INDUCER-SPECIFIC REGULATORS OF TUMOR NECROSIS FACTOR ALPHA PRODUCTION

Hiroyuki MIYACHI, Akihiko AZUMA, Erika HIOKI, Yoshiro KOBAYASHI, Shigeo IWASAKI, and Yuichi HASHIMOTO*

Institute of Molecular & Cellular Biosciences, University of Tokyo, $^{\circ}$ 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, and Faculty of Science, Toho University, $^{\circ}$ 2-2-1 Miyama, Funabashi, Chiba 274, Japan

Novel potent regulators of tumor necrosis factor alpha (TNF $-\alpha$) production by a human promyelocytic leukemia cell line, HL-60, were prepared. All the compounds showed inducer–specific and bidirectional regulation of TNF $-\alpha$ production, *i.e.*, they enhanced 12-O-tetradecanoylphorbol-13-acetate-induced TNF $-\alpha$ production, while they inhibited okadaic acid-induced one.

KEY WORDS tumor necrosis factor; HL-60; phorbol ester; okadaic acid

Tumor necrosis factor alpha (TNF $-\alpha$) is a cytokine produced by activated monocytes and/or macrophages; it plays a critical role in certain physiological defensive responses, but causes damage to the host when produced in excess.¹⁾ Because TNF-α possesses both favorable and unfavorable effects, regulators of TNF-α production would be useful as biological response modifiers (BRMs).²⁾ Among such BRMs, N(α)-phthalimidoglutarimide (thalidomide) has been well documented. Though thalidomide was withdrawn from the market because of its teratogenicity,30 it is potentially useful in the treatment of various diseases including graftversus-host disease and acquired immunodeficiency syndrome. 4-6) We are interested in structural modification of thalidomide and have prepared various phthalimide derivatives which enhances TNF-α production by a human promyelocytic leukemia cell line, HL-60, stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA). Recently, we have reported that the TNF- α production-regulating activity of thalidomide is inducer-specific and bidirectional, i.e., thalidomide enhances TPA-induced TNF-a production, while it inhibits okadaic acid (OA)induced one. 9 Both TPA and OA are tumor promoters which activates protein kinase C and phosphatases 1 and 2A, respectively. In this paper, we describe novel, potent, inducer-specific bidirectional regulators of TNF- α production.

Phenylphthalimide analogs [PP-00, PP-11, PP-33 and FPP-33 (Chart 1)], which we have already reported, are regulators of TNF-α production with wide range of activity. We have now developed four classes of compounds based on the phenylphthalimides, by (i) conversion of the phthalimide moiety to a homophthalimide moiety (PIQ-00, -11 and -33), (ii) fusion of an additional benzene ring to the phthalimide moiety (NAP-00, -11 and -33), (iii) decarbonylation of the phthalimide moiety (IP-00, -11 and -33), and (iv) derivatization to monothiocarbonyl analogs (PPS-33 and FPPS-33). All the compounds were synthesized by usual organic chemical methods and gave the expected analytical values (details will be published elsewhere). The TNF-α production-regulating activity of the prepared compounds was measured by ELISA as

October 1996 1981

described previously (Table 1).7,8)

Table 1. TNF- α Production-Regulating Activity of the Prepared Compounds

	Amount of TNF $-\alpha$ (%) ^{s)}							
	TPA (3 n M) ^{b)}				Okadaic acid (50 nM) ^{b)}			
	10 n M °)	100 n M °	3 μ M ^{c)}	30 μ M °	10 n M °	100 nM°	3 μ M ^{c)}	30μ M ^{c)}
none	100 (132 pg/ml)				100 (1065 pg/ml)			
PP-00	$N.A.^{d}$	$N.A.^{d}$	101	102	$N.A.^{d}$	$N.A.^{d}$	100	58
PP-11	$N.A.^{d}$	99	118	176	$N.A.^{d}$	103	92	40
PP-33	101	147	408	605	100	98	75	18
PIQ-00	$N.A.^{d}$	$N.A.^{d}$	103	113	$N.A.^{\scriptscriptstyle \sf d)}$	98	90	52
PIQ-11	$N.A.^{d}$	102	115	135	$N.A.^{\scriptscriptstyle \sf d)}$	100	78	46
PIQ-33	98	100	176	268	102	103	90	50
NAP-00	$N.A.^{d}$	$N.A.^{d}$	97	102	N.A.dd)	99	100	56
NAP-11	$N.A.^{d}$	$N.A.^{d}$	105	125	N.A.d	96	81	47
NAP-33	$N.A.^{d}$	100	108	144	N.A.dd)	95	85	48
IP-00	$N.A.^{d}$	98	104	115	$N.A.^{d}$	100	98	60
IP-11	$N.A.^{d}$	101	114	153	$N.A.^{d}$	101	90	45
IP-33	$N.A.^{d}$	103	147	214	$N.A.^{d}$	94	88	40
PPS-33	100	201	610	1120	101	100	46	0
FPP-33	158	345	Toxic	$N.A.^{d}$	73	0	$N.A.^{d}$	N.A.d)
FPPS-33	200	350	Toxic	N.A.d)	70	5	0	$N.A.^{\scriptscriptstyle \text{d})}$

a) The amount of TNF- α produced in the presence of an inducer alone was defined as 100%.

As shown in Table 1, PIQ-00, PIQ-11, IP-00, IP-11, NAP-00 and NAP-11 showed no or very weak enhancement on TNF- α production by TPA-stimulated HL-60 cells, while they were moderately active in inhibiting OA-induced TNF- α production. PIQ-33, IP-33 and NAP-33 showed both activities. These results on the structure-activity relationship are consistent with our previous results obtained for phenylphthalimide analogs. ⁷⁻⁹⁾

b) Inducer used and its concentration.

c) Concentrations of test compounds.

d) N.A. means not assayed.

1982 Vol. 44, No. 10

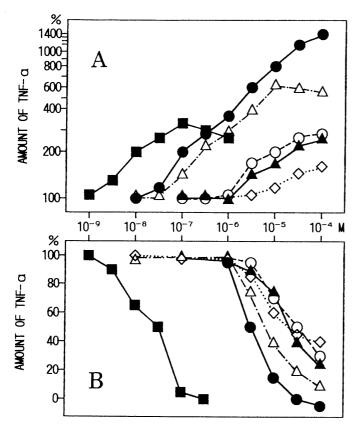


Fig. 1. Dose–Response Curves of Inducer–Specific Bidirectional Regulation of TNF– α Production

HL-60 cells were treated with [A] 3 nM TPA or [B] 50 nM OA in the presence of various concentrations (horizontal scale) of test compounds. The amount of TNF- α secreted in the culture medium (vertical scales) was measured by ELISA. The amounts of TNF- α produced in the presence of 3 nM TPA alone and 50 nM OA alone were defined as 100% in panels A and B, respectively.

■: FPPS-33, •: PPS-33, △: PP-33, ◇: NAP-33, •: IP-33.

Among the compounds newly prepared, PPS-33 showed potent activity in both assay systems, *i.e.*, it enhanced TPA-induced TNF- α production to more than 1400% at 100 μ M (Fig. 1), while it completely inhibited OA-induced TNF- α production at 30 μ M. Its tetrafluorinated analog, FPPS-33, also showed potent activity in both systems at very low concentrations (Fig. 1). It is noteworthy that the structure-activity relationships for TPA-induced TNF- α production-enhancing activity and OA-induced TNF- α production-inhibiting activity are very similar, but not identical. This means that the target molecules of the compounds in the two assay systems are different but possessing similar ligand-binding affinity.

In conclusion, we have developed phenylthiophthalimide analogs, PPS-33 and FPPS-33, which possess potent, inducer-specific bidirectional TNF- α production-regulating activity.

REFERENCES

- 1) Vassali P. A., Rev. Immun., 10, 411-452 (1992).
- 2) Hashimoto Y., Chemistry Today, 283, 38-44 (1994).
- 3) Kelsey F. O., Teratology, 38, 221–226 (1988).
- 4) Randall T., J. Am. Med. Assoc., 263, 1467-1468 (1990).
- 5) Kaplan G., *Immunobiology*, **191**, 564–568 (1994).
- 6) Makonkawkeyoon S., Limson-Pombre R. N. R., Moreira A. L., Schauf V., Kaplan G., *Proc. Natl. Acad. Sci. USA*, **90**, 5974–5978 (1993).
- 7) Shibata Y., Sasaki K., Hashimoto, Y., Iwasaki S., Chem. Pharm. Bull., 44, 156-162 (1996).
- 8) Sasaki S., Shibata Y., Hashimoto, Y., Iwasaki, S., Biol. Pharm. Bull., 18, 1228-1233 (1995).
- 9) Miyachi A., Azuma A., Hioki E., Iwasaki S., Kobayashi Y., Hashimoto Y., *Biochem. Biophys. Res. Commun.*, **224**, 426–430 (1996).