5 m KH₂PO₄ (15 ml) were added, and the mixture was extracted with CH₂Cl₂. The dichloromethane extracts were combined and dried over anhydrous MgSO₄. Filtration and concentration *in vacuo* gave an oily residue, which

922 Vol. 38, No. 4

was purified by column chromatography (SiO₂, AcOEt–MeOH (10:1)) to give **15a** as a pale yellow oil (0.171 g, 81%). IR (neat): 3500, 3350, 2930, 1750, 1695, 1450, 1380 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.98 (12H, t, 4× (CH₂)₃CH₃), 1.25—1.71 (22H, m, 2 × Me and 4 × CH₂CH₂CH₂CH₃), 3.05 (1H, dd, J=2.6, 6.4 Hz, C₃-H), 3.15—3.33 (8H, m, 4 × $\overline{\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3}$), 4.04 (1H, dd, J=2.6, 4.4 Hz, C₄-H), 4.64 (2H, br s, NH₂), 4.93—5.29 (4H, m, CHOCO, Z-OCH and PhCH₂), 7.35 (5H, s, C₆H₅). The ammonium salts (**15b**—**k**, **m**, **n**) were prepared in the same manner as described above.

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-methylcarbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15b) Prepared from 14b (0.187 g, 0.53 mmol) as a pale yellow oil (0.320 g, 88%). IR (neat): 2970, 1760, 1710, 1260, 1040 cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times$ (CH₂)₃CH₃), 1.24—1.74 (22H, m, $2 \times$ Me and $4 \times$ CH₂CH₂CH₂CH₃), 2.56 (3H, d, J=4.8 Hz, NMe), 3.05 (1H, dd, J=2.4, 6.6 Hz, C₃-H), 3.14—3.34 (8H, m, $4 \times$ CH₂CH₂CH₂CH₃), 4.03 (1H, dd, J=2.4, 4.6 Hz, C₄-H), 4.71 (1H, br s, NH), 4.97—5.29 (4H, m, CHOCO, Z-OCH and PhCH₂), 7.35 (5H, s, C₆H₅).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*,*N*-dimethylcarbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15c) Prepared from 14c (99 mg, 0.27 mmol) as a colorless oil (0.172 g, 93%). IR (neat): 3500, 2950, 1750, 1690, 1380, 1250 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.25—1.74 (22H, m, $2 \times M$ and $4 \times CH_2 CH_2 CH_2 CH_3$), 2.80 (6H, s, N(CH₃)₂), 3.08 (1H, dd, J=2.4, 6.4 Hz, C_3 -H), 3.14—3.35 (8H, m, $4 \times CH_2 CH_2 CH_2 CH_3$), 4.05 (1H, dd, J=2.4, 4.4 Hz, C_4 -H), 4.95—5.35 (4H, m, CHOCO, Z-OCH and PhCH₂), 7.34 (5H, s, C_6 H₅).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-(benzyloxycarbonylmethyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15d) Prepared from 14d (0.190 g, 0.39 mmol) as a colorless oil (0.255 g, 81%). IR (neat): 3370, 2970, 1760, 1680, 1260, 1220 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.00 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.26—1.72 (22H, m, $2 \times Me$ and $4 \times CH_2 CH_2 CH_2 CH_3$), 3.07—3.35 (9H, m, C₃H and $4 \times CH_2 CH_2 CH_3$), 3.78 (2H, d, J=5.7 Hz, NCH₂COO), 4.06 (1H, dd, J=2.4, 4.8 Hz, C₄-H), 4.96—5.38 (7H, m, CHOCO, Z-OCH, $2 \times PhCH_2$ and NH), 7.34 (10H, s, $2 \times C_6 H_5$).

Tetrabutylammonium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Benzyloxycarbonylmethyl-*N*-methylcarbamoyloxy)ethyl]-3-[(*R*)-1-(benzyloxycarbonyloxy)ethyl]-2-azetidinone-1-sulfonate (15e) Prepared from 14e (0.274 g, 0.55 mmol) as a colorless oil (0.415 g, 92%). IR (neat): 2970, 1750, 1700, 1450, 1260 cm⁻¹.

1H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.25—1.74 (22H, m, 2 × Me and $4 \times CH_2 CH_2 CH_2 CH_3$), 2.88 (3H, S, NMe), 3.05 (1H, dd, *J* = 2.2, 6.6 Hz, C₃-H), 3.11—3.33 (8H, m, $4 \times CH_2 CH_2 CH_2 CH_3$), 3.96—4.32 (3H, m, C₄-H and NCH₂COO), 4.98—5.37 (6H, m, CHOCO, Z-OCH and 2 × PhCH₂), 7.33 (10H, s, 2 × C₆H₅).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-((4-benzyloxycarbonylpiperazin-1-yl)carbonyloxy)ethyl]-2-azetidinone-1-sulfonate (15f) Prepared from 14f (0.479 g, 0.89 mmol) as a colorless oil (0.736 g, 96%). IR (neat): 2970, 1760, 1690, 1420, 1250 cm⁻¹.

1H-NMR (CDCl₃) δ : 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.23—1.73 (22H, m, $2 \times Me$ and $4 \times CH_2 CH_2 CH_2 CH_3$), 3.08 (1H, dd, J=2.2, 6.8 Hz, C_3 -H), 3.16—3.51 (16H, m, piperazine and $4 \times CH_2 CH_2 CH_2 CH_3$), 4.02 (1H, dd, J=2.2, 5.7 Hz, C_4 -H), 4.94—5.29 (6H, m, CHOCO, Z-OCH and $2 \times PhCH_2$), 7.32 (5H, s, C_6H_5), 7.33 (5H, s, C_6H_5).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-(pyridin-2-ylmethyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15 g) Prepared from 14g (0.413 g, 0.97 mmol) as a colorless oil (0.646 g, 89%). IR (neat): 3030, 2990, 1760, 1720, 1510, 1270 cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 0.99 (12H, t, 4×(CH₂)₃CH₃), 1.23—1.73 (22H, m̄, 2× Me and 4×CH₂CH₂CH₂CH₃), 3.08 (1H, dd, J=2.6, 6.4 Hz, C₃-H), 3.16—3.35 (8H, m, 4×CH₂CH₂CH₂CH₂CH₃), 4.10 (1H, dd, J=2.6, 4.8 Hz, C₄-H), 4.38 (2H, d, NCH₂), 4.98—5.29 (4H, m, CHOCO, Z-OCH and PhCH₂), 5.68 (1H, br s, NH), 7.10—7.20 (2H, m, C₃-H and C₅-H of the pyridine ring), 7.29 (5H, s, C₆H₅), 7.62 (1H, ddd, J=2.0, 7.7, 8.0 Hz, C₄-H of the pyridine ring). 8.48 (1H, d, J=4.6 Hz, C₆-H of the pyridine ring).

Tetrabutylammonium (3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(S)-1-(N-cyclopropylcarbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15h) Prepared from 14h (0.232 g, 0.62 mmol) as a colorless oil (0.388 g, 90%). IR (neat): 3350, 2970, 2900, 1760, 1710, 1670, 1500, 1450, 1250 cm $^{-1}$. 1 H-NMR (CDCl₃) δ : 0.41—0.75 (4H, m, CH₂CH₂), 1.00 (12H, t, $4\times$ (CH₂)₃CH₃), 1.26—1.74 (22H, m, 2 × Me and $4\times$ CH₂CH₂CH₂CH₂CH₃), 2.44—2.57 (1H, m, NCH), 3.05 (1H, dd, J=2.6, 9.0 Hz, C₃-H), 3.14—3.34 (8H, m, $4\times$ CH₂CH₂CH₂CH₃), 4.04 (1H, dd, J=2.6, 5.1 Hz, C₄-H), 4.92—5.29 (5H, m, CHOCO, Z-OCH, PhCH₂ and NH), 7.35 (5H, s, C₆H₅).

Tetrabutylammonium (3S,4S)-3-[(R)-1-(Benzyloxycarbonyloxy)ethyl]-

4-[(S)-1-(N-(2-(benzyloxycarbonyloxy)ethyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15i) Prepared from **14i** (0.615 g, 1.86 mmol) as a colorless oil (0.699 g, 73%). IR (neat): 3350, 2980, 2880, 1760, 1670, 1530, 1450, 1380 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.25—1.79 (22H, m, $2 \times Me$ and $4 \times CH_2 CH_2 CH_2 CH_3$), 2.99—3.46 (11H, m, C_3 -H, $4 \times CH_2 CH_2 CH_2 CH_3$ and $NCH_2 CH_2 O$), 4.00—4.16 (3H, m, C_4 -H and $NCH_2 CH_2 O$), 4.95—5.45 (6H, m, CHOCO, Z-OCH and $2 \times PhCH_2$), 7.32 (5H, s, $C_6 H_5$), 7.35 (5H, s, $C_6 H_5$).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-(Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-phenylcarbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15j) Prepared from 14j (0.249 g, 0.60 mmol) as a colorless oil (0.426 g, 97%). IR (neat): 3280, 2970, 1760, 1670, 1600, 1550, 1250 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.23—1.74 (22H, m, $2 \times Me$ and $4 \times CH_2 CH_2 CH_2 CH_3$), 3.07 (1H, dd, J=2.6, 6.8 Hz, C_3 -H), 3.15—3.32 (8H, m, $4 \times \overline{CH_2 CH_2 CH_2 CH_3}$), 4.09 (1H, dd, J=2.6, 5.5 Hz, C_4 -H), 4.91—5.29 (4H, m, \overline{CHOCO} , \overline{C} -OCH and PhCH₂), 7.29 (10H, s, $2 \times C_6 H_4$).

Tetrabutylammonium (3*S*,4*S*)-3-[(*R*)-1-Benzyloxycarbonyloxy)ethyl]-4-[(*S*)-1-(*N*-(4-fluorophenyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (15k) Prepared from 14k (0.391 g, 0.91 mmol) as a colorless oil (0.657 g, 96%). IR (neat): 3300, 2980, 1760, 1670, 1510, 1250 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.98 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.25—1.72 (22H, m, $2 \times M$ e and $4 \times CH_2 CH_2 CH_2 CH_3$) 3.04 (1H, dd, J=2.4, 6.2 Hz, C_3 -H), 3.14—3.32 (8H, m, $4 \times CH_2 CH_2 CH_2 CH_3$), 4.08 (1H, dd, J=2.4, 5.5 Hz, C_4 -H), 4.94—5.26 (4H, m, CHOCO, Z-OCH and PhCH₂), 6.79—7.34 (4H, m, C_6H_4F), 7.30 (5H, s, C_6H_5).

Tetrabutylammonium (3S,4S)-4-[(S)-1-(N-Benzyl-N-methoxycarbamoyloxy)ethyl]-3-[(R)-1-(benzyloxycarbonyloxy)ethyl]-2-azetidinone-1-sulfonate (15 m) Prepared from 14m (0.137 g, 0.30 mmol) as a colorless oil (0.215 g, 92%). IR (neat): 2980, 1770, 1710, 1455, 1370, 1260 cm $^{-1}$. 1 H-NMR (CDCl₃) δ: 0.99 (12H, t, $4 \times$ (CH₂)₃CH₃), 1.26—1.74 (22H, m, $2 \times$ Me and $4 \times$ CH₂CH₂CH₂CH₃), 3.06—3.36 (9H, m, C₃-H and $4 \times$ CH₂CH₂CH₂CH₃), 3.52 (3H, s, OMe), 4.14 (1H, dd, J=2.6, 5.9 Hz, C₄-H), 4.49 (1H, d, J=15.6 Hz, NCHPh), 4.73 (1H, d, J=15.6 Hz, NCHPh), 4.98—5.43 (4H, m, CHOCO, Z-OCH and PhCH₂), 7.27 (5H, s, C₆H₅), 7.32 (5H, s, C₆H₅).

Tetrabutylammonium (3S,4S)-4-[(S)-1-(N-Benzyl-N-benzyloxycarbamoyloxy)ethyl]-3-[(R)-1-(benzyloxycarbonyloxy)ethyl]-2-azetidinone-1-sulfonate (15n) Prepared from 14n (0.229 g, 0.43 mmol) as a colorless oil (0.329 g, 90%). IR (neat): 2960, 2900, 1770, 1700, 1450, 1380, 1260 cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 0.98 (12H, t, 4×(CH₂)₃CH₃), 1.25—1.72 (22H, m, 2× Me and 4×CH₂CH₂CH₂CH₃), 3.06 (1H, dd, J=2.4, 5.9 Hz, C₃-H), 3.15—3.33 (8H, m, $\overline{4}$ ×CH₂CH₂CH₂CH₃), 4.15 (1H, dd, J=2.4, 4.6 Hz, C₄-H), 4.51—5.26 (8H, m, CHOCO, Z-OCH and 3× PhCH₂). 7.30 (15H, s, 3×C₆H₅).

(3S,4S)-3-[(R)-1-Hydroxyethyl]-4-[(S)-1-(N-((1-methylpyridinium-2-yl)-1-(N-((1-methylpyridium-2-yl)-1-(N-((1-methylpyridinium-2-yl)-1-(N-((1-methylpyridiniumethyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (16) A mixture of 15g (0.111 g, 0.15 mmol) and 5% Pd-C (40 mg) in THF (4 ml) was stirred at room temperature under a hydrogen atmosphere. The catalyst was filtered off and the filtrate was concentrated in vacuo to give the corresponding secondary alcohol as a colorless oil (73.4 mg, 80%). ¹H-NMR (CDCl₃) δ : 0.99 (12H, t, $4 \times (CH_2)_3 CH_3$), 1.26—1.78 (22H, m, $2 \times \text{Me}$ and $4 \times \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 2.90—2.97 (1H, m, C₃-H), 3.17—3.34 (8H, m, $4 \times CH_2CH_2CH_3$), 4.06—4.19 (2H, m, C_4 -H and HO-CH), 4.45 (2H, d, J = 5.7 Hz, NCH₂), 5.26—5.39 (1H, m, CHOCO), 5.89 (1H, br s, NH), 7.09—7.35 (2H, m, C_2 -H and C_5 -H of the pyridine ring), 7.57—7.74 (1H, m, C_4 -H of the pyridine ring), 8.48 (1H, d, J = 5.1 Hz, C_6 -H of the pyridine ring). A mixture of the secondary alcohol (73.4 mg, 0.12 mmol) and MeI (4 ml) in acetone (4 ml) was stirred at room temperature for 1.5 h under shielding from light. The precipitate was filtered off and washed with acetone to give 16 as a white powder (43.1 mg, 93%), $[\alpha]_D^{20}$ -7.2° (c=1.03, H₂O). IR (KBr): 3430, 2970, 1750, 1710, 1630, 1510, 1250 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.28 (3H, d, J=6.0 Hz, Me), 1.35 (3H, d, J=6.5 Hz, Me), 2.86 (1H, d, J=5.5 Hz, C_3 -H), 4.01—4.07 (2H, m, C_4 -H and HO-CH), 4.35 (3H, s, NMe), 4.62 (1H, d, J=17.1 Hz, NCH), 4.80 (1H, d, J=17.1 Hz, NCH), 4.97—5.01 (1H, m, CHOCO), 7.91 (1H, dd, $J = 5.9, 7.9 \text{ Hz}, C_5 - \text{H}$ of the pyridine ring), 8.26 (1H, d, $J = 7.9 \text{ Hz}, C_3 - \text{H}$ of the pyridine ring), 8.50 (1H, t, J = 7.9 Hz, C_4 -H of the pyridine ring), 8.84 (1H, d, J=5.9 Hz, C₆-H of the pyridine ring). MS (SIMS) m/z: 388 $(M+H)^+$, 386 $(M-H)^-$, 372 $(M-Me)^-$. Anal. Calcd for $C_{15}H_{21}N_3O_7$ -S·H₂O: C, 44.43; H, 5.72; N, 10.36. Found: C, 44.49; H, 5.34; N, 10.14.

Potassium (3S,4S)-4-[(S)-1-Carbamoyloxyethyl]-3-[(R)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9a) A mixture of 15a (0.160 g, 0.24 mmol) and 5% Pd-C (16 mg) in THF (5 ml) was stirred at room temperature for 3 h under a hydrogen atmosphere. The catalyst was filtered off and the filtrate was concentrated *in vacuo* to give a colorless oil.

This was dissolved in a small amount of acetone– H_2O and chromatographed on an anion exchange resin[AG 50W-X2(K + form)]. Elution of the column with H_2O and lyophilization of the combined eluate gave **9a** as a white powder (70 mg, 91%). [α] $_D^{20}$ – 32.2° (c=1.01, H_2O). IR (KBr): 3450, 1760, 1690, 1250 cm $^{-1}$. 1 H-NMR (CD $_3$ OD) δ : 1.27 (3H, d, J=6.6 Hz, Me), 1.36 (3H, d, J=6.6 Hz, Me), 2.97 (1H, dd, J=2.6, 6.2 Hz, C_3 -H), 4.01—4.18 (1H, m, HO-C \underline{H}), 4.14 (1H, dd, J=2.6, 4.4 Hz, C_4 -H), 5.09—5.24 (1H, m, CHOCO). MS (SIMS) m/z: 281 (M – K) $^-$. Anal. Calcd for $C_8H_{13}KN_2O_7S \cdot 1.5H_2O$: C, 27.66; H, 4.64; N, 8.07. Found: C, 28.13; H, 4.58; N, 7.69. The potassium salts (**9b**—**k**,**m**,**n**) were prepared from the ammonium salts (**15b**—**k**,**m**,**n**) in the same manner as described above.

Potassium (3*S*,4*S*)-3-[(*R*)-1-Hydroxyethyl]-4-[(*S*)-1-(*N*-methylcar-bamoyloxy)ethyl]-2-azetidinone-1-sulfonate (9b) Prepared from 15b (0.305 g, 0.44 mmol) as a white powder (0.131 g, 89%), $[\alpha]_D^{20}$ -20.6° (c=1.49, H₂O). IR (KBr): 3430, 3000, 1760, 1710, 1530, 1260, 1040 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.26 (3H, d, J=6.6 Hz, Me), 1.34 (3H, d, J=6.6 Hz, Me), 2.70 (3H, s, NMe), 2.99 (1H, dd, J=2.6, 5.9 Hz, C₃-H), 4.01—4.19 (2H, m, C₄-H and HO-CH), 5.05—5.32 (1H, m, CHOCO). MS (SIMS) m/z: 335 (M+H)⁺, 373 (M+K)⁺. *Anal*. Calcd for C₉H₁₅KN₂O₇S·H₂O: C, 30.67; H, 4.86; N, 7.95. Found: C, 30.90; H, 4.83; N, 7.93.

Potassium (3*S*,4*S*)-4-[(*S*)-1-(*N*,*N*-Dimethylcarbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9c) Prepared from 15c (21 mg, 0.03 mmol) as a white powder (9.3 mg, 89%), $[\alpha]_D^{20} - 9.8^\circ$ (c=1.51, H₂O). IR (KBr): 3460, 2970, 1750, 1680, 1390, 1250 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.27 (3H, d, J=6.4 Hz, Me), 1.36 (3H, d, J=6.6 Hz, Me), 2.91 (6H, s, Me₂N), 2.99 (1H, dd, J=2.6, 6.2 Hz, C₃-H), 4.01—4.17 (2H, m, C₄-H and HO-CH), 5.12—5.25 (1H, m, CHOCO). MS (SIMS) m/z: 309 (M-K)⁻. *Anal.* Calcd for C₁₀H₁₇KN₂O₇S·1.5H₂O: C, 31.99; H, 5.37; N, 7.46. Found: C, 32.02; H, 5.43; N, 7.72.

Dipotassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Carboxylatomethylcarbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9d) Prepared from 15d (0.212 g, 0.26 mmol) as a white powder (79.6 mg, 74%), $[\alpha]_0^{20}$ – 31.0° (c=1.21, H₂O). IR (KBr): 3370, 1760, 1690, 1610, 1540, 1250, 1150 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 1.10 (3H, d, J=5.9 Hz, Me), 1.17 (3H, d, J=6.4 Hz, Me), 2.78 (1H, dd, J=2.4, 5.9 Hz, C₃-H), 3.25 (2H, d, J=4.6 Hz, NCH₂COO), 3.66—3.92 (2H, m, C₄-H and HO-CH), 5.04—5.20 (1H, m, CHOCO), 5.98 (1H, br s, NH). MS (SIMS) m/z: 417 (M+H)⁺, 455 (M+K)⁺. *Anal.* Calcd for C₁₀H₁₄K₂N₂O₉S·1.3H₂O: C, 27.30; H, 3.80; N, 6.37. Found: C, 27.59; H, 4.12; N, 6.50.

Dipotassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Carboxylatomethyl-*N*-methylcarbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-suflonate (9e)¹³⁾ Prepared from 15e (0.415 g, 0.51 mmol) as a white powder (0.178 g, 83%). [α]_D¹⁰ -15.7° (c=1.67, H₂O). IR (KBr): 3500, 3000, 1760, 1690, 1600, 1410, 1240 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 1.10 (1.5H, d, J=6.5 Hz, Me), 1.12 (1.5H, d, J=6.5 Hz, Me), 1.14 (1.5 H, d, J=6.5 Hz, Me), 1.21 (1.5H, d, J=6.5 Hz, Me), 2.75 (0.5H, dd, J=2.2, 6.5 Hz, C₃-H), 2.79 (1.5H, s, NMe), 2.82 (2H, brs, C₃-H and NMe), 3.69 (2H, brs, NCH₂COO), 3.71—3.78 (0.5H, m, HO-CḤ), 3.82—3.88 (0.5H, m, HO-CḤ), 3.87 (0.5H, dd, J=2.2, 4.3 Hz, C₄-H), 3.91 (0.5H, dd, J=2.2, 4.3 Hz, C₄-H), 5.06 (0.5H, dq, J=4.3, 6.4 Hz, CHOCO), 5.13 (0.5H, dq, J=4.3, 6.4 Hz, CHOCO). ¹³⁾ MS (SIMS) m/z: 431 (M+H)⁺, 469 (M+K)⁺.

Potassium (3*S*,4*S*)-3-[(*R*)-1-Hydroxyethyl]-4-[(*S*)-1-((piperazin-1-yl)-carbonyloxy)ethyl]-2-azetidinone-1-sulfonate (9f) Prepared from 15f (0.726 g, 0.84 mmol) as a white powder (0.285 g, 87%), $[\alpha]_D^{20} + 155^{\circ}$ (*c*=1.73, H₂O). IR (KBr): 3470, 2980, 1760, 1690, 1430, 1250 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.27 (3H, d, *J*=6.4 Hz, Me), 1.36 (3H, d, *J*=6.5 Hz, Me), 2.82 (4H, br s, CH₂NHCH₂), 2.94 (1H, dd, *J*=2.6, 6.6 Hz, C₃-H), 3.48—3.63 (4H, m, CH₂N(CO)CH₂), 4.05 (1H, dq, *J*=6.4, 6.6 Hz, HO-CH), 4.12 (1H, dd, *J*=2.6, 5.5 Hz, C₄-H), 5.17 (1H, dq, *J*=5.5, 6.5 Hz, CHOCO). MS (SIMS) m/z: 390 (M+H)⁺, 428 (M+K)⁺.

Potassium (3S,4S)-3-[(R)-1-Hydroxyethyl]-4-[(S)-1-(N-(pyridin-2-yl-methyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (9g) Prepared from 15g (0.322 g, 0.43 mmol) as a white powder (0.159 g, 90%), [α]₂²⁰ -42.8° (c=1.65, H_2 O). IR (KBr): 3400, 1760, 1710, 1540, 1260 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.27 (3H, d, J=6.3 Hz, Me), 1.38 (3H, d, J=6.5 Hz, Me), 2.99 (1H, dd, J=2.4, 6.2 Hz, C₃-H), 4.08 (1H, dq, J=6.2, 6.3 Hz, HO-CH), 4.16 (1H, dd, J=2.4, 5.0 Hz, C₄-H), 4.38 (1H, d, J=16.4 Hz, NCH), 4.45 (1H, d, J=16.4 Hz, NCH), 5.19 (1H, dq, J=5.0, 6.5 Hz, CHOCO), 7.28 (1H, dd, J=5.0, 7.7 Hz, C₅-H of the pyridine ring), 7.47 (1H, d, J=7.7 Hz, C₃-H of the pyridine ring), 8.45 (1H, d, J=5.0 Hz, C₆-H of the pyridine ring). MS (SIMS) m/z: 455 (M+K)⁺. Anal. Calcd for C₁₄H₁₈KN₃O₇S·0.25H₂O: C, 40.42; H, 4.48; N, 10.10. Found: C, 40.40; H, 4.50: N, 9.87.

Potassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Cyclopropylcarbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9h) Prepared from 15h (0.391 g, 0.56 mmol) as a white powder (0.184 g, 91%), $[α]_0^{20}$ –19.3° (c=1.63, H₂O). IR (KBr): 3400, 1760, 1710, 1540, 1260 cm⁻¹. ¹H-NMR (CD₃OD) δ: 0.40—0.70 (4H, m, CH₂CH₂), 1.26 (3H, d, J=6.6 Hz, Me), 1.35 (3H, d, J=6.4 Hz, Me), 2.39—2.59 (1H, m, NCH), 2.94 (1H, dd, J=2.4, 6.2 Hz, C₃-H), 3.98—4.30 (2H, m, C₄-H and CHOCO), 5.06—5.24 (1H, m, HO-CH). MS (SIMS) m/z: 361 (M+H)⁺, 399 (M+K)⁺. *Anal.* Calcd for C₁₁H₁₇KN₂O₇S·H₂O: C, 34.91; H, 5.06; N, 7.40. Found: C, 34.97; H, 5.11; N, 7.40.

Potassium (3*S*,4*S*)-3-[(*R*)-1-Hydroxyethyl]-4-[(*S*)-1-(*N*-(2-hydroxyethyl)carbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (9i) Prepared from 15i (0.776 g, 0.93 mmol) as a white powder (0.298 g, 88%), $[\alpha]_0^{20} - 19.2^{\circ}$ (c = 1.20, H_2O). IR (KBr): 3420, 2980, 1760, 1710, 1530, 1260 cm⁻¹. ¹H-NMR (CD₃OD-D₂O) δ : 1.36(3H, d, J = 6.4 Hz, Me), 1.28(3H, d, J = 6.4 Hz, Me), 3.04 (1H, dd, J = 2.5, 5.8 Hz, C₃-H), 3.20—3.30 (2H, m, NCH₂-CH₂O), 3.56—3.65 (2H, m, NCH₂-CH₂O), 4.12 (1H, dq, J = 5.8, 6.4 Hz, HO-CH). 4.16 (1H, dd, J = 2.5, 5.2, C₄-H), 5.13 (1H, dq, J = 5.2, 6.4 Hz, CHOCO). MS (SIMS) m/z: 365 (M+H)⁺, 403 (M+K)⁺. *Anal.* Calcd for C₁₀H₁₇KN₂O₈S·0.5H₂O: C, 32.16; H, 4.86; N, 7.50. Found: C, 31.97; H, 4.88; N, 7.56.

Potassium (3S,4S)-3-[(R)-1-Hydroxyethyl]-4-[(S)-1-(N-phenylcar-bamoyloxy)ethyl]-2-azetidinone-1-sulfonate (9j) Prepared from 15j (0.400 g, 0.55 mmol) as a white powder (0.117 g, 89%), $[\alpha]_D^{20} - 25.4^\circ$ (c= 1.22, H₂O). IR (KBr): 3450, 3370, 1760, 1710, 1610, 1530, 1450, 1235 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.28 (3H, d, J=6.4 Hz, Me), 1.43 (3H, d, J=6.4 Hz, Me), 3.02 (1H, dd, J=2.6, 6.4 Hz, C₃-H), 4.08 (1H, dq, J=each 6.4 Hz, HO-CH), 4.20 (1H, dd, J=2.6, 4.9 Hz, C₄-H), 5.26 (1H, dq, J=4.9, 6.4 Hz, CHOCO), 7.00 (1H, t, J=7.4 Hz, C₄-H of the benzene ring), 7.26 (2H, dd, J=7.9 Hz, C₂-H and C₆-H of the benzene ring). MS (SIMS) m/z: 435 (M+K)⁺. Anal. Calcd for C₁₄H₁₇KN₂O₇S·0.25H₂O: C, 41.93, H, 4.40; N, 6.99. Found: C, 41.78; H, 4.18; N, 6.93.

Potassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-(4-Fluorophenyl)carbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9k) Prepared from 15k (0.641 g, 0.85 mmol) as a white powder (0.286 g, 88%), $[\alpha]_2^{20}$ – 26.6° (*c* = 1.62, H₂O). IR (KBr): 3450, 3360, 1755, 1610, 1535, 1230 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.28 (3H, d, *J* = 6.4 Hz, Me), 1.42 (3H, d, *J* = 6.4 Hz, Me), 3.00 (1H, dd, *J* = 2.6, 6.4 Hz, C₃-H), 4.07 (1H, dq, *J* = each 6.4 Hz, HO-CH), 4.19 (1H, dd, *J* = 2.6, 5.0 Hz, C₄-H), 5.24 (1H, dq, *J* = 5.0, 6.4 Hz, CHOCO), 6.96—7.02 (2H, m, C₃-H and C₅-H of the benzene ring), 7.39—7.43 (2H, m, C₂-H and C₆-H of the benzene ring). MS (SIMS) *m/z*: 453 (M+K)⁺. *Anal.* Calcd for C₁₄H₁₆FKN₂O₇S: C, 40.57; H, 3.89; N, 6.76. Found: C, 40.42; H, 3.69; N, 6.84.

Dipotassium (3S,4S)-3-[(R)-1-Hydroxyethyl]-4-[(S)-1-(N-methoxy-Nsulfonatocarbamoyloxy)ethyl]-2-azetidinone-1-sulfonate (91) and Potassium~(3S,4S)-3-[(R)-1-Hydroxyethyl]-4-[(S)-1-(N-methyloxy-N-sulfonato-normality of the context of the contextcarbamoyloxy)ethyl]-2-azetidinone (18) A mixture of 14l (0.110 g, 0.35 mmol) and SO₃-Py (0.111 g, 0.70 mmol) in DMF (0.6 ml) was stirred at 50 °C for 1 h. Tetrabutylammonium hydrogensulfate (0.238 g, 0.70 mmol) and 0.5 M KH₂PO₄ (15 ml) were added, and the mixture was extracted with CH₂Cl₂. The dichloromethane extracts were combined and dried over anhydrous MgSO₄. Filtration and concentration in vacuo gave an oily residue which was separated by column chromatography (SiO₂, AcOEt-MeOH (10:1)) to afford the diammonium salt (151) as a colorless oil (0.146 g, 41%) from the more polar fraction and the monoammonium salt (17) as a colorless oil (88 mg, 36%) from the less polar fraction. These two compounds were immediately converted to 91 and 18, respectively. The same treatments of 151 (89 mg, 0.087 mmol) and 17 (52 mg, 0.074 mmol) as described for the preparation of 9a, gave 91 (36.4 mg, 89%) and 18 (23.1 mg, 89%) both as a white powder. 91: $[\alpha]_D^{20} + 1.3^{\circ}$ (c=1.35, H₂O). IR (KBr): 3500, 2980, 2940, 1760, 1250 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.38 (3H, d, J=6.4, Me), 1.44 (3H, d, J=6.4 Hz, Me), 3.22 (1H, dd, J= 2.7, 6.0 Hz, C_3 -H), 3.66 (3H, s, OMe), 4.27 (1H, dd, J = 2.7, 5.1 Hz, C_4 -H), 4.76 (1H, dq, J=6.0, 6.4 Hz, HO-CH), 5.26 (1H, dq, J=5.1, 6.4 Hz, CHOCO). MS (SIMS) m/z: 507 $(M+K)^+$. Anal. Calcd for C₉H₁₄K₂N₂O₁₁S·0.75H₂O: C, 22.42; H, 3.24; N, 5.81. Found: C, 22.65; H, 3.28; N, 6.02. **18**: IR (KBr): 3470, 3260, 2970, 1750, 1250 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.33 (3H, d, J=6.4 Hz, Me), 1.45 (3H, d, J=6.3 Hz, Me), 3.02 (1H, dd, J=2.2, 8.4 Hz, C_3 -H), 3.66 (3H, s, OMe), 3.80 (1H, dd, J=2.2, 6.4 Hz, C_4 -H), 4.66 (1H, dq, J=6.3, 8.3, HO-CH), 4.89 (1H, dq, J= each 6.4 Hz, CHOCO). MS (SIMS) m/z: 351 (M+H)⁺, 389 (M+K)⁺.

Potassium (3S,4S)-4-[(S)-1-(N-Benzyl-N-methoxycarbamoyloxy)-ethyl]-3-[(R)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9m) Prepared from 15m <math>(0.188 g, 0.24 mmol) as a white powder (91 mg, 86%), $|\alpha|_{10}^{20} - 4.7^{\circ}$

(c=1.24, H₂O). IR (KBr): 3450, 3000, 1760, 1710, 1380, 1240 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.24 (3H, d, J=6.4 Hz, Me), 1.40 (3H, d, J=6.4 Hz, Me), 2.94 (1H, dd, J=2.6, 6.4 Hz, C₃-H), 3.60 (3H, s, OMe), 4.03 (1H, dq, J=each 6.4 Hz, HO-CH), 4.17 (1H, dd, J=2.6, 4.7 Hz, C₄-H), 4.63 (1H, d, J=15.7 Hz, NCH), 4.77 (1H, d, J=15.7 Hz, NCH), 5.26 (1H, dq, J=4.7, 6.4, CHOCO), 7.26—7.36 (5H, m, C₆H₅). MS (SIMS) m/z: 441 (M+H)⁺, 479 (M+K)⁺. Anal. Calcd for C₁₆H₂₁KN₂O₈S·0.5H₂O: C, 42.75; H, 4.93; N, 6.23. Found: C, 42.59; H, 5.10; N, 6.09.

Potassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Benzyl-*N*-benzyloxycarbamoyloxy)-ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9n) Prepared from 15n (0.312 g, 0.37 mmol) as a white powder (0.168 g, 88%). ¹H-NMR (CD₃OD) δ: 1.22 (3H, d, J=6.4 Hz, Me), 1.41 (3H, d, J=6.5 Hz, Me), 2.94 (1H, dd, J=2.6, 6.4 Hz, C₃-H), 4.03 (1H, dq, J=each 6.4 Hz, HO-CH), 4.19 (1H, dd, J=2.6, 4.7 Hz, C₄-H), 4.57 (1H, d, J=15.6 Hz, NCH), 4.70 (1H, d, J=15.6 Hz, NCH), 4.79 (2H, s, OCH₂), 5.28 (1H, dq, J=4.7, 6.5 Hz, CHOCO), 7.26—7.35 (10H, m, 2 × C₆H₅).

Potassium (3*S*,4*S*)-4-[(*S*)-1-(*N*-Benzyl-*N*-hydoxycarbamoyloxy)ethyl]-3-[(*R*)-1-hydroxyethyl]-2-azetidinone-1-sulfonate (9o)¹⁷⁾ A mixture of 9n (0.113 g, 0.22 mmol) and 20% Pd(OH)₂ on carbon (15 mg) in MeOH–H₂O (2:1, 3 ml) was stirred at room temperature for 6 h under hydrogen at 2 atm pressure. The catalyst was filtered off and the filtrate was concentrated *in vacuo*. The residue was lyophilized to give 9o as a white powder (92 mg, quantitative yield), $[\alpha]_D^{20} - 9.4^\circ$ (c = 1.62, H₂O). IR (KBr): 3440, 2980, 1760, 1710, 1450, 1240 cm⁻¹. H-NMR (CD₃OD) δ: 1.24 (3H, d, J = 6.5 Hz, Me), 1.40 (3H, d, J = 6.5 Hz, Me), 2.96 (1H, dd, J = 2.6, 6.4 Hz, C₃-H), 4.04 (1H, dq, J = 6.4, 6.5 Hz, HO-CH), 4.14 (0.3H, dd, J = 2.6, 4.8 Hz, C₄-H), 4.17 (0.7H, dd, J = 2.6, 5.1 Hz, C₄-H), 4.63 (1H, d, J = 15.6 Hz, NCH), 4.76 (1H, d, J = 15.6 Hz, NCH), 5.20 (0.3H, dq, J = 4.8, 6.5 Hz, CHOCO), 5.22 (0.7H, dq, J = 5.1, 6.5, CHOCO), 7.23—7.36 (5H, m, C₆H₅). MS (SIMS) m/z: 427 (M+H)+, 465 (M+K)+. Anal. Calcd for C₁₅H₁₉KN₂O₈S·0.5H₂O: C, 41.37; H, 4.62; N, 6.43. Found: C, 41.22; H, 4.75; N, 6.29.

Acknowledgment The authors are grateful to Drs. S. Suzue and K. Hirai, Central Research Laboratories, Kyorin Pharmaceutical Co., Ltd., for evaluating *in vitro* antibacterial activity.

References and Notes

- 1) Visiting scientist from the Central Research Laboratories, Kyorin Pharmaceutical Co., Ltd.
- R. B. Sykes, C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Georgopapadakou, W. H. Koster, W. C. Liu, W. L. Parker, P. A. Principe, M. L. Rathnum, W. A. Slusarchyk, W. H. Trejo, and J. S. Wells, *Nature* (London), 291, 489 (1981).
- A. Imada, K. Kitano, K. Kintaka, M. Muroi, and M. Asai, *Nature* (London), 289, 590 (1981).
- 4) C. M. Cimarusti and R. B. Sykes, Chem. Brit., 25, 371 (1989).

- 5) R. B. Sykes, D. P. Bonner, K. Bush and N. H. Georgopapadakou, *Antimicrob. Agents Chemother.*, 21, 85 (1982).
- M. Sendai, S. Hashiguchi, M. Tomimoto, S. Kishimoto, T. Matsuo, M. Kondo, and M. Ochiai, J. Antibiot., 38, 346 (1985).
- W. J. Leanza, K. J. Wildonger, T. W. Miller, and B. G. Christensen, J. Med. Chem., 22, 1435 (1979); B. G. Christensen, Chem. Brit., 25, 371 (1989).
- 8) Y. Ito, T. Kawabata and S. Terashima, *Tetrahedron Lett.*, 27, 5751 (1986); Y. Ito, Y. Kobayashi, T. Kawabata, M. Takase, and S. Terashima, *Tetrahedron*, 45, 5767 (1989).
- 9) Synthesis of the racemic monobactam (i) which bears an (R*)-1-hydroxyethyl group at the C₃-position and has C_{3,4}-cis-configuration has recently been reported. Antibacterial testing showed i to possess no antibacterial activity. C. J. Ashcroft, J. Brennan, C. E. Newall, and S. M. Roberts, *Tetrahedron Lett.*, 25, 877 (1984).

10) When we attempted to react the methyl carbonate (ii), prepared by treating 11 with methyl chloroformate in the presence of DMAP, with an excess of ammonia, 11 was recovered (K. Obi, Y. Ito, and S. Terashima, unpublished results). Accordingly, we chose an active mixed carbonate such as 12 for obtaining 13.

- 11) F. M. Hershenson, J. Org. Chem., 40, 1260 (1975).
- 12) W. O. Foye and I. E. Fedor, Jr., J. Am. Pharm. Assoc., 48, 412 (1959).
- 13) Among 9d—k produced, 9e was found to consist of two conformers or two diastereomers based on the NMR spectrum (see Experimental).
- 14) In the NMR spectra of 18 and 91, the C₄-protons appear at 3.80 and 4.27 ppm, respectively. Since the signal of the C₄-proton involved in 141, which gave 17 and 151, appeared at 3.73 ppm, the structures of 18 and 91 and those of 17 and 151 could be assigned as shown.
- P. C. Bernhart and C.-G. Wermuth, *Tetrahedron Lett.*, 15, 2493 (1974).
- K. Kurita, T. Matsumura and Y. Iwakura, J. Org. Chem., 41, 2070 (1976).
- 17) Based on the NMR spectrum, 90 was anticipated to consist of two conformers or two diastereomers (see Experimental).
- 18) Minimum inhibitory concentration.