A NOVEL CARBON–CARBON BOND FORMATION AT THE C4 POSITION OF β -LACTAMS. FLUORIDE ION INDUCED DESILYLATIVE α -HYDROXYALKYLATION OF 3-ALKYLIDENE-4-TRIMETHYLSILYLAZETIDIN-2-ONES WITH ALDEHYDES

Katsumi HOTODA,^a Mitsuaki AOYAGI,^b Toshikatsu TAKANAMI,^b and Kohji SUDA*,^b Shiratori Pharmaceutical Co., Ltd., ^a 6-11-24, Tsudanuma, Narashino, Chiba 275, Japan and Meiji College of Pharmacy, ^b 1-35-23, Nozawa, Setagaya, Tokyo 154, Japan

The reaction of 3-alkylidene-4-trimethylsilylazetidin-2-ones with aldehydes in the presence of fluoride ion gave 3-alkylidene-4-(α -hydroxy)-alkylazetidin-2-ones in good to moderate yields.

KEY WORDS β -lactam; desilylative α -hydroxyalkylation; 3-alkylidene-4-trimethylsilylazetidin-2-one; 3-alkylidene-4-(α -hydroxy)-alkylazetidin-2-one; aldehyde; fluoride ion

Much attention has recently been directed toward the exploration of synthetic strategies for non-classical β -lactam antibiotics such as thienamycin, PS-5 and the related carbapenems because of their powerful physiological activities and pharmacological properties. ¹⁾ One of the fundamental subjects in the synthetic studies on these compounds is how to introduce a carbon substituent into the C4 position of azetidin-2-ones, and considerable attention has been paid to this subject. ²⁻⁴ Although substitution reactions with carbon nucleophiles, *e.g.*, enol silylethers, allyltin reagents, carbene species, *etc.*, are well-established processes for the carbon–carbon bond formation at the C4 position of azetidin-2-ones, ²⁾ electrophilic carbon–carbon bond formation at the C4 position is very much limited. ^{3, 4)} We report here electrophilic substitution of 3-alkylidene-4-trimethylsilylazetidin-2-ones (1)⁵⁾ with aldehydes (2) in the presence of Bu₄NF to give 4-(α -hydroxy)alkyl derivatives (3) in good yields (Chart 1). In this reaction, the carbon–silicon bond is selectively cleaved by fluoride ion to give the corresponding carbanion **A** which can react with **2**, providing **3**.6-8)

SiMe₃ + R²CHO
$$\xrightarrow{\text{Bu}_4\text{NF}}$$
 R¹ $\xrightarrow{\text{R}^2}$ R² Ph $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{Chart 1}}$ Chart 1

February 1996 467

Typical procedure is as follows. To a mixture of 1 (1 mmol) and 2 (3 mmol) in DMF (4 ml) was added Bu₄NF (1 ml, 1 M in THF) which had been dried overnight over molecular sieves.⁸⁾ The solution was stirred at room temperature for 24 h, poured into 1N HCl (30 ml), then extracted with ether (20 ml \times 3). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. The residue was column-chromatographed on silica-gel with AcOEt–hexane (1:5) as an eluent to give 3. The results are summarized in Table 1.

Table 1. Desilylative α -Hydroxyalkylation of 1

Run	Substrate (1)	Aldehyde (2)	Product (3)	Yield (%) ^{a)}
1	Me SiMe ₃ Ph Z-1a	PhCHO 2a	Me OH Ph Ph E-3a Me OH	74 ^{b)}
2	Z -1a	CHO 2b	O Ph E-3b	70 ^{b)}
3	Z –1a	Ме ₂ СНСНО 2с	[36 ^{b), c)}
4	SiMe ₃ N Ph E-1a	2 a	Me Ph Ph Z-3a OH	68 ^{b)}
5	<i>E</i> –1a	2b	Me O Ph Z-3b	61 ^{b)}
6	E–1a	2c	Me \sim CHMe ₂ \sim Ph \sim	38 ^{b), c)}
7	(CH2)5Me SiMe ₃ Ph $Z-1b$	2 a	(CH ₂) ₅ Me OH Ph Ph E- 1d	71 ^{b)}

a) Isolated yield. b) A mixture (1:1) of diastereoisomers was obtained. c) Reaction was carried out at 60°C.

468 Vol. 44, No. 2

The desilylative α -hydroxyalkylation of Z-1a, E-1a and Z-1b with aromatic aldehydes 2a and 2b took place regioselectively to provide the corresponding 4-(α -hydroxy)alkyl derivatives 3 in high yields (runs 1, 2, 4, 5 and 7). Although the reactions of Z-1a and E-1a with aliphatic aldehyde 2c did not occur at room temperature, the reactions proceeded at 60° C, giving the products E-3c and Z-3c, respectively, in fair yields (runs 3 and 6). It should be noted that the stereochemistry of the alkylidene side chain of 1 is kept under the present reaction conditions. For example, the reaction of E-1a with 2a gave Z-3a as the sole isomer, none of the corresponding stereoisomer E-3a being detected in the 1 H-NMR spectrum of crude products. 9

In summary, electrophilic carbon—c arbon bond formation at the C4 position of azetidin-2-ones has been achieved by the reaction of 1 with 2 in the presence of fluoride ion. Since the trimethyl-silyl group of 1 can smoothly be displaced not only by nucleophiles such as alcohols, acetic acid and fluoride ion under anodic oxidation conditions 5,10 but also by electrophiles at the C4 position, substrate 1 will be a versatile synthetic intermediate in the β -lactam chemistry. We are extending this unique carbon—carbon bond formation at the C4 position of azetidin-2-ones to the reactions with other carbon electrophiles.

REFERENCES AND NOTES

- 1) Georg G. I. (ed.), "The Organic Chemistry of β-Lactams," VCH, New York, 1992.
- 2) Wild H., in ref. 1, Chapter 2, pp 49–119; and references cited therein.
- 3) Several radical C–C bond formation reactions at the C4 position of azetidin-2-ones have been reported: Blaszczak L. C., Kenneth H., Halligan N. G., *Tetrahedron Lett.*, **31**, 5693 (1990); Kametani T., Chu S. D., Itoh A., Maeda S., Honda T., *J. Org. Chem.*, **53**, 2683 (1988).
- 4) To the best of our knowledge, only one example was reported for the electrophilic C–C bond formation at the C4 position of an azetidin-2-one. However, yields and physical data of the products were not recorded in this paper: Nativ C., Ricci A., Taddei M., *Tetrahedron Lett.*, 31, 2637 (1990).
- 5) Suda K., Hotoda K., Iemuro F., Takanami T., J. Chem. Soc., Perkin Trans. 1, 1993, 1553.
- 6) It has recently been reported that α'-amide carbanions (RCONRCH₂⁻) can be generated by the reaction of an α'-silylated amide (RCONRCH₂-SiMe₃) with fluoride ion. However, no attempt has ever been made to generate α'-carbanions of lactams from α'-silylated lactams: Cuevas J. C., Snieckus V., *Tetrahedron Lett.*, **30**, 5837 (1989); and references cited therein.
- 7) The carbanion **A** may also be formed from 3-alkylideneazetidin-2-ones without silyl groups by deprotonation at the C4 position. However, our attempts at such deprotonation reactions with strong bases such as LDA (lithium diisopropylamide) and ^tBuLi were unsuccessful.
- 8) Katrizky A. R., Sengupta S., *Tetrahedron Lett.*, **28**, 5419 (1987).
- 9) All the products gave satisfactory IR and NMR spectra. For example, 1 H-NMR data for E-3a and Z-3a are as follows: E-3a (a 1:1 mixture of diastereoisomers): (CDCl₃, 270 MHz) δ 1.03 and 1.47 (each 3/2 H, d, J = 7.3 Hz), 3.27 and 3.35 (each 1/2 H, br, OH), 4.21 (1 H, m), 3.70 and 4.72 (each 1/2 H, d, J = 15.2 Hz), 4.16 and 4.75 (each 1/2 H, d, J = 14.7 Hz), 4.78 (1/2 H, d, J = 5.0 Hz), 4.81 (1/2 H, d, J = 5.3 Hz), 6.03 (1 H, q, J = 7.3, -CH=C), 6.90–7.34 (10 H, m); Z-3a (a 1:1 mixture of diastereoisomers): (CDCl₃, 270 MHz) δ 1.89 (3/2 H, d, J = 7.3 Hz), 1.99 (3/2 H, d, J = 7.2 Hz), 2.36 and 2.62 (each 1/2 H, br, OH), 3.74 and 4.64 (each 1/2 H, d, J = 15.2), 4.41 and 4.75 (each 1/2 H, d, J = 14.9 Hz), 3.99 (1/2 H, d, J = 5.6 Hz), 4.03 (1/2 H, d, J = 7.3 Hz), 4.41 (1/2 H, d, J = 7.3 Hz), 4.68 (1/2 H, d, J = 5.6 Hz), 4.79 (1/2 H, q, J = 7.3 Hz, -CH=C), 5.49 (1/2 H, q, J = 7.2 Hz, -CH=C), 6.96–7.35 (10H, m).
- 10) Suda K., Hotoda K., Aoyagi M., Takanami T., *J. Chem. Soc.*, *Perkin Trans. 1*, **1995**, 1327; Suda K., Hotoda K., Watanabe J., Shiozawa K., Takanami T., *ibid.*, **1992**, 1283.

(Received December 14, 1995; accepted January 17, 1996)