Helianol [3,4-seco-19(10 \rightarrow 9)abeo-8 α ,9 β ,10 α -eupha-4,24-dien-3-ol], a Novel Triterpene Alcohol from the Tabular Flowers of *Helianthus annuus* L.

Toshihiro Akihisa,*,^a Hirotoshi Oinuma,^a Ken Yasukawa,^b Yoshimasa Kasahara,^c Yumiko Kimura,^b Sei-ichi Takase,^d Sakae Yamanouchi,^b Michio Takido,^b Kunio Kumaki,^c and Toshitake Tamura^a

College of Science and Technology, Nihon University, ^a 1–8, Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan, College of Pharmacy, Nihon University, ^b 7–7–1, Narashinodai, Funabashi-shi, Chiba 274, Japan, The Yamagata Prefectural Institute of Public Health, ^c 1–6–6, Tokamachi, Yamagata 990, Japan, and College of Science and Technology (Funabashi Campus), Nihon University, ^d 7–24–1, Narashinodai, Funabashi-shi, Chiba 274, Japan.

Received December 22, 1995; accepted March 2, 1996

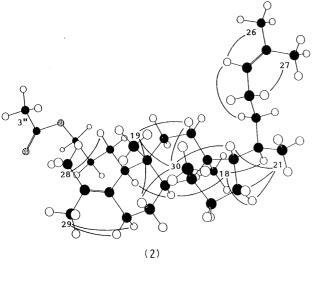
A novel 3,4-seco-triterpene alcohol with a migrated euphane-type skeleton, called helianol, was isolated together with seven known triterpene alcohols from the nonsaponifiable lipid of the tabular flower extract of *Helianthus annus* L. The structure was determined by extensive spectroscopic analyses.

Key words Helianthus annuus; tabular flower; seco-triterpene alcohol; helianol; Compositae

In the course of our research on the phytochemical and pharmacological aspects of Compositae plants, we have demonstrated that some sterols¹⁾ and alkane-6,8diols^{2,3)} isolated from the flowers of Carthamus tinctorius L., and some triterpenes isolated from the flowers of C. tinctorius, Chrysanthemum morifolium Ramat., and Helianthus annuus L.4) exhibited activity against 12-Otetradecanoylphorbol-13-acetate (TPA)-induced inflammatory ear edema in mice^{1,3,4)} and tumor promotion in mouse skin. 1,3) This paper describes our continued study which led to the isolation of a novel seco-triterpene alcohol from the tabular flowers of H. annuus (sunflower) and its characterization as 3,4-seco-19(10 \rightarrow 9)abeo-8 α ,9 β ,10 α eupha-4,24-dien-3-ol (1) which we called "helianol". There is no previous report on the triterepene alcohol constituents of the tabular flowers of H. annuus, whereas the ligulate flowers were shown to contain α-amyrin (urs-12-en-3 β -ol), β -amyrin (olean-12-en-3 β -ol), lupeol [lup-20(29)-en- 3β -ol], taraxasterol [taraxast-20(30)-en- 3β -ol]. and ψ -taraxasterol (taraxast-20-en-3 β -ol).⁵⁾

Column chromatography on silica gel of the non-saponifiable lipid obtained by alkaline hydrolysis from the MeOH extract of the dried tabular flowers of H. annuas yielded a triterpene alcohol fraction. Acetylation of the fraction followed by preparative reverse phase HPLC of the acetate fraction led to the isolation of a novel seco-triterpene alcohol, helianol (1), as the acetyl derivative (2) (78.3% of the triterpene acetate mixture as determined based on the HPLC and GLC data), together with seven known compounds as the acetyl derivatives 6,7 : α -amyrin (3.9%), β -amyrin (11.1%), lupeol (0.5%), ψ -taraxasterol (0.7%), cycloartenol (cycloart-24-en-3 β -ol; 0.6%), 24-methylenecycloartanol (24-methylenecycloartan-3 β -ol; 1.0%), and dammaradienol (dammara-20,24-dien-3 β -ol; 0.5%).

The molecular formula of **2** was determined to be $C_{32}H_{54}O_2$ on the basis of the high-resolution mass spectrum (HR-MS) [m/z 470.4116 (M⁺)], while the ¹H-NMR spectrum (Table 1) showed the presence of four olefinic methyls, corresponding to two isopropylidene


groups and indicating of it to be a tricyclic seco-triterpene. The presence of the signal of an acetoxymethylene group $(\delta 4.03, t)$ suggested it to be a 3,4-seco-triterpene-3-yl acetate structure. 9) Further distinctive signals observed in the ¹H-NMR of 2 were an olefinic methine proton $(\delta 5.10)$, three methyl singlets and one methyl doublet. The mass fragmentations observed at m/z 359 [loss of one (C₈H₁₅) of the two side chains], 287 [loss of one side chain ($CH_2 = CHCH_2OAc$; $C_5H_8O_2$) and part of the other side chain (C_6H_{11} ; C-22-C-27)], 259 (loss of both side chains $C_5H_8O_2$ and C_8H_{15}), and 69 [CH₂CH= C(Me)₂]⁺ (C-23—C-27; base peak) supported the proposed structure and further suggested the presence of a C-24 mono-unsaturated C₈ side chain.⁹⁾ The other double bond might be located at C-4(5). Further diagnostic fragmentation ions at m/z 274 ($C_{20}H_{34}$), corresponding to the loss of seco-ring A and ring B by cleavages of the C-7-C-8 and C-9-C-10 bonds, 10,11) and 163 ($C_{12}H_{19}$; 274-C₈H₁₅) indicated the absence of a methyl group at C-10 and suggesting 2 a 3,4-seco-cucurbitane or a 3,4 $seco-19(10\rightarrow 9)abeo$ -euphane (or tirucallane).

The analysis of ¹³C distortionless enhancement by polarization transfer (DEPT), ¹H-¹H correlated spectroscopy (COSY), ¹³C-¹H COSY, and heteronuclear

RO
$$\frac{3}{28}$$
 $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{10}$ $\frac{1}{10}$

© 1996 Pharmaceutical Society of Japan

* To whom correspondence should be addressed.

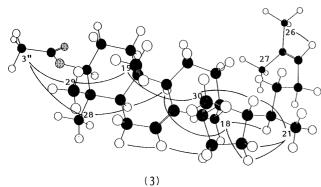


Fig. 1. CAChe Drawings and Some Representative NOE Correlations (-) for Helianyl Acetate (2) and Butyrospermyl Acetate (3)

NOE correlations between gem-protons were omitted from the figure.

multiple-bond correlation (HMBC) spectra supported the above assumption. That 2 possesses the stereochemistry of an $19(10\rightarrow 9)$ abeo- 8α , 9β , 10α -euphane-type skeleton was established by comparison of the difference nuclear Overhauser effect (NOE) of 2 with that of the known butyrospermyl (eupha-7,24-dien-3 β -yl) acetate (3). The difference NOE spectrum of 2 exhibited cross peaks between H-30 and H-17, H-17 and H-21; and H-21 and H- $16\alpha\beta$, H- 16α and H-18, H-18 and H-20 (Table 1, Fig. 1) which were consistent with those observed for 3 (Fig. 1) suggesting that 2 possesses the stereochemistry of the C and D ring juncture (13 α , 14 β), C-17 (17 β -H), and C-20 (20R) as does 3. Furthermore, 2 showed other marked cross peaks between H-30 and H-19, H-18 and H-8, and H-8 and H-10, revealing $19(10\rightarrow 9)abeo-8\alpha,9\beta,10\alpha$ -euphane stereochemistry.

The most stable conformation of **2** and **3** with minimum steric energy was simulated using CAChe, and drawings¹²⁾ are shown in Fig. 1 accompanied by appreciable NOE's (–). The conformer of simulated **2** orients C-22 of the side chain at C-17 into a "left-handed" conformation (C-22 *cis*-oriented to C-13) similar to that of **3** and to the crystal structure of another euphane, eupha-8,24-dien-3 β -yl (euphyl) acetate.¹³⁾ This was fairly consistent with the NOE experiment done in solution, thus confirming the proposed structure of **2**. The acetate **2**, upon hydrolysis,

Table 1. $^{13}\text{C-}$ and $^{1}\text{H-NMR}$ Spectral Data (δ/ppm) for Helianol (1) and Helianyl Acetate (2) $^{a)}$

C No.	Helianol (1)		Helianyl acetate (2)	
	¹³ C	¹H	13C	¹ H
1	32.1	1.55 (2H)	26.4	1.36, 1.52
2	26.3	1.33, 1.56	27.8	1.62 (2H)
3	63.9	3.62 (2H, t, 6.3)	65.3	4.03 (2H, t, 6.6)
4	122.2		122.3	
5	134.2	_	134.0	_
6	25.1	$2.28 (\alpha), 2.07 (\beta)$	25.4	$2.24 (\alpha), 2.09 (\beta)$
7	23.6	$1.34 (\alpha), 1.59 (\beta)$	23.7	$1.33 (\alpha), 1.51 (\beta)$
8	44.0	1.61	44.2	1.59
9	38.6	_	38.6	
10	54.9	2.29	54.9	2.26
11	39.1	1.54 (2H)	39.1	1.50 (2H)
12	30.3	$1.53 (\alpha), 1.72 (\beta)$	30.3	$1.54 (\alpha), 1.70 (\beta)$
13	46.1		46.1	
14	47.8	_	47.8	
15	34.1	1.13 (2H)	34.1	$1.07 (\alpha), 1.15 (\beta)$
16	28.1	$1.25 (\alpha), 1.87 (\beta)$	28.1	$1.25 (\alpha), 1.88 (\beta)$
17	50.4	1.48	50.4	1.45
18 (13α)	15.4	0.80 (s)	15.4	0.80 (s)
19 (9β)	18.1	0.90 (s)	18.1	0.90 (s)
20	35.8	1.45	35.8	1.43
21	18.6	0.91 (d, 6.1)	18.6	0.91 (d, 6.1)
22	36.5	1.07, 1.43	36.5	1.04, 1.42
23	24.9	1.84, 2.03	24.9	1.84, 2.02
24	125.2	5.10 (tt, 1.3, 7.1)	125.3	5.10 (tt, 1.5, 7.1)
25	130.9		130.9	
26	25.7	1.68 (s)	25.7	1.68 (s)
27	17.6	1.60 (s)	17.6	1.60 (s)
28	20.9	1.66 (s)	21.0	1.66 (s)
29	20.9	1.66 (s)	20.8	1.65 (s)
$30 \ (14\beta)$	19.0	0.83 (s)	19.0	0.83 (s)
COMe (3')			171.3	
CO <u>Me</u> (3")			21.1	2.04 (s)

a) Determined at 100.62 MHz (13 C-NMR) and 400 MHz (1 H-NMR) in CDCl₃ with CDCl₃ at δ 77.0 (13 C-NMR) or TMS (1 H-NMR) as internal standard. Figures in parentheses on 1 H-NMR denote J values (Hz). If not otherwise specified in parentheses, multiplicity of 1 H-NMR signals was not determined.

yielded a free alcohol, 3,4-seco-19(10 \rightarrow 9)abeo-8α,9β,10α-eupha-4,24-dien-3-ol (1) (m/z 428.3987, M^+ , $C_{30}H_{50}O$). The fully assigned ¹³C- and ¹H-NMR spectral data of 1 and 2 are shown in Table 1.

A $19(10\rightarrow 9)abeo-8\alpha,9\beta,10\alpha$ -euphane (called "reissantane") triterpene, reissantenol oxide [(24S)-24,25-epoxyreissant-5-en-3 β -ol], ¹⁵⁾ and three other reissantane-type triterpenes¹¹⁾ have been isolated from Reisssantia indica (Celastraceae), but this study constitutes the first isolation of the triterpene with a 3,4-seco-reissantane skeleton¹⁶⁾ from a natural source. Although a number of 3,4-secotriterpenes are known to occur in nature, 17,18) only a few compounds possessing a 3-hydroxyl group have so far been reported as natural products, i.e., 3,4-seco-dammara-4,24-dien-3-ol as the acetyl derivative, isolated from the roots of Abrotanella forsterioides (Compositae),9 and 3,4-seco-D: B-friedo-B': A'-neogammacer-4(23)-en-3,5αdiol (espinendiol A) and its 5β -epimer (espinendiol B) isolated from the whole herb of Euphorbia supina (Euphorbiaceae).19)

Experimental

Crystallizations were performed from acetone-MeOH. Preparative HPLC was carried out on an octadecyl silica column (Superiorex ODS

S-5 μ m column, 25 cm × 10 mm i.d.; Shiseido Co., Ltd., Tokyo) with MeOH (4 ml/min) using an SSC Flow System 3100K (Senshu Scientific Co., Tokyo) and an ERC-7520 refractive index detector (Erma Optical Works, Ltd., Tokyo). Gas-liquid chromatography (GLC) was run on a Shimadzu GC-14A apparatus using a DB-17 fused silica capillary column (30 m × 0.3 mm i.d., column temp. 275 °C). In both HPLC and GLC, cholesterol (cholest-5-en-3 β -ol) was the standard for the determination of $Rt_R(I)$ of triterpene alcohol, whereas cholesteryl acetate was the standard for the determination of $Rt_R(II)$ for the triterpene acetate. Electron-impact MS and HR-MS were taken on a Hitachi M-80B double focusing gas chromatograph-mass spectrometer (70 eV) using a direct inlet system. NMR spectra were recorded with a JEOL GSX-400 spectrometer at 400 MHz (1H-NMR) and 100.62 MHz (13C-NMR) in CDCl₃ with tetramethylsilane (TMS) (${}^{1}\text{H-NMR}$) and CDCl₃ at δ 77.0 (13C-NMR) as internal standards, and chemical shifts were recorded in δ values. Acetylation was performed in Ac₂O-pyridine at room temperature overnight. Hydrolysis of the acetates was done in 5% KOH in MeOH also at room temperature overnight. Tabular flowers of sunflower were obtained from the plants cultivated in the Medicinal-Plant Garden of the College of Pharmacy of Nihon University. Butyrospermyl acetate (3) was used as the reference compound. 20) The assigned 13C- and ¹H-NMR data of 3 are shown below.

Isolation Procedure Fresh tabular flowers (916 g) of sunflower were air dried (218 g) and extracted 3 times on 3 succesive days with MeOH at room temperature to give an extract (40 g). Nonsaponifiable lipids (2.71 g) obtained from the extract by alkaline hydrolysis (5% KOH in MeOH, reflux, 3 h) were subjected to column chromatography on silica gel (200 g) using the gradient solvent system (*n*-hexane: EtOAc=1:0-1:4, v/v) to yield a triterpene alcohol fraction (473 mg) which, upon acetylation, gave the acetate fraction (366 mg). Preparative HPLC of the acetate fraction yielded **2** and the acetates^{6,7)} of the known α-amyrin, β-amyrin, lupeol, ψ-taraxasterol, cycloartenol, 24-methylenecycloartanol, and dammaradienol. Identification of known compounds was made based on the chromatographic (HPLC, GLC) and spectroscopic (MS, ¹H-NMR) data.

Helianyl [3,4-seco-19(10 \rightarrow 9)abeo-8α,9β,10α-Eupha-4,24-dien-3-yl] Acetate (2) Amorphous gum. R $_{IR}$ (II): 0.63 (HPLC), 1.32 (GLC). MS $_{IR}$ (%): 470 (M $^{+}$, 4), 455 (3), 427 (1), 410 (1), 401 (1), 386 (2), 359 (2), 357 (2), 299 (2), 287 (13), 274 (7), 259 (2), 221 (6), 205 (5), 203 (4), 191 (5), 189 (6), 175 (7), 163 (17), 149 (14), 69 (100). HR-MS $_{IR}$ (x 470.4116 [Calcd for C $_{32}$ H $_{54}$ O $_{2}$ (M $^{+}$): 470.4120]; 359.2958 [Calcd for C $_{24}$ H $_{39}$ O $_{2}$: 359.2948]; 287.2755 [Calcd for C $_{21}$ H $_{35}$: 287.2737]; 274.2655 [Calcd for C $_{20}$ H $_{34}$: 274.2659]; 259.2445 [Calcd for C $_{19}$ H $_{31}$: 259.2424]; 163.1459 [Calcd for C $_{12}$ H $_{19}$: 163.1486]; 69.0695 [Calcd for C $_{54}$ 9: 69.0704].

Helianol [3,4-seco-19(10 \rightarrow 9)abeo-8α,9β,10α-Eupha-4,24-dien-3-ol] (1) Alkaline hydrolysis of the acetate (2) yielded helianol (1): Amorphous gum. Rt_R(I): 0.63 (HPLC), 1.44 (GLC). MS m/z (%): 428 (M⁺, 8), 413 (1), 317 (1), 287 (14), 274 (8), 273 (5), 259 (3), 217 (3), 205 (5), 191 (4), 163 (18), 149 (10), 69 (100). HR-MS m/z: 428.3987 [Calcd for C₃₀H₅₂O (M⁺): 428.4015].

Butyrospermyl [Eupha-7,24-dien-3β-yl] Acetate (3) 13 C- and 1 H-NMR δ: C-1 [13 C: 36.8; 1 H:1.22(α), 1.66(β)], C-2 [24.2; 1.67 (2H)], C-3 [81.1; 4.52, dd, J=4.0, 11.0 Hz], C-4 [37.8], C-5 [50.8; 1.41, dd, J=5.9, 12.1 Hz], C-6 [23.8; 2.13(α), 1.96(β)], C-7 [117.6; 5.25, dd, J=2.7, 6.6 Hz], C-8 [146.0], C-9 [48.8; 2.22], C-10 [34.8], C-11 [18.1; 1.52 (2H)], C-12 [33.7; 1.66(α), 1.80(β)], C-13 [43.5], C-14 [51.3], C-15 [33.9; 1.45 (2H)], C-16 [28.5; 1.27(α),1.92(β)], C-17 [53.2; 1.49], C-18 [22.1; 0.80, s], C-19 [13.1; 0.77, s], C-20 [35.8; 1.40], C-21 [18.6; 0.85, d, J=6.2 Hz], C-22 [35.2; 0.99, 1.59], C-23 [25.4; 1.88, 2.04], C-24 [125.1; 5.10, brt, J=7.0 Hz], C-25 [131.0], C-26 [25.7; 1.69, s], C-27 [17.7; 1.61, s], C-28 [27.6; 0.85, s], C-29 [15.9; 0.93, s], C-30 [27.3; 0.97, s], C-3′ (QOMe) [171.0], C-3″ (COMe) [21.3; 2.05, s].

Acknowledgements This work was supported in part by an Interdisciplinary General Joint Research Grant from Nihon University.

References and Notes

- Kasahara Y., Kumaki K., Katagiri S., Yasukawa K., Yamanouchi S., Takido M., Akihisa T., Tamura T., *Phytotherapy Res.*, 8, 327—331 (1994).
- Akihisa T., Oinuma H., Tamura T., Kasahara Y., Kumaki K., Yasukawa K., Takido T., Phytochemistry, 36, 105—108 (1994).
- Yasukawa K., Akihisa T., Kasahara Y., Kaminaga T., Kanno H., Kumaki K., Tamura T., Takido M., Oncology, in press.
- Oinuma H., Akihisa T., Tamura T., Yasukawa K., Takido M., Kasahara Y., Kumaki K., Abstracts of the Papers Presented at the 33th Annual Meeting of The Japan Oil Chemists' Society, 1994, p. 67.
- 5) Pyrek J. St., Polish J. Chem., 53, 2465—2490 (1979).
- Akihisa T., Kokke W. C. M. C., Tamura T., "Physiology and Biochemistry of Sterols," ed. by Patterson G. W., Nes W. D., American Oil Chemists' Society, Champaign, Illinois, Chapter 7, 1991, pp. 172—228.
- Akihisa T., Kimura Y., Roy K., Ghosh P., Thakur S., Tamura T., *Phytochemistry*, 35, 1309—1313 (1994).
- 8) The inhibitory effects of TPA-induced inflammation in mouse skin of helianol and the other triterpene alcohols from some Compositae plants are under investigation in our laboratory.
- Greger H., Zdero C., Bohlmann F., Phytochemistry, 22, 2085—2087 (1983).
- Masuda K., Shiojima K., Ageta H., Chem. Pharm. Bull., 31, 2530—2533 (1983).
- Gamalath C. B., Gunatilaka A. A. L., Subramaniam S., J. Chem. Soc., Perkin Trans. 1, 1989, 2259—2267.
- 12) CAChe with extended MM2 parameters (CAChe Scientific Inc., Beaverton, Oregon, U.S.A.). Conformation with minimum steric energy was obtained by potential energy map using the "Sequential Search" option. The minimum steric energy calculated was: 2 (64.93 kcal/mol) and 3 (60.72 kcal/mol). Drawings were performed by Chem3D program (Cambridge Scientific Computing Inc., Cambridge, Massachusetts, U.S.A.).
- 13) Nes W. D., Wong R. Y., Benson J. R., Landrey J. R., Nes W. R., Proc. Natl. Acad. Sci. U.S.A., 81, 5896—5900 (1984). Tirucalla-8,24-dien-3β-yl (tirucallyl) acetate, a tirucallane-type triterpene, is reported in this article to orient C-22 of the side chain at C-17 into a "right-handed" conformation (C-22 trans-oriented to C-13) in the solid state, as determined by X-ray crystallography.
- 14) Free helianol (1) showed almost the same NOE correlations as those of its acetate 2. The most stable conformer of 1 with minimum steric energy (67.73 kcal/mol) simulated using CAChe and MM2 programs showed the "left-handed" conformation of the side chain at C-17.
- Gamalath B., Gunatilaka A. A. L., Schlemper E. O., J. Chem. Soc., Chem. Commun., 1988, 249—250.
- 16) Helianol (1) can be called "3,4-seco-reissanta-4,24-dien-3-ol" when "reissantane" is used for the name of the basic skeleton.
- 17) Baas J. B., Phytochemistry, 24, 1875—1889 (1985).
- 18) "Dictionary of Terpenoids," Vol. 2, ed. by Connolly J. D., Hill R. A., Chapman & Hall, London, 1991, pp. 1119—1415.
- Tanaka R., Matsunaga S., Ishida T., Shingu T., Tetrahedron Lett., 30, 1661—1664 (1989).
- Akihisa T., Shimizu N., Kawaguchi R., Tamura T., Matsumoto T., Yukagaku., 35, 907—917 (1986).