Nine New Triterpene Saponins, Polygalasaponins XXXIII—XLI from the Roots of *Polygala fallax* HEMSL.

Dongming Zhang, Toshio Miyase,* Masanori Kuroyanagi, Kaoru Umehara, and Hiroshi Noguchi

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422, Japan. Received May 27, 1996; accepted July 10, 1996

Nine new oleanane-type saponins, polygalasaponins XXXIII--XLI, along with seven known saponins were isolated from the roots of Polygala fallax HEMSL. Polygalasaponins XXXIII—XLI were elucidated as 3-O-\(\beta\)-D-Dglucopyranosyl presenegenin 28-O- β -D-xylopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -(4-O-acetyl)- β -D-fucopyranosyl ester, $3-O-\beta$ -D-glucopyranosyl presenegenin $28-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 4)-\beta$ -D-xylopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -(4-O-acetyl)- β -D-fucopyranosyl ester, 3-O- β -D-glucopyranosyl presengenin 28-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -(3,4-di-O-acetyl)- β -Dfucopyranosyl ester, 3-O- β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -[(5-O-acetyl)- β -D-apiofuranosyl-(1 \rightarrow 3)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(3,4-di-O-acetyl)- β -D-fucopyranosyl ester, $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucopyranosyl presenegenin $28-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 4)-\alpha$ -Lrhamnopyranosyl- $(1 \rightarrow 2)$ -(3-O-acetyl)- β -D-fucopyranosyl ester, $3-O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)-\beta$ -D-glucopyranosyl presengenin 28-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -(4-O-acetyl)- β -D-fucopyranosyl ester, 3-O- β -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranosyl presenegenin 28-O- β -D-xylopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)$]-(4-O-acetyl)- β -D-fucopyranosyl ester, 3- $O-\beta$ -D-glucopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucopyranosyl presenegenin 28- $O-\beta$ -D-galactopyranosyl- $(1\rightarrow 4)-\beta$ -D-xylopyranosyl- $(1 \rightarrow 4)$ - $[\beta$ -D-apiofuranosyl- $(1 \rightarrow 3)]$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -(3,4-di-O-acetyl)- β -D-fucopyranosyl ester and $3-O-\beta-D$ -glucopyranosyl- $(1\rightarrow 2)-\beta-D$ -glucopyranosyl presenegenin $28-O-\beta-D$ -galactopyranosyl- $(1\rightarrow 4)-\beta-D$ -xylopyranosyl- $(1\rightarrow 4)$ - $[(5-O-acetyl)-\beta-D-apiofuranosyl-(1\rightarrow 3)]-\alpha-L-rhamnopyranosyl-<math>(1\rightarrow 2)$ - $(3,4-di-O-acetyl)-\beta-D-fuco-acetyl$ pyranosyl ester, respectively, on the basis of spectroscopic and chemical evidence.

Key words Polygala fallax; Polygalaceae; polygalasaponin; oleanane-type saponin; presenegenin

Polygala fallax HEMSL. (Polygalaceae) is widely distributed in southern China, and is used as a tonic and antihepatitis agent. 1) The constituents of P. fallax have not been reported. We previously reported the isolation and structural elucidation of 32 new triterpene glycosides called polygalasaponins I—XXXII isolated from P. japonica HOUTT.²⁾ We continued our investigation of the constituents of Polygala genus and isolated nine new saponins (1—9) and seven known saponins, $3-O-\beta-D$ glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl presenegenin $28-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 4)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-fucopyranosyl ester (10), reiniosides B (11), C (12), D (13), E (14), F (15) and senegin III (16), from the roots of P. fallax HEMSL. Compounds 10—16 were identified by comparison of the ¹H- and ¹³C-NMR data with reported data. 3,4)

A 70% aqueous methanol extract of the roots of *P. fallax* HEMSL. was passed through a porous polymer gel, Mitsubishi Diaion HP-20, column and the adsorbed materials were eluted successively with 30%, 60% aqueous methanol and methanol. The methanol eluate was chromatographed on silica-gel and octadecyl silica (ODS)-gel columns, followed by repeated semi-preparative HPLC on a reversed phase column [ODS, phenylalkyl (PhA-T)] to give compounds 1—16. On acid hydrolysis, saponins 1—9 afforded senegenic acid (1a)²⁾ which is a well known artifactual aglycone of presenegenin (1b) glycoside.⁵⁻⁷⁾ We, therefore, assumed that saponins 1—9 were presenegenin glycosides.

Polygalasaponin XXXIII (1) revealed a $[M+Na]^+$ ion peak at m/z 1170 in FAB-MS and elemental analysis data

are consistent with C₅₅H₈₆O₂₅. On acid hydrolysis, 1 afforded D-glucose, D-fucose, L-rhamnose and D-xylose as sugar components. The ¹H-NMR spectrum suggested the presence of six tertiary methyl protons (δ 0.79, 0.95, 1.13, 1.57, 1.96, 1.96), a pair of oxymethylene protons $[\delta]$ 3.80 (d, J=12 Hz), 4.06 (d, J=12 Hz), a trisubstituted olefinic proton [δ 5.82 (t-like)] in the aglycone moiety and four anomeric proton signals [δ 5.06 (d, J=8 Hz), 5.06 (d, J=8 Hz), 6.10 (d, J=8 Hz), 6.31 (d, J=1 Hz). The ¹³C-NMR spectrum suggested the presence of a carboxylic carbon (δ 180.8), two ester carbonyl carbon (δ 171.1, 176.7) and four anomeric carbon signals (δ 94.6, 101.8, 105.4, 107.4). The ester carbonyl carbon signal at δ 171.1 was assigned to an acetyl carbonyl carbon following observation of a ¹H-¹³C long-range correlation with a methyl proton signal at δ 1.96. As far as the nuclear Overhauser effect (NOE) difference was concerned, when the signal at δ 5.06 (d, $J=8\,\mathrm{Hz}$) (H-1 of Glu) was irradiated, NOEs were observed at the signals of the H-3 $[\delta 4.61 \text{ (d, } J=3 \text{ Hz)}]$ of the aglycone moiety, the H-3 $[\delta 4.15 \text{ (t, } J=9 \text{ Hz)}]$ and H-5 $[\delta 3.93 \text{ (m)}]$ of glucose; when the signal at δ 5.06 (d, $J=8\,\mathrm{Hz}$) (H-1 of Xyl) was irradiated, NOEs were observed at the signals of the H-4 $[\delta 4.34 \text{ (t, } J=9.5 \text{ Hz)}] \text{ of rhamnose and H-3 } [\delta 4.04 \text{ (t, }]$ J=8.5 Hz], H-5 [δ 3.52 (t, J=11 Hz)] of xylose; when the signal at δ 6.10 (d, $J=8\,\mathrm{Hz}$) (H-1 of Fuc) was irradiated, NOEs were observed at the signals of the H-3 $[\delta 4.38 \text{ (dd, } J=9.5, 3 \text{ Hz)}] \text{ and H-5 } [\delta 4.03 \text{ (m)}] \text{ of fucose};$ when the signal at δ 6.31 (d, J=1 Hz) (H-1 of Rha) was irradiated, NOEs were observed at the signals of the H-2 $[\delta 4.58 \text{ (t, } J = 8.5 \text{ Hz)}] \text{ of fucose and H-2 } [\delta 4.79 \text{ (m)}] \text{ of}$

© 1996 Pharmaceutical Society of Japan

Chart 1

Chart 2

rhamnose. In the heteronuclear multiple bond coherence (HMBC) spectrum, long-range couplings (${}^{3}J_{HCOC}$) were observed between the anomeric proton signal at δ 5.06 (H-1 of Glc) and the carbon signal at δ 86.0 due to the C-3 of the aglycone, between the anomeric proton signal at δ 6.10 (H-1 of Fuc) and the carbon signal at δ 176.7 due to the C-28 of the aglycone, between the anomeric proton signal at δ 6.31 (H-1 of Rha) and the carbon signal at δ 74.1 due to the C-2 of fucose, between the anomeric proton signal at δ 5.06 (H-1 of Xyl) and the carbon signal at δ 85.0 due to the C-4 of rhamnose, between the anomeric carbon signal at δ 107.4 (C-1 of Xyl) and the proton signal at δ 4.34 (t, $J=9.5\,\mathrm{Hz}$) due to the H-4 of rhamnose, between the acetyl carbonyl carbon signal at δ 171.1 and the proton signal at δ 5.53 (d, J=3 Hz) due to the H-4 of fucose. Sugar proton and carbon signals in the NMR spectra (Tables 1, 2) were assigned by ¹H-¹H correlation spectroscopy (COSY), the NOE difference, HMBC spectrum and heteronuclear single quantum coherence (HSQC) spectrum. The sugar linkages were decided by NOE difference and the HMBC spectrum. From these data, the structure of polygalasaponin XXXIII was elucidated as $3-O-\beta$ -D-glucopyranosyl presenegenin $28-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 4)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ -(4-O-acetyl)- β -D-fucopyranosyl ester.

Polygalasaponins XXXIV (2), C₆₁H₉₆O₃₀ and XXXV (3), C₆₃H₉₈O₃₁ furnished D-glucose, D-fucose, L-rhamnose, D-xylose, D-galactose as a sugar component on acid hydrolysis. In the NMR spectra, 2 and 3 showed five anomeric proton and carbon signals (see Tables 1, 2), compound 2 exhibited an acetyl methyl signal at δ 1.97, and compound 3 revealed two acetyl methyl signals at δ 2.05 ($2 \times CH_3$). The sugar proton and carbon signals in the NMR spectra were assigned by the ¹H-¹H COSY, homonuclear Hartmann-Hahn (HOHAHA) spectrum, NOE and HSQC spectra (Tables 1, 2). The data of NOE and HMBC spectra of 2 and 3 suggested those have the same binding sites for the sugar moieties. The position of the acetyl group of 2 was determined to be the C-4 of the fucose moiety by comparison of the ¹H-NMR data of the fucose moiety in 2 with those of the fucose moiety in 1. Comparing the ¹H-NMR spectrum of 3 with that of 2,

Table 1. ¹H-NMR Data of Compounds 1—9 in Pyridine-d₅

	1	.2	3	4	5
Aglycone			100 Land 100		
2	4.72 (1H, m)	4.72 (1H, m)	4.72 (1H, m)	4.73 (1H, m)	4.70 (1H, m)
3	4.61 (1H, d, $J=3$ Hz)	4.60 (1H, d, J=3 Hz)	4.61 (1H, d, $J=3$ Hz)	4.63 (1H, d, J=3 Hz)	4.60 (1H, d, J=3 Hz)
12	5.82 (1H, t-like)	5.83 (1H, t-like)	5.81 (1H, t-like)	5.79 (1H, t-like)	5.81 (1H, t-like)
18	3.23	3.24	3.21	3.22	3.21
	(1H, dd, J=14, 4Hz)	(1H, dd, J=14, 4Hz)	(1H, dd, J=14, 4Hz)	(1H, dd, J=14, 4Hz)	(1H, dd, J=14, 4Hz)
24	1.96 (3H, s)	1.97 (3H, s)	1.97 (3H, s)	2.00 (3H, s)	1.98 (3H, s)
25	1.57 (3H, s)	1.53 (3H, s)	1.55 (3H, s)	1.60 (3H, s)	1.55 (3H, s)
26	1.13 (3H, s)	1.13 (3H, s)	1.12 (3H, s)	1.10 (3H, s)	1.12 (3H, s)
27		3.81 (1H, d, $J = 12 \text{ Hz}$)			
27		4.06 (1H, d, $J = 12 \text{ Hz}$)			
29	0.79 (3H, s)	0.79 (3H, s)	0.80 (3H, s)	0.80 (3H, s)	0.79 (3H, s)
30	0.95 (3H, s)	0.94 (3H, s)	0.95 (3H, s)	1.00 (3H, s)	0.94 (3H, s)
3 sugar	0130 (011, 0)	., (, -)	(, -)	(, -)	, -,
lc-1 (inn.)	5.06 (1H, d, J=8 Hz)	5.05 (1H, d, J=8 Hz)	5.05 (1H, d, J=8 Hz)	5.07 (1H, d, J=8 Hz)	5.09 (1H, d, J=8 Hz)
2	3.92 ^{a)}	3.91 ^{a)}			2 1 1 1
3	4.15 ^{a)}	4.15 ^{a)}	4.15^{a}	4.15^{a}	4.19 (1H, t, J=9 Hz)
4	4.15 ^{a)}	4.15^{a}	4.13 ^{a)}	4.16 ^{a)}	4.10 (1H, t, J=9 Hz)
		3.91 (1H, m)	3.91 (1H, m)	3.93 (1H, m)	3.85 (1H, m)
5 6	3.93 (1H, m) 4.29	4.29^{a}	4.29 ^{a)}	4.29 ^{a)}	4.23
U		T.43	7.4/	7.4/	(1H, dd, J=12, 5Hz)
6	(1H, dd, J=12, 5 Hz)	4.47 ^{a)}	4.46 ^{a)}	4.47 ^{a)}	4.42
6	4.46	ਜ.ਜ / '	T.TU	7.7/	
o 1 (ter)	(1H, dd, J=12, 2Hz)				(1H, dd, J=12, 2Hz) 5.20 $(1H, d, J=8Hz)$
c-1 (ter.)					3.96 (1H, t, $J=8.5$ Hz)
2					4.15 (1H, t, $J=8.5$ H)
3					4.08 (1H, t, $J = 8.5$ H
4					4.03^{a}
5					4.34
6					
((1H, dd, J=12, 5Hz) 4.61 ^{a)}
6					4.01
28 sugar	6 10 (1U d I_9 Uz)	6.09 (1H, d, $J = 8$ Hz)	6 16 (1H d I-8 Hz)	616 (1H d I-8Hz)	6.14 (1H, d, $J = 8$ Hz)
c-1		4.56 (1H, t, $J=8.5$ Hz)			
2	4.38 (1H, t , $J = 8.3$ HZ)	4.30 (1 Π , ι , $J = 8.3 \Pi Z$)	4.30 (1 Π , ι , $J = 0.3 \Pi Z$)	4.33 (111, 1, $J = 0.3 \text{ Hz}$)	(1H, dd, J=9.5, 8 Hz)
2	4.38	4.35	5.56	5.56	5.40
3	(1H, dd, J=9.5, 3 Hz)			(1H, dd, J=9.5, 3 Hz)	(1H, dd, $J=9.5$, 3 Hz
4	5.53 (1H, d, $J=3$ Hz)	5.52 (1H, d, $J=3$ Hz)	5.58^{a}	5.61 (1H, d, $J=3$ Hz)	4.26 (1H, d, $J=3$ Hz)
4 5	4.03^{a}	4.02^{a}	4.11 ^{a)}	4.13^{a}	3.96^{a}
6	1.27 (3H, d, $J = 6$ Hz)	1.26 (3H, d, $J = 6$ Hz)	1.19 (3H, d, $J=6$ Hz)	1.22 (3H, d, $J=6$ Hz)	1.44 (3H, d, $J=6$ Hz)
	1.27 (3 Π , U , $J = 0 \Pi Z$)	1.20 (311, $\mathbf{u}, \mathbf{J} = 0.112$)	2.05 (3H, s)	2.11 (3H, s)	1.99 (3H, s)
at C-3	1.06 (211 e)	1.97 (3H, s)	2.05 (3H, s)	2.07 (3H, s)	1.55 (511, 3)
at C-4	1.96 (3H, s)	C 00 (177 1)	5.67 (1H, brs)	5.64 (1H, d, $J=1.5$ Hz)	573 (IH & I-15H
a-1 (C-2 of Fuc)	6.31 (1H, d, $J = 1$ Hz)	6.27 (1H, brs) 4.79 (1H, brs)	4.53 (1H, br s)	4.64^{a}	4.60^{a}
2	4.79 (1H, m)		4.46^{a}	4.37 ^{a)}	4.53
3	4.68	4.66	טד.ד	16.7	(1H, dd, J=9.5, 3 Hz)
4	(1H, dd, J=9.5, 3 Hz)	(111, uu, J=7.3, 3 \(\Omega\) (1\(\Omega\) + \(I_{\omega}\) (5\(\Omega\).	4 22 (1H + I=0 5 Ha)	4 38 a)	4.29 (1H, t, $J=9.5$ H)
4		4.27 (1H, t, $J=9.5$ Hz) 4.48 ^{a)}	4.22 (1H, t, $J = 9.5$ Hz) 4.31 ^{a)}	4.27 ^{a)}	4.37^{a}
5	4.52°)			1.65 (3H, d, $J = 6$ Hz)	1.70 (3H, d, $J = 6$ Hz)
6 a 1 (C 2 of Eye)	1.80 (3H, d, $J = 6$ Hz)	1.74 (3H, d, $J = 6$ Hz)	$1.07 (311, u, J = 0 \Pi Z)$	1.05 (511, u, 5 = 0112)	1.70 (311, u, J - 0 MZ)
a-1 (C-3 of Fuc)					
2					
3					
4					
5					
6	# 0.4 /1**	4.00 (177 1 7 5 577)	407 (111 4 7 7 511)	5 02 (1II 4 1 0III.)	505 (111 1 1 7 711
yl-1	5.06 (1H, d, J=8 Hz)		4.97 (1H, d, $J = 7.5$ Hz)	3.23 (IH, d, J = 8 Hz)	5.05 (1H, d, $J=7.5$ H
2	4.04 ^{a)}	4.01 ^{a)}	3.98 (1H, t, $J = 8$ Hz)	3.90 (1H, t, $J = 8.5 \text{Hz}$)	
3	4.04 ^{a)}	4.05 ^a)	4.06^{a}	4.10^{a}	4.01 ^{a)}
4	4.14 ^{a)}	4.28 ^{a)}	4.27 ^{a9}	4.24 ^{a)}	4.17 ^{a)}
5	3.52 (1H, t, J=11 Hz)	3.46 (1H, t, $J = 11 \text{ Hz}$)	3.45 (1H, t, $J=11 \text{ Hz}$)		
5	4.24	4.28 ^{a)}	4.28^{a}	4.24 ^{a)}	4.22 ^{a)}
	(1H, dd, J=11, 5Hz)				
pi-1				5.98 (1H, d, J=4 Hz)	
2				4.44 (1H, d, $J=4$ Hz)	
4				4.17 ^{a)}	
4				4.29 ^{a)}	
5				4.44 (1H, d, $J=11 \text{ Hz}$)	
				4.54 (1H, d, J = 11 Hz)	
5				1.89 (3H, s)	

Table 1. (continued)

	1	2	3	4	5
Gal-1		4.94 (1H, d, J=8 Hz)	4.94 (1H, d, $J = 8$ Hz)	4.93 (1H, d, $J=8$ Hz)	
2		4.44 ^{a)}	4.45 ^{a)}	4.47 ^{a)}	
3		4.13 ^{a)}	4.10^{a}	4.12 ^{a)}	
4		4.47 ^{a)}	4.47 (1H, d, J=3 Hz)	4.49 ^{a)}	
5		$4.12^{a)}$	4.11 ^{a)}	4.11 ^{a)}	
6		4.30 ^{a)}	4.34 ^{a)}	4.37 ^{a)}	
6		4.42 ^{a)}	4.41 ^{a)}	4.43 ^{a)}	

Table 1. (continued)

	6	7	8	9
Aglycone				
2	4.69 (1H, m)	4.71 (1H, m)	4.71 (1H, m)	4.70 (1H, m)
	4.60 (1H, d, $J = 3$ Hz)	4.60 (1H, d, $J=3$ Hz)	4.62 (1H, d, $J=3$ Hz)	4.62 (1H, d, J=3 Hz)
3			, , , , , , , , , , , , , , , , , , , ,	
12	5.82 (1H, t-like)	5.82 (1H, t-like)	5.78 (1H, t-like)	5.78 (1H, t-like)
18	3.23 (1H, dd, $J = 14$, 4 Hz)	3.20 (1H, dd, $J = 14$, 4 Hz)	3.21 (1H, dd, $J = 14$, 4 Hz)	3.20 (1H, dd, J=14, 4 H
24	1.97 (3H, s)	1.98 (3H, s)	2.01 (3H, s)	2.00 (3H, s)
25	1.52 (3H, s)	1.54 (3H, s)	1.58 (3H, s)	1.57 (3H, s)
26	1.11 (3H, s)	1.10 (3H, s)	1.08 (3H, s)	1.08 (3H, s)
27	3.79 (1H, d, J = 12 Hz)	3.76 (1H, d, J=12 Hz)	3.78 (1H, d, $J = 12 \text{ Hz}$)	3.77 (1H, d, J = 12 Hz)
27	4.01 ^{a)}	4.01 ^{a)}	4.01 ^{a)}	4.01 (1H, d, J=12 Hz)
29		0.78 (3H, s)	0.80 (3H, s)	0.80 (3H, s)
	0.79 (3H, s)			, , ,
30	0.94 (3H, s)	0.96 (3H, s)	1.00 (3H, s)	1.00 (3H, s)
C-3 sugar				5 10 (1TT 1 T 0TT)
Glc-1 (inn.)	5.09 (1H, d, J=8 Hz)	5.09 (1H, d, J = 8 Hz)	5.10 (1H, d, J=8 Hz)	5.10 (1H, d, J=8 Hz)
2	4.05 (1H, t, J=8.5 Hz)	4.02 ^{a)}	4.03 ^{a)}	4.03 ^{a)}
3	4.19 (1H, t, J=9 Hz)	4.19 (1H, t, J=9 Hz)	4.20 (1H, t, J=9 Hz)	4.19 (1H, t, J=9 Hz)
4	$4.10^{a)}$	4.10 ^{a)}	4.11 ^{a)}	$4.10^{a)}$
5	3.85 (1H, m)	3.85 (1H, m)	3.85 (1H, m)	3.84 (1H, m)
	4.24 (1H, dd, $J = 12$, 5 Hz)	4.23 ^{a)}	4.24 ^a)	4.24^{a}
6			4.43 ^{a)}	4.43 ^{a)}
6	4.43	4.43 (1H, dd, $J=12$, 2Hz)		
Glc-1 (ter.)	5.22 (1H, d, $J = 8$ Hz)	5.20 (1H, d, J=8 Hz)	5.22 (1H, d, $J=8$ Hz)	5.21 (1H, d, $J=8$ Hz)
2	3.99 (1H, t, J = 8.5 Hz)	3.97 (1H, t, $J = 8.5 \text{Hz}$)	3.98 (1H, t, $J = 8.5 \mathrm{Hz}$)	3.98 (1H, t, $J = 8.5 \text{Hz}$)
3	4.15 (1H, t, J=8.5 Hz)	4.15 ^{a)}	4.15 ^{a)}	4.15 ^{a)}
4	4.07 ^{a)}	4.07 ^{a)}	4.07 ^{a)}	$4.07^{a)}$
5	$4.07^{a)}$	4.03 ^{a)}	4.05 ^{a)}	4.06 ^{a)}
6	4.35 ^{a)}	4.34 (1H, dd, $J=12$, 5 Hz)	4.35 (1H, dd, J=12, 5 Hz)	4.35 ^{a)}
6	4.62 ^{a)}	4.61 (1H, dd, $J = 12$, 2 Hz)	4.60 (1H, dd, $J=12$, 2 Hz)	4.61 ^{a)}
	4.02	4.01 (111, dd, 3 - 12, 2112)	4.00 (111, dd, 3 – 12, 2112)	4.01
C-28 sugar	(00 (477 1 7 077)	(0((111 + 1 011)	(15/11) 1 7 011)	(15 (17) 1 7 07)
Fuc-1	6.09 (1H, d, $J = 8$ Hz)	6.06 (1H, t, J=8 Hz)	6.15 (1H, d, $J=8$ Hz)	6.15 (1H, d, $J=8$ Hz)
2	4.57 (1H, t, J = 8.5 Hz)	4.54 (1H, t, J = 8.5 Hz)	4.53 (1H, t, $J = 8.5 \text{ Hz}$)	4.51 (1H, t, $J = 8.5 \text{Hz}$)
3	4.38 ^{a)}	4.41 (1H, dd, $J = 9.5$, 3 Hz)	5.56 (1H, dd, J=9.5, 3 Hz)	5.55 (1H, dd, $J=9.5$, 3
4	5.22 (1H, d, J=3 Hz)	5.66 (1H, d, J=3Hz)	5.61 (1H, d, $J=3$ Hz)	5.60 (1H, d, J = 3 Hz)
5	4.02	4.044)	4.12 ^{a)}	4.11 ^{a)}
6	1.26 (3H, t, $J = 6$ Hz)	1.24 (3H, d, $J = 6$ Hz)	1.22 (3H, d, $J = 6$ Hz)	1.22 (3H, d, $J = 6$ Hz)
Ac at C-3	1.20 (311, 1, 0 0112)	1.2 (011, 0, 0 0112)	2.11 (3H, s)	2.11 (3H, s)
	1.06 (211 a)	1.04 (211 a)	2.06 (3H, s)	2.07 (3H, s)
Ac at C-4	1.96 (3H, s)	1.94 (3H, s)		
Rha-1 (C-2 of Fuc)	6.29 (1H, d, $J=1$ Hz)	5.89 (1H, brs)	5.65 (1H, brs)	5.63 (1H, br s)
2	4.77 ^{a)}	4.64 (1H, brs)	4.66 (1H, br s)	4.63 ^{a)}
3	4.66 (1H, dd, J=9.5, 3 Hz)	4.57 (1H, dd, J=9.5, 3 Hz)	4.37 ^{a)}	4.37 ^{a)}
4	4.27 (1H, t, J=9.5 Hz)	4.28 (1H, t, J=9.5 Hz)	4.37 ^{a)}	4.37 ^{a)}
5	4.49 ^{a)}	4.37 ^{a)}	4.26 ^{a)}	4.24 ^{a)}
6	1.73 (3H, d, $J = 6$ Hz)	1.74 (3H, d, $J = 6$ Hz)	1.65 (3H, d, $J = 6$ Hz)	1.64 (3H, d, $J = 6$ Hz)
	1.75 (511, 4, 0 0112)	5.64 (1H, br s)	,	, , , , ,
Rha-1 (C-3 of Fuc)				
2		4.81 (1H, brs)		
3		4.41 (1H, dd, $J=9$, 3 Hz)		
4		4.26 (1H, t, J=9 Hz)		
5		$4.29^{a)}$		
6		1.69 (3H, d, $J = 6$ Hz)		
Xyl-1	4.99 (1H, d, J=7.5 Hz)	5.04 (1H, d, J=7 Hz)	5.24 (1H, d, J=7.5 Hz)	5.23 (1H, d, J=8 Hz)
2	3.97 (1H, t, $J=8$ Hz)	4.03 ^{a)}	3.89 (1H, t, $J = 8$ Hz)	3.89 (1H, t, $J = 8.5 \text{ Hz}$)
	4.06^{a}	4.02 ^{a)}	4.07^{a}	4.10^{a}
3				
4	4.23°)	4.16 ^{a)}	4.24 ^{a)}	4.24 ^{a)}
5	3.45 (1H, t, $J = 11 \text{ Hz}$)	3.51 (1H, t, J=11 Hz)	3.39 (1H, t, J=11 Hz)	3.45 (1H, t, $J = 11 \text{ Hz}$)
5	4.27 ^{a)}	4.23 ^{a)}	4.24 ^{a)}	4.25 ^{a)}

Table 1. (continued)

	6	7	8	9
Api-1			5.98 (1H, d, J=4.5 Hz)	5.98 (1H, d, J=4 Hz)
2			4.68 (1H, d, J=4.5 Hz)	4.44 ^{a)}
3			4.19 (1H, d, J=9.5 Hz)	4.16 ^{a)}
4			4.54 (1H, d, J=9.5 Hz)	4.29 ^{a)}
5			4.01 ^{a)}	4.45 (1H, d, J=11 Hz)
5			4.05 ^{a)}	4.55 (1H, d, J=11 Hz)
Ac at C-5				1.89 (3H, s)
Gal-1	4.94 (1H, d, J=8 Hz)		4.92 (1H, d, J=8 Hz)	4.92 (1H, d, J=8 Hz)
2	4.45 ^a)		4.47 ^{a)}	4.46 (1H, t, J=8.5 Hz)
3	4.15 ^{a)}		4.13 ^{a)}	4.15 ^{a)}
4	4.48 ^{a)}		4.49 ^{a)}	4.49 (1H, d, J=3 Hz)
5	4.12 ^{a)}		4.11 ^{a)}	4.11 ^{a)}
6	4.36 ^{a)}		4.35 ^a)	4,37 ^{a)}
6	4.44 ^{a)}		4.44 ^{a)}	4.44 ^a)

Recorded at 400 MHz at 35 °C. Assignments were based on ¹H-¹H COSY, HOHAHA, NOE difference and detailed proton spin decoupling experiments. a) Overlapping with other signals.

Table 2. ¹³C-NMR Spectral Data of Compounds 1—9 in Pyridine-d₅

	1	2	3	4	5	6	7	8	9
Aglycone			. 4						
1	44.3	44.3	44.3	44.3	44.1	44.1	44.2	44.2	44.1
2	70.4	70.4	70.4	70.3	70.2	70.1	70.2	70.0	70.2
3	86.0	86.0	86.0	86.0	85.5	85.4	85.5	85.3	85.:
4	52.9	52.5	52.9	52.9	52.7	52.6	52.6	52.7	52.0
5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.:
6	21.4	21.5	21.5	21.3	21.2	21.2	21.2	21.1	21.
7	33.6	33.6	33.5	33.7	33.5	33.6	33.6	33.7	33.0
8	41.2	41.2	41.2	41.2	41.1	41.1	41.1	41.1	41.3
9	49.3	49.4	49.3	49.3	49.4	49.3	49.3	49.3	49.3
10	37.1	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0
11	23.7	23.7	23.7	23.6	23.6	23.6	23.8	23.6	23.0
12	127.9	127.9	127.8	127.8	127.9	127.8	127.8	127.9	127.9
13	138.9	139.0	138.9	138.8	138.8	138.9	138.9	138.9	138.8
14	48.0	48.1	48.0	47.9	48.0	48.0	48.0	47.9	47.9
	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.:
15			23.9	23.9	24.3 24.1	24.0	24.0	23.9	23.9
16	24.0	24.0			47.0	47.0		47.0	47.0
17	47.0	47.0	47.1	47.0			47.0		
18	42.0	42.0	41.9	41.9	41.9	42.0	42.0	41.9	42.0 45.4
19	45.4	45.4	45.4	45.4	45.4	45.4	45.5	45.4	
20	30.8	30.8	30.8	30.8	30.8	30.8	30.8	30.8	30.
21	33.8	33.9	33.9	33.9	33.8	33.9	33.9	33.8	33.
22	32.4	32.4	32.4	32.3	32.3	32.4	32.3	32.3	32.
23	180.8	180.8	180.7	180.8	180.4	180.4	180.4	180.4	180.4
24	14.3	14.2	14.2	14.3	14.2	14.1	14.2	14.2	14.
25	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.:
26	18.9	18.7	18.6	19.0	18.7	18.7	18.9	18.9	18.9
27	64.5	64.5	64.4	64.5	64.4	64.4	64.4	64.5	64.:
28	176.7	176.7	176.4	176.4	176.4	176.7	176.6	176.3	176.
29	33.1	33.1	33.0	33.1	33.1	33.0	33.0	33.1	33.
30	24.1	24.0	23.9	24.1	24.0	24.0	24.0	24.1	24.
C-3 sugar									
Glc-1 (inn.)	105.4	105.4	105.4	105.4	102.8	102.6	102.9	102.7	102.
2	75.3	75.3	75.3	75.3	83.9	83.6	83.8	83.7	83.
3	78.4	78.3	78.3	78.4	78.1	78.2	78.3	78.1	78.
4	71.7	71.7	71.7	71.6	71.1	71.2	71.1	71.1	71.
5	78.4	78.3	78.3	78.4	78.3	78.1	78.1	78.3	78.3
6	62.8	62.8	62.8	62.8	62.6	62.5	62.6	62.6	62.:
Glc-1 (ter.)	02.0	-=			106.2	106.1	106.2	106.1	106.
2					76.9	76.9	76.9	76.9	76.9
3					77.9	77.9	77.9	77.9	77.9
4					71.2	71.2	71.2	71.1	71.
5					78.3	78.5	78.3	78.3	78.
6					62.6	62.7	62.6	62.6	62.

Table 2. (continued)

1		2	3	4	5	6	7	8	9
C-28 sugar									
Fuc-1	94.6	94.6	94.2	94.3	94.6	94.6	94.7	94.3	94.3
2	74.1	74.1	73.0	74.5	72.6	74.3	74.8	74.6	74.6
3	74.4	74.7	74.6	74.1	78.1	74.0	80.6	74.0	74.0
4	74.8	74.8	71.2	71.2	69.8	74.8	73.7	71.2	71.2
5	70.6	70.6	70.1	70.2	72.1	70.6	70.9	70.2	69.9
6	16.5	16.5	16.1	16.1	16.7	16.5	16.8	16.1	16.1
Ac at C-3			20.6	20.6	20.9			20.6	20.7
			170.1	170.1	170.4			170.2	170.2
Ac at C-4	20.8	20.7	20.4	20.4		20.8	20.6	20.4	20.4
	171.1	171.1	170.8	170.8		171.1	170.6	170.8	170.8
Rha-1 (C-2 of Fuc)	101.8	101.8	102.1	102.3	101.9	101.7	102.0	102.3	102.4
2	71.8	71.8	71.4	71.5	71.5	71.7	71.7	71.4	71.5
3	72.5	72.5	72.4	81.8	72.4	72.4	72.5	82.0	81.8
4	85.0	85.2	84.7	78.1	84.7	85.0	84.6	78.0	78.1
5	68.6	68.5	69.0	69.1	68.9	68.4	68.8	69.1	69.1
6	18.7	18.8	18.8	18.8	18.7	18.7	18.6	18.8	18.8
Rha-1 (C-3 of Fuc)	2017	10.0	10.0	10.0	201,	20	104.8	10.0	10.0
2							72.3		
3							72.6		
4							73.6		
5							70.9		
6							18.6		
Xyl-1	107.4	107.0	106.8	104.8	107.2	106.9	107.2	104.7	104.8
2	76.2	75.7	75.6	75.0	76.1	75.7	76.1	75.0	75.0
3	78.8	76.7	76.6	76.5	78.7	76.7	78.7	76.5	76.5
4	71.0	78.3	78.2	78.5	70.9	78.4	70.6	78.5	78.5
5	67.5	65.0	65.0	64.8	67.5	65.0	67.5	64.8	64.8
Api-1	07.0	00.0	00.0	111.3	07.0	05.0	07.5	111.7	111.2
2				78.1				77.5	78.1
3				77.4				79.5	77.4
4				74.3				74.4	74.5
5				67.0				64.5	67.0
Ac at C-5				20.6				04.5	20.7
ric at C-5				170.7					170.7
Gal-1		104.5	104.5	104.4		104.5		104.4	104.4
2		71.8	71.8	71.7		71.8		71.8	71.8
3		71.8 75.1	71.8 75.1	75.0		75.0		71.8 75.0	71.8 75.0
4		70.1	70.0	70.0		70.2		70.2	73.0 70.2
5		77.3	77.3	70.0 77.6		77.3		70.2 77.4	70.2 77.6
6		62.3	62.3	62.3		62.3		62.3	62.3
O		02.3	02.3	02.3		02.3		02.3	02.3

Recorded at 100 MHz at 35 °C. Assignments of carbon signals of the sugar moiety were based on the HSQC spectrum.

the H-3 signal of the fucose moiety in 3 was shifted downfield at δ 5.56 (Δ +1.21 ppm). The position of the acetyl groups were thus decided to be the C-3 and C-4 of the fucose moiety. Based on the foregoing evidence, the structures of polygalasaponins XXXIV and XXXV were characterized as 3-O- β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(4-O-acetyl)- β -D-fucopyranosyl ester and 3-O- β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(3,4-di-O-acetyl)- β -D-fucopyranosyl ester.

Polygalasaponin XXXVI (4) showed a $[M+Na]^+$ ion peak at m/z 1547.6549 in the high-resolution (HR) positive FAB-MS, suggesting the molecular formula of 4 was $C_{70}H_{108}O_{36}$. Compound 4 afforded D-glucose, D-fucose, L-rhamnose, D-xylose, D-galactose and D-apiose as the sugar components on acid hydrolysis. The NMR spectra were like those of 3 except for the presence of another acetyl (δ_H 1.89, δ_C 170.7) and apiose signals. The binding

sites of the acetyl group and apiose were determined by an HMBC and NOE method. In the HMBC spectrum, long-range couplings (${}^3J_{\text{HCOC}}$) were observed between the acetyl carbonyl carbon signal at δ 170.7 and the proton signals at δ 4.44 (d, J=11 Hz), 4.54 (d, J=11 Hz) due to the H₂-5 of apiose, between the anomeric proton at δ 5.98 (d, J=4 Hz) (H-1 of Api) and the carbon signal at δ 81.8 due to the C-3 of rhamnose. In the NOE difference spectrum of 4, when the signal at δ 5.98 (H-1 of Api) was irradiated, NOE was observed at δ 4.37 (H-3 of Rha). The structure of 4 was, therefore, determined to be 3-O- β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl-(1 \rightarrow 4)-[(5-O-acetyl)- β -D-apiofuranosyl-(1 \rightarrow 3)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(3,4-di-O-acetyl)- β -D-fucopyranosyl ester.

Polygalasaponin XXXVII (5) showed an $[M+Na]^+$ ion peak at m/z 1332 in the FAB-MS. Combined with the result of the elemental analysis, its molecular formula was deduced to be $C_{61}H_{96}O_{30}$. The ¹H-NMR spectrum suggested the presence of an acetyl methyl proton (δ 1.99)

2098 Vol. 44, No. 11

and five anomeric proton signals at δ 5.05 (d, J=7.5 Hz), 5.09 (d, J=8 Hz), 5.20 (d, J=8 Hz), 5.73 (d, J=1.5 Hz), 6.14 (d, J=8 Hz) in addition to the signals due to the aglycone moiety. On acid hydrolysis, compound 5 afforded D-glucose, D-fucose, L-rhamnose and D-xylose. The position of the acetyl group was the C-3 of the fucose moiety by comparison of the NMR data with those of compounds 2—3 (see Tables 1 and 2). The data of the NOE experiments and the HMBC spectrum enabled us to identify the structure of 5 as $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucopyranosyl presenegenin $28-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 4)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ -(3-O-acetyl)- β -D-fucopyranosyl ester.

Polygalasaponin XXXVIII (6) afforded D-glucose, D-fucose, L-rhamnose, D-xylose and D-galactose on acid hydrolysis. Its molecular formula is C₆₇H₁₀₆O₃₅ from the FAB-MS and elemental analysis. The ¹H- and ¹³C-NMR spectra of 6 disclosed acetyl signals at δ_H 1.96; δ_C 171.1, and six anomeric proton and carbon signals at δ 4.94 (d, J=8 Hz), 4.99 (d, J=7.5 Hz), 5.09 (d, J=8 Hz), 5.22(d, J=8 Hz), 6.09 (d, J=8 Hz), 6.29 (d, J=1 Hz); 94.6, 101.7, 102.6, 104.5, 106.1, 106.9. The ¹H- and ¹³Cchemical shifts of 6 were similar to those of 2 except for the signals due to the terminal glucose moiety. The binding sites of six monosaccharides and an acetyl group were determined by means of NOE, with irradiation at each anomeric proton signal, and the HMBC spectrum. Therefore, polygalasaponin XXXVIII was elucidated as 3-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -(4-O-acetyl)- β -D-fucopyranosyl ester.

The ¹H-NMR spectrum of polygalasaponin XXXIX (7), $C_{67}H_{106}O_{34}$, showed acetyl signals at δ_H 1.94; δ_C 170.6, six anomeric proton signals at δ 5.04 (d, J=7 Hz), 5.09 (d, J=8 Hz), 5.20 (d, J=8 Hz), 5.64 (br s), 5.89 (br s)and 6.06 (d, J=8 Hz). On acid hydrolysis, compound 7 afforded D-glucose, D-fucose, L-rhamnose and D-xylose as sugar components. Sugar linkages were decided by NOE and the HMBC spectrum. When the signals at δ 5.09, 5.20 (H-1 of each Glc), 5.64, 5.89 (H-1 of each Rha), 5.04 (H-1 of Xyl) were irradiated, NOEs were observed at the signals due to the H-3 [δ 4.60 (d, J=3 Hz)] of the aglycone, the H-2 $[\delta 4.02 \text{ (t, } J=8.5 \text{ Hz)}]$ of the glucose bound to the C-3 of the aglycone, the H-3 [δ 4.41 (dd, J=9, 3 Hz)] and the H-2 $[\delta 4.54 \text{ (t, } J=8.5 \text{ Hz)}]$ of the fucose and the H-4 $[\delta 4.28 \text{ (t, } J=9.5 \text{ Hz)}]$ of rhamnose (C-2 of Fuc). HMBC correlations were observed between the following carbons and protons in the oligosaccharide moieties of 7: C-3 and H-1 of Glc(inn.), C-2 of Glc(inn.) and H-1 of Glc(ter)., C-28 and H-1 of Fuc, C-2 of Fuc and H-1 of Rha (C-2 of Fuc), C-3 of Fuc and H-1 of Rha (C-3 of Fuc), C-4 of Rha (C-2 of Fuc) and H-1 of Xyl, carbonyl carbon of acetyl group and H-4 of Fuc. Based on this evidence, the structure of polygalasaponin XXXIX was elucidated as 3-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl presenegenin 28-O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - $\lceil \alpha$ -L-rhamnopyranosyl- $(1 \rightarrow$ 3)]-(4-O-acetyl)- β -D-fucopyranosyl ester.

Polygalasaponins XL (8), $C_{74}H_{116}O_{40}$ and XLI (9), $C_{76}H_{118}O_{41}$, afforded D-glucose, D-fucose, L-rhamnose, D-xylose, D-apiose, and D-galactose on acid hydrolysis. In the ¹H-NMR spectra of 8 and 9, seven anomeric proton signals (δ 4.92, 5.10, 5.22, 5.24, 5.65, 5.98, 6.15; 4.92, 5.10,

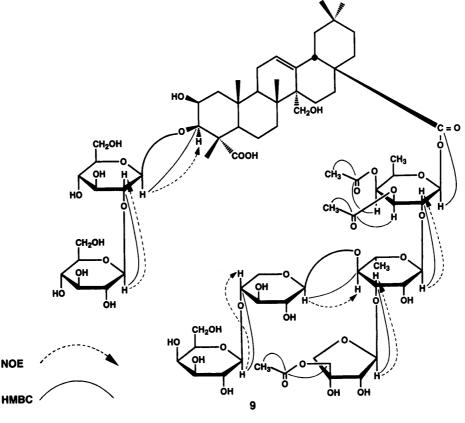


Chart 3

5.21, 5.23, 5.63, 5.98, 6.15, respectively) were observed. Compound 8 showed two acetyl signals at δ 2.06, 2.11, while compound 9 showed three acetyl signals at δ 1.89, 2.07, 2.11. The NOE experiment with irradiation at the anomeric proton signal of each and the HMBC spectrum showed both the connection among individual glycosyl residues and the position of the acetyl groups (see Chart 3). Therefore, the structures of polygalasaponins XL and XLI were characterized as 3-O-β-D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - β -D-apiofuranosyl- $(1 \rightarrow 3)$]- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -(3.4-di-O-acetyl)- β -D-fucopyranosyl ester and 3-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl presenegenin 28-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - $[(5-O-acetyl)-\beta-D-apiofuranosyl-(1\rightarrow 3)]-\alpha-L-rhamnopy$ ranosyl- $(1 \rightarrow 2)$ -(3,4-di-O-acetyl)- β -D-fucopyranosyl ester.

All anomeric configurations of glucose, fucose, xylose and galactose in these saponins were determined to be β from the J values of the anomeric proton signals, and those of rhamnose and apiose were determined to be α and β , respectively, by comparison of the ¹³C-NMR data of the C-3 and C-5 of rhamnose⁸⁾ and the C-1 and C-2 of apiose.⁹⁾

Experimental

General Procedure 1 H- and 13 C-NMR spectra were obtained with a JEOL α -400 spectrometer at 35 $^{\circ}$ C and chemical shifts were given in ppm with tetramethylsilane as an internal standard. FAB-MS was recorded on a JEOL JMS-SX102 mass-spectrometer. Optical rotations were measured with a JASCO DIP-1000 digital polarimeter. Gas chromatography (GC) was carried out on a Hitachi G-3000 gas chromatograph. Preparative and semi-preparative HPLC was carried out on a column of Develosil Lop-ODS (5 cm \times 50 cm) and YMC ODS-7 (2 cm \times 25 cm) or Develosil PhA-T-5 (2 cm \times 25 cm), respectively.

Extraction and Isolation Polygala fallax Hemsl. was collected in Guangxi, China in Aug. 1994, and dried roots (960 g) were extracted twice with 70% aqueous MeOH. The extract was passed through a porous polymer gel, Mitsubishi Diaion HP-20, column after evaporation of MeOH. After the contents of the column were washed with water, the adsorbed materials were eluted successively with 30% and 60% aqueous methanol and methanol. The methanol eluate (25 g) was chromatographed on silica-gel with CHCl₃-MeOH-H₂O (85:14:1), increasing the proportion of MeOH to give 18 fractions (frs. A—R). From frs. L, N and P, compounds 1—16 were isolated by preparative and semi-preparative HPLC [solvent: MeCN-H₂O system +0.05% trifluoroacetic acid (TFA)]. 1 (120 mg), 2 (43 mg), 3 (156 mg), 4 (23 mg), 5 (51 mg), 6 (39 mg), 7 (36 mg), 8 (16 mg), 9 (60 mg), 10 (78 mg), 11 (144 mg), 12 (301 mg), 13 (108 mg), 14 (240 mg), 15 (131 mg), 16 (8 mg).

Polygalasaponin XXXIII (1): Amorphous powder, $[\alpha]_{2}^{25}$ -4.9° (c=0.44, MeOH). Anal. Calcd for C₅₅H₈₆O₂₅·5H₂O: C, 53.39; H, 7.82. Found: C, 53.20; H, 7.50. FAB-MS m/z: 1170 [M+Na]⁺. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XXXIV (2): Amorphous powder, $[\alpha]_D^{25} + 1.6^{\circ}$ (c = 0.64, MeOH). Anal. Calcd for $C_{61}H_{96}O_{30} \cdot 15/2H_2O$: C, 50.67; H, 7.75. Found: C, 50.67; H, 7.46. FAB-MS m/z: 1332 $[M+Na]^+$. ^1H-NMR : Table 1. $^{13}C-NMR$: Table 2.

Polygalasaponin XXXV (3): Amorphous powder, $[\alpha]_D^{25} - 2.1^{\circ}$ (c = 0.74, MeOH). Anal. Calcd for $C_{63}H_{98}O_{31} \cdot 5H_2O$: C, 52.49; H, 7.55. Found: C, 52.73; H, 7.44. FAB-MS m/z: 1374 $[M+Na]^+$. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XXXVI (4): Amorphous powder, $[\alpha]_{\rm D}^{25} - 12.1^{\circ}$ (c = 0.40, MeOH). HR-FAB-MS m/z: 1547.6549 (Calcd for ${\rm C}_{70}{\rm H}_{108}{\rm Na-O}_{36}$: 1547.6511). ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XXXVII (5): Amorphous powder, $[\alpha]_D^{25} + 19.2^{\circ}$

(c=0.46, MeOH). Anal. Calcd for C₆₁H₉₆O₃₀·4H₂O: C, 53.03; H, 7.59. Found: C, 52.95; H, 7.67. FAB-MS m/z: 1332 [M+Na]⁺. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XXXVIII (6): Amorphous powder, $[\alpha]_D^{55} + 3.7^{\circ}$ (c = 0.50, MeOH). Anal. Calcd for $C_{67}H_{106}O_{35} \cdot 6H_2O$: C, 50.94; H, 7.53. Found: C, 50.77; H, 7.44. FAB-MS m/z: 1494 $[M+Na]^+$. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XXXIX (7): Amorphous powder, $[\alpha]_D^{25} - 0.8^{\circ}$ (c = 0.55, MeOH). Anal. Calcd for $C_{67}H_{106}O_{34} \cdot 7H_2O$: C, 50.88; H, 7.65. Found: C, 50.86; H, 7.50. FAB-MS m/z: 1478 $[M+Na]^+$. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XL (8): Amorphous powder, $[\alpha]_{\rm D}^{25}$ -6.9° (c=0.45, MeOH). *Anal*. Calcd for C₇₄H₁₁₆O₄₀·8H₂O: C, 49.66; H, 7.43. Found: C, 49.50; H, 7.22. FAB-MS m/z: 1668 [M+Na]⁺. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Polygalasaponin XLI (9): Amorphous powder, $[\alpha]_D^{25} - 6.5^{\circ}$ (c = 0.54, MeOH). Anal. Calcd for $C_{76}H_{118}O_{41} \cdot 8H_2O$: C, 49.83; H, 7.37. Found: C, 49.77; H, 7.08. FAB-MS m/z: 1710 $[M+Na]^+$. ¹H-NMR: Table 1. ¹³C-NMR: Table 2.

Acid Hydrolysis of Saponins (1-9) Each saponin (2 mg) was heated at 100 °C with dioxane (0.05 ml) and 5% H₂SO₄ (0.05 ml) for 1 h. After dilution with water, the reaction mixture was extracted with ethyl acetate twice and the water layer was passed through an Amberlite IRA-60E column. The water eluate was concentrated and the residue was treated with D-cysteine¹⁰⁾ (0.05 mg) in water (0.03 ml) and pyridine (0.015 ml) at 60 °C for 1 h with stirring. After the solution was evaporated and the reaction mixture was dried, pyridine (0.015 ml), hexamethyldisilazane (0.015 ml) and trimethylsilylchloride (0.015 ml) were added to the residue. The reaction mixture was heated at 60 °C for 30 min. The supernatant was applied to GC. The ethyl acetate layer was concentrated and subjected to HPLC to reveal a peak from every saponin due to senegenic acid. GC conditions: column, Supelco SPBTM-1, 0.25 mm × 27 m; column temperature, 230 °C; carrier gas, N₂; t_R: D-apiose 10.4 min, L-apiose 9.8 min, 11) D-xylose 10.7 min, L-xylose 9.8 min, L-rhamnose 12.4 min, D-rhamnose 12.0 min, 11) D-fucose 13.3 min, L-fucose 12.3 min, D-glucose 18.0 min, L-glucose 17.4 min, D-galactose 19.6 min, L-galactose 18.6 min. 11) D-Glucose, D-fucose, L-rhamnose, D-xylose were detected from 1-9. D-Apiose was detected from 4, 8 and 9. D-Galactose was detected from 2, 3, 4, 6, 8 and 9. HPLC conditions: column, Develosil PhA-T-5, 4.6 mm \times 25 cm; solvent, MeCN-H₂O (45:55) +0.05% TFA; flow rate, 1.0 ml/min; UV 205 nm; $t_{\rm R}$, senegenic acid 9.7 min.

Acknowledgments We thank the staff of the Central Analytical Laboratory of this university for elemental analyses and the measurement of MS.

References and Notes

- Jiang Su New Medicinal College, "Dictionary of Chinese Crude Drug," Shanghai Scientific Technologic Publisher, Shanghai, 1977, p. 2079.
- Zhang D., Miyase T., Kuroyanagi M., Umehara K., Ueno A., Chem. Pharm. Bull., 44, 810—815 (1996).
- Miyase T., Saitoh H., Shiokawa K., Ueno A., Chem. Pharm. Bull., 43, 466—472 (1995).
- 4) Sakuma S., Shoji J., Chem. Pharm. Bull., 30, 810-821 (1982).
- Pelletier S. W., Adityachaudhury N., Tomaz M., Reynolds J. J., Mechoulam R., J. Org. Chem., 30, 4234—4247 (1965).
- Dugan J. J., Mayo P. D., Starratt A. N., Tetrahedron Lett., 1964, 2567—2570.
- Pelletier S. W., Adityachaudhury N., Tomaz M., Reynols J. J., Mechoulam R., Tetrahedron Lett., 1964, 3065—3070.
- Kasai R., Okihara M., Asakawa J., Mizutani K., Tanaka O., Tetrahedron, 35, 1427—1432 (1979).
- Kitagawa I., Sakagami M., Hashiuchi M., Zhou J. L., Yoshikawa M., Ren J., Chem. Pharm. Bull., 37, 551—553 (1989).
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 34, 1843— 1845 (1986).
- 11) The t_R for L-apiose, D-rhamnose and L-galactose were obtained from their enantiomers (D-apiose+L-cysteine, L-rhamnose+Lcysteine and D-galactose+L-cysteine, respectively).