Triterpene Saponins from Abrus cantoniensis (Leguminosae). II.¹⁾ Characterization of Six New Saponins Having a Branched-Chain Sugar

Hideo Miyao, Yusuke Sakai, Takashi Takeshita, Yasuyuki Ito, Junei Kinjo, and Toshihiro Nohara*,a

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan and Faculty of General Education, Kyushu Tokai University, Choyo 5435, Aso, Kumamoto 869–14, Japan. Received January 11, 1996; accepted March 2, 1996

The chemical structures of abrisaponins So₁ (1), So₂ (2), D₂ (3), D₃ (4), F (5) and SB (6), six of twenty-three saponins from Abri Herba, the whole plants of Abrus cantoniensis (Leguminosae), were investigated. They were elucidated to be 3-O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -[O- β -D-glucopyranosyl- $(1\rightarrow 3)$]- β -D-galactopyranosyl- $(1\rightarrow 2)$ - $(1\rightarrow 2)$ D-glucuronopyranosyl (designated as β -abritetraosyl) sophoradiol (1), 3-O- β -abritetraosyl sophoradiol 22-O- β -Dxylopyranoside (2), 3-O-β-abritetraosyl abrisapogenol D (3), 3-O-β-abritetraosyl abrisapogenol D 22-O-β-Dglucopyranoside (4), 3-O-β-abritetraosyl abrisapogenol F (5) and 3-O-β-abritetraosyl soyasapogenol B (6), respectively.

Key words triterpene; saponin; β -abritetraose; Abrus cantoniensis; Leguminosae; Fabaceae

In the preceding paper, 2) we reported the isolation of twenty-three oleanene saponins from Abri Herba, the whole plant of Abrus cantoniensis HANCE (Leguminosae). We also described the structure of four new saponins including a new sapogenol and the identification of thirteen known saponins. This paper presents structural determination of abrisaponins So₁ (1), So₂ (2), D₂ (3), D₃ (4), F (5) and SB (6) which have a branched-chain sugar

Abrisaponin So₁ (1), a white powder, $[\alpha]_D^{27} + 6.0^{\circ}$ [MeOH- $H_2O(1:1)$], showed a peak at m/z 1087 due to [M-H] in negative FAB-MS. The exact measurement under high resolution (HR) conditions showed that the composition is $C_{54}H_{87}Na_2O_{22}$ at m/z 1133.5468 [M -H + 2Na⁺. In negative FAB-MS, the fragment ion peaks were also observed at m/z 941 [M-deoxyhexose-H]⁻, 925 [M-hexose-H] and 779 [M-deoxyhexosehexose-H]. The monosaccharide mixture obtained by acid hydrolysis of 1 revealed the presence of D-glucuronic acid, D-galactose, D-glucose and L-rhamnose. The sapogenol was identified as sophoradiol (1a).3 In the sugar region of the ¹³C-NMR spectrum for 1, signals based upon the terminal rhamnopyranosyl and the terminal glucopyranosyl residues were observed.

Since the carbon signals due to the E-ring of sapogenol moiety were superimposable on those of 1a, these sugars were concluded to be composed of a branched-chain sugar which attached at C-3.

The combination of ¹H-¹H shift correlation spectroscopy (COSY) and ¹H detected the heteronuclear multiple bonds correlation (HMBC) spectrum of 1 along with heteronuclear multiple quantum coherence (HMQC) gave the correlations shown in Fig. 1.

The comparative analysis with kaikasaponin III.^{2,4)} which was the representive saponin having 1a, supported

Consequently, the structure of 1 was determined to be 3-O-α-L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[O- β -D-glucopyranosyl- $(1\rightarrow 3)$]- β -D-galactopyranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranosyl sophoradiol. Since the sugar moiety is charac-

* To whom correspondence should be addressed.

that the branched-chain sugar was as shown in Fig. 1.

© 1996 Pharmaceutical Society of Japan

teristic of this plant, we called it β -abritetraose.

Abrisaponin So₂ (2), a white powder, $[\alpha]_D^{27}$ -4.8° [MeOH-H₂O (1:1)], furnished sophoradiol, D-glucuronic acid, D-galactose, D-glucose, D-xylose and L-rhamnose by acid hydrolysis. In negative and HR/positive FAB-MS, 2 showed a peak at m/z 1219 due to $[M-H]^-$ and at m/z 1243.6074 [M+Na]⁺ (C₅₉H₉₆NaO₂₆), respectively. Fragment ion peaks similar to 1 were observed together with an additional peak at m/z 1087 [M-pentose-H]. In the ¹³C-NMR spectrum of 2, the signals due to sugar moiety linked at C-3 and A—D ring for sapogenol moiety

	H_1	H_2	H_3	
1:	Н	ОН	Н	abrisaponin So₁
2:	Н	O-xyl	Н	abrisaponin So ₂
3:	Н	OH	OH	abrisaponin D ₂
4:	Н	ОН	O-glc	abrisaponin D ₃
5:	Н	=O	Н	abrisaponin F
6:	OH	ОН	Н	abrisaponin SB

were superimposable on those of 1. Additional terminal β -D-xylopyranosyl signals and E-ring signals which were shifted at C-21 (-5.2 ppm) and -22 (+6.7 ppm) due to glycosylation⁵⁾ were also observed. Therefore, the structure of 2 was concluded to be 3-O- β -abritetraosyl sophoradiol 22-O- β -D-xylopyranoside.

Abrisaponin D₂ (3), a white powder, $[\alpha]_D^{27} + 0.9^{\circ}$ [pyridine–H₂O (1:1)], showed a peak at m/z 1103 due to $[M-H]^-$ in the negative FAB-MS, and at m/z 1149.5431

Table 1. ¹³C-NMR Data for Compounds 1—6 (Aglycone Moieties)

	1 a)	2	3	4	5	6
C-1	38.9	39.1	39.1	39.2	38.8	38.5
2	26.5	26.1	26.6	26.6	26.5	26.4
3	90.1	90.9	90.9	91.0	90.3	91.4
4	39.7	39.8	39.9	40.0	39.7	43.8
5	55.9	56.0	56.1	56.2	55.9	56.1
6	18.5	18.5	18.7	18.7	18.5	18.6
7	33.2	33.2	33.4	33.4	32.9	33.2
8	40.8	39.9	40.1	40.2	39.9	39.9
9	47.9	47.9	48.1	48.1	47.9	47.7
10	36.9	36.8	37.0	37.0	36.8	36.4
11	23.8	23.8	23.9	24.0	23.8	24.0
12	122.5	122.9	123.0	123.3	123.1	122.3
13	144.8	144.3	144.2	144.5	141.8	144.8
14	42.4	40.3	42.6	42.5	42.0	42.2
15	26.5	26.3	26.6	26.6	26.5	26.6
16	28.7	28.7	29.0	28.6	27.4	28.6
17	38.0	37.4	38.2	38.1	47.8	38.0
18	45.3	45.8	45.5	45.0	47.8	45.2
19	46.8	46.6	42.0	42.2	46.6	46.7
20	30.9	30.6	35.9	35.2	34.2	30.8
21	42.3	36.9	38.3	37.4	50.9	42.3
22	75.6	82.4	75.4	75.6	216.4	75.5
23	28.5	28.7	28.5	28.9	28.4	23.0
24	16.8	16.8	16.9	17.0	16.8	63.6
25	15.7	15.7	15.8	15.8	15.6	15.8
26	17.2	17.2	17.3	17.4	16.9	16.9
27	25.7	25.5	25.8	26.1	25.5	25.6
28	21.1	21.1	21.1	21.3	20.9	21.1
29	33.3	32.6	28.2	28.6	31.8	33.2
30	28.7	28.4	70.2	77.9	25.3	28.6

Chemical shifts (δ : ppm) were measured in pyridine- d_5 . a) Assigned in combination with $^1\text{H}-^1\text{H}$ COSY, HMQC and HMBC spectra.

 $[M-H+2Na]^+$ ($C_{54}H_{87}Na_2O_{23}$) in the HR/positive FAB-MS. By acid hydrolysis, 3 gave abrisapogenol $D_{,6}^{(6)}$ together with the same sugar units as 1. In the ^{13}C -NMR spectrum of 3, the signals due to the sapogenol moiety were in accord with those of abrisaponin D_{1} , $^{2)}$ whereas

Table 2. ¹³C-NMR Data for Compounds 1—6 (Sugar Moieties)

		1 a)	2	3	4	5	6
Glc A C-1		105.4	105.2 ^{c)}	105.4 ^{c)}	105.3°	105.4 ^{c)}	105.4°)
	2	78.7	78.4	78.3	78.7	78.4	78.4
	3	76.0	76.2	76.2	76.3	76.0	76.5
	4	73.5	73.8	73.6	74.0	73.5	73.8
	5	78.7	77.9	78.2^{d}	78.4^{d}	78.2^{d}	78.3^{d}
	6	172.6	175.6^{b}	172.4	176.1 ^{b)}	173.5	172.3
Gal	C-1	102.2	101.8	101.9	102.1	102.0	101.5
	2	77.5	76.2	76.2	76.4	77.0	77.2
	3	84.5	85.1	85.3	85.3	84.9	83.6
	4	70.0	69.2	69.8	70.1	69.2	71.1
	5	75.9	75.4	75.4	75.6^{e}	75.6	75.5
	6	62.2	62.1	62.2	62.4	62.1	61.7
Rha	C-1	102.4	102.6	102.4	102.5	102.3	102.9
	2	72.4	72.1	72.1	72.4	72.2	72.4
	3	72.7	72.1	72.3	72.4	72.4	72.8
	4	74.4	74.0^{d}	74.1	74.3	74.2	74.3
	5	69.4	69.9	69.3	69.4	69.8	69.3
	6	18.9	18.7	18.9	19.0	18.9	19.0
Glc	C-1	105.5	$105.3^{c)}$	$105.6^{c)}$	105.5 ^{c)}	$105.5^{c)}$	$105.9^{c)}$
	2	74.9	74.6	74.7	74.8	74.7	75.0
	3	78.5	77.9	78.2^{d}	78.4^{d}	78.2^{d}	78.2^{d}
	4	71.5	71.2	71.3	71.6^{f}	71.4	71.6
	5	78.1	77.9	77.9^{d}	78.1^{d}	78.1^{d}	77.7^{d}
	6	62.5	62.6	62.4	62.7	62.3	62.6
Xyl	C-1		102.2				
•	2		74.6^{d}				
	3		77.9				
	4		71.0				
	5		66.8				
Glc	C-1				105.6^{c}		
	2				75.3°)		
	3				78.1^{d}		
	4				71.5^{f}		
	5				78.4^{d}		
	6				62.7		

a) Assigned in combination with $^1\mathrm{H}^{-1}\mathrm{H}$ COSY, HMQC and HMBC spectra. b) Carboxylate form. c-f) Each vertical column can be interchanged.

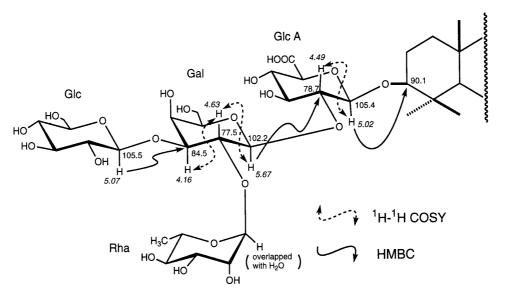


Fig. 1. ${}^{1}H^{-1}H$ COSY and HMBC Connectivities for β -Abritetraosyl Moiety of 1

1230 Vol. 44, No. 6

the signals based on the sugar moiety were in agreement with those of 1. Consequently, the structure of 3 was established as $3-O-\beta$ -abritetraosyl abrisapogenol D.

Abrisaponin D₃ (4), a white powder, $[\alpha]_D^{27} - 85.2^{\circ}$ [pyridine–H₂O (1:1)], showed a peak at m/z 1265 due to $[M-H]^-$ in negative FAB-MS, and at m/z 1289.6169 $[M+Na]^+$ (C₆₀H₉₈NaO₂₈) which appeared to have more of a hexosyl unit than 3 in HR/positive FAB-MS. By acid hydrolysis, 4 gave the same components as 3. In the ¹³C-NMR spectrum of 4, the signals due to sugar moiety linked at C-3 and A—D ring for sapogenol moiety were in good agreement with those of 3. In contrast, additional terminal β-D-glucopyranosyl signals and E-ring signals having glycosylation shift at C-30 (+7.2 ppm) were observed. Therefore, the structure of 4 was concluded to be 3-O-β-abritetraosyl abrisapogenol D 22-O-β-D-glucopyranoside.

Abrisaponin F (5), a white powder, $[\alpha]_{2}^{27} - 29.2^{\circ}$ [pyridine–H₂O (1:1)], showed a peak at m/z 1109 due to $[M+Na]^+$ in positive FAB-MS, and at m/z 1131.5327 $[M-H+2Na]^+$ ($C_{54}H_{85}Na_2O_{22}$) in HR/positive FAB-MS. By acid hydrolysis, 5 gave abrisapogenol F,⁶⁾ together with the same sugar units as those of 1. In the ¹³C-NMR spectrum of 3, the signals for the sapogenol moiety were consistent with those of phaseoside IV,^{2,7)} whereas the signals based upon the sugar moiety were in agreement with those of 1. Consequently, the structure of 3 was established as 3-O- β -abritetraosyl abrisapogenol F.

Abrisaponin SB (6), a white powder, $\left[\alpha\right]_{D}^{27} - 8.9^{\circ}$ (pyridine), showed a peak at m/z 1103 $[M-H]^{-}$ and similar fragment ion peaks to those of 1 in the negative FAB-MS. The HR/positive FAB-MS showed that the composition is $C_{54}H_{89}O_{23}$ at m/z 1105.5756 $[M+H]^{+}$. By acid hydrolysis, 6 gave soyasapogenol B^{8}) together with same sugar units as 1. In the ^{13}C -NMR spectrum of 6, the signals for the aglycone moiety were consistent with those of soyasaponin I_{5}^{2} , whereas the signals due to the sugar moiety were superimposable on those of 1. Therefore, the structure of 6 was established as $3-O-\beta$ -abritetraosyl soyasapogenol B.

Meanwhile the crude saponin fractions of this plant were effective on experimental liver injuries *in vivo*. ⁹⁾ To date we have obtained twenty three saponins. Since the available amounts of these saponins were limited, we plan to confirm the activities of individual saponins using primary cultured rat hepatocytes.

Experimental 10)

Compound 1 (Abrisaponin So₁) A white amorphous powder, $[\alpha]_D^{27} + 6.0^\circ$ [c = 0.32, MeOH-H₂O (1:1)]. HR FAB-MS m/z: 1133.5468 (Calcd for C₅₄H₈₇Na₂O₂₂: 1133.5484). Negative FAB-MS m/z: 1087 [M-H]⁻, 941 [M-H-deoxyhexose]⁻, 925 [M-H-hexose]⁻, 779 [M-H-hexose-deoxyhexose]⁻. ¹H-NMR (in pyridine- d_5) δ: 0.87 (3H, s, H-25), 0.99 (3H, s, H-29), 1.00 (3H, s, H-26), 1.18 (3H, s, H-24), 1.21 (3H, s, H-28), 1.27 (3H, s, H-27), 1.27 (3H, s, H-30), 1.40 (3H, s, H-23), 1.73 (3H, d, J=6.1 Hz, rha H-6), 3.30 (1H, dd, J=4.3, 11.6 Hz, H-3), 3.72 (1H, br s, H-22), 4.16 (1H, dd, J=3.1, 9.8 Hz, gal H-3), 4.49 (1H, t, J=7.3 Hz, glc A H-2), 4.63 (1H, gal H-2), 5.02 (1H, d, J=7.3 Hz, glc A H-1), 5.07 (1H, d, J=7.9 Hz, glc H-1), 5.31 (1H, s, H-12), 5.67 (1H, d, J=7.9 Hz, gal H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 1 A sample of **1** was hydrolyzed in 3 N HCl/H₂O at $80 \,^{\circ}\text{C}$ for 3 h. After filtration of the mixture, the precipitate was identified as sophoradiol by TLC. Rf: 0.37 [CHCl₃-MeOH (19:1)], 0.52 [n-hexane-acetone (2:1)]. The filtrate

was neutralized with 3 N NaOH/H₂O. The sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), n-PrOH-acetone-H₂O (5:3:1), Rf: 0.74 (rhamnose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: o-aminobenzenesulfonic acid/2 M H₃PO₄].

D, L Determination of Sugars¹¹⁾ The absolute configuration of glucuronic acid was determined after NaBH₄ reduction according to Tanaka et al.¹²⁾ A sample of 1 (3 mg) was methylated in ethereal CH₂N₂. To a methanolic solution of the methylated sample for 1 was added NaBH₄ (ca. 5 mg), and the mixture was kept at r.t. for 30 min. The reaction mixture was worked up with MCI gel CHP 20P. The MeOH eluate was evaporated and heated in 2 N HCl/H₂O at $90 \,^{\circ}\text{C}$ for 3 h. The precipitate was removed by filtration and the supernatant was neutralized with 2N KOH/H₂O. After desalting with Amberlite MB-3, the sugar fraction was dissolved in pyridine (0.1 ml), then the mixture was added to a pyridine solution (0.2 ml) of L-cysteine methyl ester hydrochloride (0.1 mol/l) and warmed at 60 °C for 2 h. The mixture was then evaporated under N2 stream and dried in vacuo. The obtained syrup was trimethylsilylated with trimethylsilylimidazole (0.1 ml) at 60 °C for 1 h. After the addition of *n*-hexane (0.1 ml) and H₂O (0.1 ml), the *n*-hexane layer was taken off and checked by GC. The retention time (t_R) of the peaks was at 11.1 min (L-rhamnose), 22.5 min (D-glucose), and 23.4 min (D-galactose).

Compound 2 (Abrisaponin So₂) A white amorphous powder, $[\alpha]_{0}^{27}$ –4.8° [c=0.34, MeOH–H₂O (1:1)]. HR FAB-MS m/z: 1243.6074 (Calcd. for C₅₉H₉₆NaO₂₆: 1243.6087). Negative FAB-MS m/z: 1219 [M–H]⁻, 1087 [M–H–pentose]⁻, 1057 [M–H–hexose]⁻, 911 [M–H–hexose–deoxyhexose–hexose]⁻. ¹H-NMR (in pyridine- d_{s}) δ: 0.87, 0.95, 1.01, 1.19, 1.24, 1.24, 1.25, 1.38 (each 3H, s, tert-Me × 8), 1.75 (3H, d, t=6.2 Hz, rha H-6), 5.27 (1H, s, H-12), 5.54 (1H, d, t=7.3 Hz, gal H-1), 6.13 (1H, s, rha H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 2 A sample of **2** was hydrolyzed in the above manner. The precipitate was identified as sophoradiol by TLC. *Rf*, 0.37 [CHCl₃–MeOH (19:1)], 0.52 [*n*-hexane-acetone (2:1)]. After neutralization, the sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), *n*-PrOH–acetone–H₂O (5:3:1), *Rf*: 0.74 (rhamnose), 0.60 (xylose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: *o*-aminobenzenesulfonic acid/2 M H₃PO₄].

D, L Determination of Sugars A sample of 2 (1 mg) was treated in the above manner. The derivatives were analyzed by GC. The $l_{\rm R}$ of the peaks was at 11.1 min (L-rhamnose), 12.5 min (D-xylose), 22.5 min (D-glucose) and 23.4 min (D-galactose).

Compound 3 (Abrisaponin D₂) A white amorphous powder, $[\alpha]_D^{27} + 0.9^{\circ}$ [c = 0.33, pyridine-H₂O (1:1)]. HR FAB-MS m/z: 1149.5431 (Calcd for C₅₄H₈₇Na₂O₂₃: 1149.5433). Negative FAB-MS m/z: 1103 [M-H]⁻, 941 [M-H-hexose]⁻, 633 [M-H-hexose-deoxyhexose-hexose]⁻. ¹H-NMR (in pyridine- d_5) δ : 0.86, 0.96, 1.16, 1.20, 1.20, 1.27, 1.38 (each 3H, s, tert-Me × 7), 1.75 (3H, d, t = 6.1 Hz, rha H-6), 4.95 (1H, d, t = 7.3 Hz, glc A H-1), 4.99 (1H, d, t = 6.7 Hz, glc H-1), 5.34 (1H, s, H-12), 6.12 (1H, s, rha H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 3 A sample of **3** was hydrolyzed in the above manner. The precipitate was identified as abrisapogenol D by TLC. Rf, 0.20 [CHCl₃–MeOH (19:1)], 0.35 [n-hexane–acetone (2:1)]. After neutralization, the sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), n-PrOH–acetone–H₂O (5:3:1), Rf: 0.74 (rhamnose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: o-aminobenzene-sulfonic acid/2 M H₃PO₄].

Compound 4 (Abrisaponin D₃) A white amorphous powder, $[\alpha]_0^{27} - 85.2^{\circ}$ [c = 0.32, pyridine–H₂O (1:1)]. HR FAB-MS m/z 1289.6169 (Calcd for C₆₀H₉₈O₂₈Na: 1289.6142). Negative FAB-MS: m/z 1265 [M–H]⁻, 1119 [M–H–deoxyhexose]⁻, 1103 [M–H–hexose]⁻, 795 [aglycone+hexose–H]⁻. ¹H-NMR (in pyridine- d_5) δ : 0.85, 0.96, 1.21, 1.25, 1.25, 1.38, 1.53 (each 3H, s, tert-Me × 7), 1.77 (3H, d, J=6.1 Hz, rha H-6), 5.37 (1H, s, H-12), 5.55 (1H, d, J=7.9 Hz, gal H-1), 6.15 (1H, s, rha H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 4 A sample of **4** was hydrolyzed in the above manner. The precipitate was identified as abrisapogenol D by TLC. *Rf*, 0.20 [CHCl₃–MeOH (19:1)], 0.35 [*n*-hexane–acetone (2:1)]. After neutralization, the sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), *n*-PrOH–acetone–H₂O (5:3:1), *Rf*: 0.74 (rhamnose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: *o*-aminobenzenesulfonic

acid/ $2 \text{ M H}_3 PO_4$].

D, L Determination of Sugars A sample of 4 (1 mg) was treated in the above manner. The derivatives were analyzed by GC. The t_R of the peaks was at 11.1 min (L-rhamnose), 22.5 min (D-glucose) and 23.4 min (D-galactose).

Compound 5 (Abrisaponin F) A white amorphous powder, $[\alpha]_D^{27} - 29.2^{\circ}$ [c = 0.37, pyridine–H₂O (1:1)]. HR FAB-MS m/z 1131.5327 (Calcd for C₅₄H₈₅Na₂O₂₂: 1131.5328). Positive FAB-MS: m/z 1109 [M+Na]⁺, 963 [M+Na-deoxyhexose]⁺, 947 [M+Na-hexose]⁺. ¹H-NMR (in pyridine- d_5) δ : 0.86, 0.87, 0.92, 0.98, 1.17, 1.20, 1.30, 1.38 (each 3H, s, *tert*-Me × 8), 1.74 (3H, d, J = 6.1 Hz, rha H-6), 5.28 (1H, s, H-12), 5.61 (1H, d, J = 7.9 Hz, gal H-1), 6.20 (1H, s, rha H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 5 A sample of 5 was hydrolyzed in the above manner. The precipitate was identified as abrisapogenol F by TLC. Rf, 0.43 [CHCl₃-MeOH (19:1)], 0.52 [n-hexane-acetone (2:1)]. After neutralization, the sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), n-PrOH-acetone-H₂O (5:3:1), Rf: 0.74 (rhamnose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: o-aminobenzene-sulfonic acid/2 M H₃PO₄].

Compound 6 (Abrisaponin SB) A white amorphous powder, $[\alpha]_D^{27}$ -8.9° (c=0.40, pyridine). HR FAB-MS m/z 1105.5756 (Calcd for C₅₄H₈₉O₂₃: 1105.5794). Negative FAB-MS: m/z 1103 [M-H]⁻, 941 [M-H-hexose]⁻, 795 [M-H-hexose-deoxyhexose]⁻, 633 [M-H-hexose-deoxyhexose-hexose]⁻. ¹H-NMR (in pyridine- d_5) δ: 0.73, 0.98, 1.00, 1.23, 1.29, 1.29, 1.45 (each 3H, s, tert-Me × 7), 1.72 (3H, d, J=6.2 Hz, rha H-6), 4.98 (1H, d, J=6.6 Hz, glc A H-1), 5.16 (1H, d, J=7.7 Hz, glc H-1), 5.30 (1H, s, H-12), 5.78 (1H, d, J=7.3 Hz, gal H-1), 6.20 (1H, s, rha H-1). ¹³C-NMR: Tables 1 and 2.

Identification of Sapogenol and Sugars for 6 A sample of **6** was hydrolyzed in the above manner. The precipitate was identified as soyasapogenol B by TLC. *Rf*, 0.24 [CHCl₃-MeOH (19:1)], 0.42 [*n*-hexane-acetone (2:1)]. After neutralization, the sugar mixture was subjected to TLC analysis [TLC, Kieselgel 60 (Merck Art 5553), *n*-PrOH-acetone-H₂O (5:3:1), *Rf*: 0.74 (rhamnose), 0.47 (glucose), 0.38 (galactose), 0.08 (glucuronic acid), reagent: *o*-aminobenzene-

sulfonic acid/2 M H₃PO₄].

Acknowledgments We express our appreciation to Prof. H. Okabe and Mr. H. Hanazono of Fukuoka University for measurements of HR FAB-MS, and to Dr. Y. Kido, Dr. S. Yahara, Mr. K. Takeda, Mr. T. Iriguchi and Ms. T. Fujii of this Faculty for measurement of NMR spectra and MS.

References and Notes

- 1) Part L in a series of studies on leguminous plants.
- Miyao H., Sakai Y., Takeshita T., Nohara T., Chem. Pharm. Bull., 44, 1222—1227 (1996).
- Chiang T. C., Chang H. M., Planta Medica, 46, 52—55 (1982);
 Kinjo J., Miyamoto I., Murakami K., Kida K., Tomimatsu T.,
 Yamasaki M., Nohara T., Chem. Pharm. Bull., 33, 1293—1296 (1985).
- 4) Kitagawa I., Taniyama T., Hong W. W., Hori K., Yoshikawa M., Yakugaku Zasshi, 108, 538—546 (1988).
- Kasai R., Suzuo M., Asakawa J., Tanaka O., *Tetrahedron Lett.*, 1977, 175—178; Tori K., Seo S., Yoshimura Y., Arita H., Tomita Y., *ibid.*, 1977, 179—182.
- Takeshita T., Hamada S., Nohara T., Chem. Pharm. Bull., 37, 846—848 (1989).
- Yahara S., Irino N., Takaoka T., Nohara T., Natural Medicines, 48, 312—313 (1994).
- 8) Kitagawa I., Wang H. K., Taniyama T., Yoshikawa M., Chem. Pharm. Bull., 36, 153—161 (1988).
- Takeshita T., Ito Y., Sakai Y., Nohara T., Yasuhara M., Saito H., Kitagawa I., Ariga T., Irino N., Takaoka T., J. Pharmacobio-Dyn, 13, s-54 (1990).
- 10) The instruments used to obtained physical data and the experimental conditions for chromatography were the same as described previously.²⁾
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 35, 501—506 (1987).
- Tanaka R., Nagao T., Okabe H., Yamauchi T., Chem. Pharm. Bull., 38, 1153—1157 (1990).