Betonicosides A—D and Betonicolide, Diterpenoids from the Roots of Stachys officinalis

Toshio Miyase,* Ryouko Yamamoto, and Akira Ueno

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422, Japan. Received February 22, 1996; accepted May 11, 1996

Four new diterpene glycosides, betonicosides A—D and a new diterpene, betonicolide, were isolated from the roots of *Stachys officinalis*. The structures of these compounds were established on the basis of spectroscopic and chemical evidence.

Key words Stachys officinalis; betonicoside; betonicolide; diterpene; Labiatae

Previously we worked on the isolation and structural elucidation of phenylethanoid glycosides from the aerial parts of *Stachys officinalis* Trevisan (syn. *Betonica officinalis* L.), 1) oleanane-type triterpene saponins and phenylethanoid glycosides from *S. riederi* Chamisso, 2,3) and iridoid glycosides and phenylethanoid glycoside from *S. sieboldii* Miq. 4) As terpenic constituents of *S. officinalis*, iridoid glycosides 1 and a unique diterpene, betolide (6) have been reported. 6) We investigated the polar constituents of the roots of *S. officinalis* and isolated four new diterpene glycosides, betonicosides A—D (1—4) and a new diterpene, betonicolide (5).

Betonicoside A (1) showed a quasi-molecular ion peak $[M + Na]^+$ at m/z 693 in the FAB-MS, and elemental analysis data was consistent with the formula C₃₂H₄₆O₁₅. The ¹H-NMR spectrum exhibited three singlet methyl proton signals at δ 0.96, 0.98, 1.38 and a pair of oxymethylene proton signals at δ 4.95 and 5.07 as an AB-type quartet $(J=12.5 \,\mathrm{Hz})$, a low field methine proton signal at δ 7.05 as a singlet, and two anomeric proton signals at δ 4.64 (d, $J = 7.5 \,\text{Hz}$) and 4.78 (d, $J = 8 \,\text{Hz}$). The ¹³C-NMR spectrum showed two sets of glucopyranosyl carbon signals at δ 62.6—105.3, an ester carbonyl carbon signal at δ 171.3, six aromatic carbon signals at δ 124.8—155.7 and an acetalic carbon signal at δ 103.1 in addition to twelve upfield sp^3 carbon signals at δ 19.0—55.8. The enzymatic hydrolysis of 1 afforded an aglycone, 1a, while acid hydrolysis afforded D-glucose as a sugar moiety. These data suggested 1 to be a diterpenic diglucoside. In the nuclear Overhauser effect (NOE) difference spectrum, NOE was observed at a methine proton signal (δ 7.05) on irradiation at an anomeric proton signal at δ 4.78, while no NOE was observed at any proton signals other than its own glucosyl proton signals (H-3, H-5). The low field methine proton signal at δ 7.05 was correlated to an acetalic carbon signal at δ 103.1 in the heteronuclear single quantum coherence (HSQC) spectrum. An anomeric proton signal at δ 4.64 was correlated to an aromatic carbon signal at δ 155.7 in the heteronuclear multiple bond coherence (HMBC) spectrum. On acetylation, 1 gave a nonaacetate, 1b, whose ¹H-NMR spectrum exhibited nine aliphatic acetoxyl signals at δ 2.00, 2.02, 2.03, 2.04, 2.04, 2.08, 2.08, 2.10 and 2.15, as well as downfield shifted oxymethylene proton signals at δ 5.36 and 5.57 as an AB-type quartet. On the basis of the above finding, 1 has one phenolic and one aliphatic glycoside. After assigning

all proton signals by the ${}^{1}H^{-1}H$ correlation spectroscopy (COSY) spectrum, ${}^{13}C^{-1}H$ correlation and long-range ${}^{13}C^{-1}H$ correlation led to the structure shown in Chart 1. The structure of the aglycone (1a) was confirmed to be identical to the sodium borohydride reduction product of betolide (6) in ${}^{1}H$ -NMR spectrum and $[\alpha]_{D}$.

Betonicoside B (2) showed a quasi-molecular ion peak $[M+Na]^+$ at m/z 531 in the FAB-MS and led to the molecular formula C₂₆H₃₆O₁₀ in combination with the ¹³C-NMR data and elemental analysis data. The ¹H-NMR spectrum exhibited three singlet methyl proton signals at δ 0.97, 0.99, 1.37, a pair of oxymethylene proton signals at δ 4.94 and 5.08 as an AB-type quartet (J=12 Hz), a low field methine proton signal at δ 6.84 as a singlet and an anomeric proton signal at δ 4.63 (d, J=8 Hz). The ¹³C-NMR spectrum was similar to that of 1 except for lacking a set of glucosyl carbon signals and its upfield shift (-2.8 ppm) of an oxymethine carbon signal at C-15. Acetylation of 2 afforded a hexaacetate 2b, whose ¹H-NMR spectrum suggested that all hydroxyl groups are alcoholic. On enzymatic hydrolysis, 2 afforded an aglycone 1a, while acid hydrolysis afforded D-glucose as a sugar moiety. In the HMBC spectrum of 2, an anomeric proton signal at δ 4.63 was correlated to an aromatic carbon signal at δ 155.4. These data led us to conclude the structure of betonicoside B to be 2.

The ¹H- and ¹³C-NMR spectra of betonicoside C (3) were very similar to those of **2**, suggesting that **3** was composed of **1a** as an aglycone and glucose as a sugar. On acetylation, **3** afforded a hexaacetate, **3b**, which had one aromatic acetoxyl group at δ 2.35. In the ¹H-NMR spectrum of **3**, NOE was observed at a methine proton signal at δ 6.83 (s) on irradiation of an anomeric proton signal at δ 4.79 (d, J=8 Hz). Thus, the structure of betonicoside C was determined to be **3**.

Betonicoside D (4) has the same molecular formula, $C_{26}H_{36}O_{10}$, as 2 and 3 in combination with the ^{13}C -NMR data and elemental analysis data. On enzymatic hydrolysis 4 afforded 1a as an aglycone, while acid hydrolysis afforded D-glucose as a sugar moiety. On acetylation, 4 afforded a hexaacetate, 4b, whose ^{1}H -NMR spectrum showed that 4 had a phenolic hydroxyl group (δ 2.35). Comparison of the NMR data of oxymethylene proton [δ 5.42 (2H, s)] and carbon (δ 62.3) signals at C-17 with those of 3 indicated that glucose was attached to C-17. In the NOE difference spectrum, NOE was observed at an oxy-

^{*} To whom correspondence should be addressed.

August 1996 1611

1

Chart 1

	Rı	R ₂	R3	R4		
1	H_2	Glc	CH ₂ OH	Glc		
1a	H_2	Н	CH ₂ OH	Н		
1b	H_2	Glc (OAc) ₄	CH ₂ OAc	Glc (OAc) ₄		
2	H_2	Gle	CH₂OH	Н		
2b	H_2	Glc (OAc) ₄	CH ₂ OAc	Ac		
3	H_2	H	CH₂OH	Glc		
3b	H_2	Ac	CH ₂ OAc	Glc (OAc) ₄		
4	H_2	Н	CH ₂ O-Glc	Н		
4b	H_2	Ac	CH ₂ O-Glc (O	Ac) ₄ Ac		
5	О	Н	CH ₂ OH	Н		
6	H_2	Н	СНО	Н		

Glc: β -D-glucopyranosyl

Glc(OAc)4: tetra-O-acetyl-β-D-glucopyranosyl

Chart 2

methylene proton signal at δ 5.42 (2H, s) on irradiation at an anomeric proton signal at δ 4.47 (d, J=8 Hz). The HMBC spectrum also supported the structure of 4. The anomeric configurations of the D-glucosyl moiety of compounds 1—4 were determined as β from the J values (7.5—8 Hz) of their proton signals.

Betonicolide (5) showed a quasi-molecular ion peak $[M+Na]^+$ at m/z 383 in the FAB-MS, and elemental analysis data was consistent with the formula $C_{20}H_{24}O_6$. The ¹H-NMR spectrum exhibited three singlet methyl signals at δ 0.98, 1.04 and 1.43, an oxymethylene proton signal at δ 5.06 (2H, s) and a methine proton signal at δ 6.83 (s). The ¹³C-NMR spectrum was similar to that of **1a** except for carbon signals around the ketonic carbonyl carbon (δ 208.7). In the HMBC spectrum, the ketonic carbon signal correlated to the proton signal at δ 1.90 (1H, dd, J=14, 3 Hz) due to H-5. From these data the structure of betonicolide was determined to be **5**.

In the NOE difference spectra of compounds 1, 1a and 2—6, while NOE was observed at the H-1 β signal on irradiation of the H-15 signal, no NOE was observed at the H-15 signal on irradiation of the H₃-20 signal. From these data, H-15 was determined to be α in each compound.

Experimental

General Procedure $\,^{1}$ H- and $\,^{13}$ C-NMR spectra were obtained with a JEOL α -400 FT NMR and the chemical shifts were given in δ ppm with tetramethylsilane as an internal standard. FAB-MS was recorded on a JEOL JMS-SX102 mass spectrometer. Optical rotations were measured with a JASCO DIP-1000 Digital Polarimeter. Gas chromatography (GC) was run on a HITACHI G-3000 gas chromatograph. Preparative, semi-preparative and analytical HPLC were done on a JASCO model 800 instrument.

Extraction and Isolation The dried roots (2 kg) of S. officinalis were extracted twice with hot H₂O. The H₂O extract was passed through a Diaion HP-20 (Mitsubishi Kasei Co., Ltd.) column (9 × 41 cm). After the content of the column was washed with H2O, the adsorbed materials were eluted with MeOH-H2O (6:4) and MeOH, successively. The MeOH-H₂O (6:4) eluate (28 g) was chromatographed on a silica gel (600 g) column using CHCl₃-EtOAc-MeOH-H₂O [(35:25:35:5) \rightarrow (30:30:35:5)] to give 16 fractions (frs. 1—16). From fr. 6, compound 1 was isolated by preparative HPLC [Develosil Lop-ODS $5 \times 50 \text{ cm} \times 2$, CH₃CN-H₂O (25:75)]. The MeOH eluate (7 g) was chromatographed on silica gel (300 g) using CHCl₃-MeOH [(90:10)→(70:30)] to give 18 fractions (frs. 17-34). From fr. 18, compound 5 was isolated by preparative HPLC [Develosil Lop-ODS 5×50 cm×2, CH₃CN-H₂O (45:55)]. From frs. 22—24, compounds 2—4 were isolated by preparative HPLC [Develosil Lop-ODS $5 \times 50 \text{ cm} \times 2$, CH₃CN-H₂O (35:65)]. Yield: **1** (0.03%), **2** (0.0025%), **3** (0.0064%), **4** (0.0012%), $\tilde{\mathbf{5}}$ (0.0010%).

Betonicoside A (1) An amorphous powder, $[\alpha]_D^{21} + 88.6^{\circ}$ (c = 1.23, MeOH). *Anal.* Calcd for $C_{32}H_{46}O_{15} \cdot 3/2H_2O$: C, 55.09; H, 7.08. Found: C, 54.86; H, 7.23. FAB-MS m/z: 693 [M+Na]⁺. ¹H- and ¹³C-NMR: Tables 1 and 2.

Betonicoside B (2) An amorphous powder, $[\alpha]_D^{21} + 78.5^{\circ}$ (c = 1.14, MeOH). *Anal.* Calcd for $C_{26}H_{36}O_{10} \cdot H_2O$: C, 59.30; H, 7.27. Found: C, 59.32; H, 7.31. FAB-MS m/z: 531 [M+Na]⁺. ¹H- and ¹³C-NMR: Tables 1 and 2.

Betonicoside C (3) An amorphous powder, $[\alpha]_D^{21} + 122.7^\circ$ (c = 1.28, MeOH). *Anal.* Calcd for $C_{26}H_{36}O_{10} \cdot 1/2H_2O$: C, 60.34; H, 7.21. Found: C, 60.29; H, 7.30. FAB-MS m/z: 531 $[M+Na]^+$. ¹H- and ¹³C-NMR: Tables 1 and 2.

Betonicoside D (4) An amorphous powder, $[\alpha]_D^{20} + 73.0^{\circ}$ (c = 1.00, MeOH). Anal. Calcd for $C_{26}H_{36}O_{10} \cdot H_2O$: C, 59.30; H, 7.27. Found: C, 59.11; H, 7.41. FAB-MS m/z: 531 [M+Na]⁺. ¹H- and ¹³C-NMR:

Betonicolide (5) An amorphous powder, $[\alpha]_D^{20} + 159.4^{\circ}$ (c = 1.60, MeOH). *Anal.* Calcd for $C_{20}H_{24}O_6$: C, 66.65; H, 6.71. Found: C, 66.54;

1612 Vol. 44, No. 8

Table 1. ¹H-NMR Data of Compounds 1—5 in CD₃OD

	1	2	3	4	5
Aglycone	moiety				
1α	1.43°)				
1β	2.86 (br d, 12)	2.83 (br d, 11.5)	2.83 (br d, 11.5)	2.79 (br d, 11.5)	2.90 (br d, 14)
2α	1.62 (m)	1.64 (m)	1.59 (m)		1.70 (m)
2β	1.81 ^{a)}	1.80^{a}	1.72 (m)		1.82 (dt, 13, 2)
3α	1.25^{a}				1.32 (dt, 13, 2)
3β	1.47 (m)	1.49 (m)	1.46 (m)	1.46 (m)	1.53 ^{a)}
5α	1.21 (dd, 13, 3)	1.26^{a}	1.22^{a}	1.27 ^{a)}	1.90 (dd, 14, 3)
6α	1.96 (m)	1.99 (m)	1.96 (m)		2.81 (dd, 19, 3)
6β	1.80^{a_0}				2.92 (dd, 19, 14)
7α	3.16 (m)	3.13 ^{a)}	2.92 (dd, 19, 7)	2.97 (dd, 19, 7)	
7β	3.16 (m)	$3.13^{a)}$	2.71 (m)	2.74 (m)	
15α	7.05 (s)	6.84 (s)	6.83 (s)	6.71 (s)	6.83 (s)
17	4.95 (d, 12.5)	4.94 (d, 12)	5.26 (d, 12)	5.42 (s)	5.06 (s)
17	5.07 (d, 12.5)	5.08 (d, 12)	5.32 (d, 12)	5.42 (s)	5.06 (s)
18	0.96 (s)	0.99 (s)	0.97 (s)	0.97 (s)	0.98 (s)
19	0.98 (s)	0.97 (s)	0.96 (s)	0.96 (s)	1.04 (s)
20	1.38 (s)	1.37 (s)	1.35 (s)	1.37 (s)	1.43 (s)
Glucose r	noiety				
	(at C-14)	(at C-14)	(at C-15)	(at C-17)	
1	4.64 (d, 7.5)	4.63 (d, 8)	4.79 (d, 8)	4.47 (d, 8)	
2	3.55 (dd, 9, 7.5)	3.55 (dd, 8.5, 8)	$3.37^{a)}$	3.22 (dd, 8.5, 8)	
3	3.45 (dd, 9, 9)	3.44 (dd, 9.5, 8.5)	$3.39^{a)}$	$3.35^{a)}$	
4	$3.35^{a)}$	3.34 (dd, 9.5, 9.5)	$3.42^{a)}$	$3.33^{a)}$	
5	3.20 ^{a)}	3.16 ^{a)}	$3.36^{a)}$	$3.33^{a)}$	
6	3.63 (dd, 12, 6.5)	3.63 (dd, 12, 6.5)	3.71 (dd, 12.5, 4.5)	3.71 (dd, 11.5, 4)	
6	3.78 (dd, 12, 2.5)	3.77 (dd, 12, 2)	3.86 (dd, 12.5, 1.5)	3.86 (dd, 11.5, 1.5)	
	(at C-15)				
1	4.78 (d, 8)				
	$3.35^{a)}$				
2 3	$3.40^{a)}$				
4	$3.33^{a)}$				
5	$3.37^{a)}$				
6	3.68 (dd, 11.5, 5)				
6	3.81 (dd, 11.5, 2)				

a) Overlapped with other signals. Assignments are based on ¹H⁻¹H COSY and/or spin decoupling, HSQC and HMBC spectra, and J values in parentheses are expressed in Hz.

Table 2. ¹³C-NMR Data of Compounds 1—5 in CD₃OD

C No.	1	2	3	4	5	C No.	1	2	3	4	5
Aglycone	moiety	***************************************				Glucose	moiety				
1	38.0	38.0	37.5	37.3	37.2		(at C-14)	(at C-14)	(at C-15)	(at C-17)	
2	20.0	20.0	20.0	20.0	19.7	1	105.3	105.3	104.1	103.9	
3	42.5	42.4	42.5	42.4	41.7	2	75.7	75.7	75.2	75.0	
4	34.7	34.7	34.6	34.6	34.5	3	77.9	77.9	78.6	78.1	
5	50.6	50.6	51.3	51.2	49.9	4	71.9	71.9	71.0	71.5	
6	19.0	19.1	18.9	19.0	37.2	5	78.0	78.0	78.6	78.2	
7	26.8	27.1	26.7	27.1	208.7	6	62.9	63.0	62.6	63.0	
8	140.9	142.8	134.5	134.1	120.0		(at C-15)				
9	150.8	150.1	149.4	149.7	155.2	1	103.6				
10	41.7	41.6	41.1	41.3	42.5	2	75.1				
11	140.8	140.7	133.8	137.3	133.6	3	78.5				
12	124.8	125.2	122.5	123.4	132.1	4	71.1				
13	133.0	132.9	121.2	119.1	128.3	5	78.5				
14	155.7	155.4	158.3	157.6	164.5	6	62.6				
15	103.1	100.3	103.5	99.4	99.7						
16	171.3	171.8	171.1	171.3	169.8						
17	55.8	56.1	59.0	62.3	52.9						
18	33.9	33.9	34.0	34.0	33.1						
19	22.2	22.2	22.2	22.2	21.8						
20	22.2	22.7	22.7	22.7	19.7						

Assignments are based on HSQC and HMBC spectra.

H, 6.81. FAB-MS m/z: 383 [M+Na]⁺. ¹H- and ¹³C-NMR: Tables 1 and 2

Enzymatic Hydrolysis of 1—4 1 (10 mg) was hydrolyzed with cellulase (Sigma, C-0901, from *Penicillium funiculosum*) (20 mg) in an acetate buffer (pH 4.5, 2 ml) at 40 °C for 2 d. The reaction mixture was diluted with H₂O and extracted with EtOAc twice. The concentrated EtOAc extract was subjected to semi-preparative HPLC [YMC ODS A-323 1 × 25 cm, CH₃CN-H₂O (52.5:47.5), UV 205 nm] to give an aglycone 1a (1 mg) as an colorless powder, $[\alpha]_D^{23} + 70.0^\circ$ (c = 0.10, MeOH). ¹H-NMR (CDCl₃): δ 0.96, 0.98, 1.34 (each 3H, s, Me), 5.43 (1H, d, J = 14 Hz, H-17), 5.56 (1H, d, J = 14 Hz, H-17), 6.75 (1H, s, H-15). This aglycone was identical to the NaBH₄ reductant of betolide (6). 2—4 (each 1 mg) were hydrolyzed in the same manner as 1 to give an aglycone 1a, which was confirmed by HPLC [YMC R-ODS-7, 4.6 mm × 25 cm, CH₃CN-H₂O (55:45), 1.0 ml/min, UV 220 nm, t_R 13.5 min].

Acid Hydrolysis of $1-4^{7)}$ A solution of each glycoside (1 mg) in 5% $\rm H_2SO_4$ aq. (3 drops) and dioxane (3 drops) was heated in a boiling water bath for 2 h. The reaction mixture was diluted with $\rm H_2O$ and extracted with EtOAc three times. The $\rm H_2O$ layer was passed through an Amberlite IRA-60E column. The eluate was concentrated. The residue was dissolved in $\rm H_2O$ (0.03 ml). After the addition of D-cysteine (0.05 mg) and pyridine (0.015 ml), the mixture was warmed at 60 °C for 1 h. The solvent was blown off under an air stream. After dryness, the residue was trimethylsilylated and checked by GC to be identical to authentic D-glucose. The GC conditions: column, Supelco capillary column SPBTM-1, 0.25 mm × 27 m; column temperature, 230 °C; carrier gas, $\rm N_2$; t_R , L-glucose (16.1 min), D-glucose (16.5 min). From 1—4, D-glucose was detected.

Acetylation of 1—4 1 (50 mg) was acetylated with acetic anhydride (0.5 ml) and pyridine (0.5 ml) at room temperature overnight. The usual workup afforded nonaacetate 1b (50 mg) as a colorless powder. From 2 (2 mg), 3 (7 mg) and 4 (2 mg), 2b (2 mg), 3b (7 mg) and 4b (2 mg) were obtained in the same manner as 1, respectively. 1b: 1 H-NMR (CDCl₃): δ 0.94, 0.96, 1.27 (each 3H, s, Me), 2.00, 2.02, 2.03, 2.04, 2.04, 2.08, 2.08, 2.10, 2.15 (each 3H, s, OAc), 4.87 (1H, d, J=8 Hz, anomeric H), 5.36

(1H, d, J=12 Hz, H-17), 5.57 (1H, d, J=12 Hz, H-17), 6.80 (1H, s, H-15). **2b**: ¹H-NMR (CDCl₃): δ 0.94, 0.96, 1.20 (each 3H, s, Me), 2.03, 2.04, 2.06, 2.08, 2.14, 2.17 (each 3H, s, OAc), 4.90 (1H, d, J=8 Hz, anomeric H), 5.24 (1H, d, J=12 Hz, H-17), 5.61 (1H, d, J=12 Hz, H-17), 7.57 (1H, s, H-15). **3b**: ¹H-NMR (CDCl₃): δ 0.93, 0.93, 1.21 (each 3H, s, Me), 2.00, 2.01, 2.01, 2.07, 2.09, 2.35 (each 3H, s, OAc), 5.19 (1H, d, J=8 Hz, anomeric H), 5.49 (1H, d, J=12 Hz, H-17), 5.51 (1H, d, J=12 Hz, H-17), 6.81 (1H, s, H-15). **4b**: ¹H-NMR (CDCl₃): δ 0.93, 0.95, 1.29 (each 3H, s, Me), 1.97, 1.98, 2.02, 2.08, 2.20, 2.35 (each 3H, s, OAc), 4.64 (1H, d, J=8 Hz, anomeric H), 4.88 (1H, br d, J=12 Hz, H-17), 5.32 (1H, d, J=12 Hz, H-17), 7.58 (1H, s, H-15).

NaBH₄ Reduction of Betolide (6) Betolide (6) (20 mg), isolated from the MeOH extract of the roots of S. officinalis, was reduced with NaBH₄ (40 mg) in MeOH (2 ml) at room temperature overnight. The reaction mixture was diluted with H₂O and extracted with ether three times. The ether extract was subjected to preparative TLC [Silicagel PF₂₅₄, CHCl₃–MeOH (97:3)] to give 1a (12 mg) as a colorless powder. The 1 H-NMR data and $[\alpha]_D$ were identical to those of the aglycone 1a.

Acknowledgement We thank the staff of the Analytical Laboratory of this university for elemental analysis and measurement of MS.

References and Notes

- 1) Miyase T., Yamamoto R., Ueno A., Phytochemistry, "in press."
- Yamamoto R., Miyase T., Ueno A., Chem. Pharm. Bull., 42, 1291—1296 (1994).
- 3) Ikeda T., Miyase T., Ueno A., Natl. Med., 48, 32-38 (1994).
- Miyase T., Ueno A., Kitani T., Kobayashi H., Kawahara U., Yamahara J., Yakugaku Zasshi, 110, 652—657 (1990).
- 5) Jeker M., Sticher O., Helv. Chim. Acta, 72, 1787—1791 (1989).
- Tkachev V. V., Nikonov G. K., Atovmyan L. O., Kobzar A. Y., Zinchenko T. V., Khim. Prir. Soedin., 1987, 811—817.
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 34, 1843— 1845 (1986).