Structures of New Dinor-eremophilane Derivatives and New Eremophilenolides from the Rhizomes of *Petasites japonicus* MAXIM.¹⁾

Yasunori Yaoita and Masao Kikuchi*

Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai 981, Japan. Received March 18, 1996; accepted May 18, 1996

Four new dinor-eremophilane derivatives with a rare skeleton, eremopetasinorone A (1), eremopetasinorone B (2), eremopetasinorol (3) and epoxyeremopetasinorol (4), and three new eremophilenolides, eremosulphoxinolide A (5), eremosulphoxinolide B (6) and 3β ,8 α -dihydroxy-6 β -methoxyeremophil-7(11)-en-12,8 β -olide (7), have been isolated from the dried rhizomes of *Petasites japonicus* Maxim. (Compositae) with 2β -hydroxyeremophil-7(11)-en-12,8 α -olide (8), a known synthetic compound. The structures of these compounds were elucidated on the basis of spectral data and chemical transformation.

Key words Petasites japonicus; Compositae; dinor-eremophilane derivative; eremophilenolide

The rhizomes of Petasites japonicus MAXIM. (fuki in Japanese, Compositae) have been used for the treatment of tonsillitis, contusions and poisonous-snake bite in China.²⁾ In previous papers, we reported the structural elucidation of seco-eremophilane derivatives, 1) eremophilenolides,³⁾ nor-eremophilane derivative,⁴⁾ triterpenoids,⁵⁾ anthraquinones⁵⁾ and phenolic compounds⁶⁾ from the plant. Here, we report the isolation and structural elucidation of four new dinor-eremophilane derivatives with a rare skeleton, eremopetasinorone A (1), eremopetasinorone B (2), eremopetasinorol (3) and epoxyeremopetasinorol (4), and three new eremophilenolides, eremosulphoxinolide A (5), eremosulphoxinolide B (6) and $3\beta.8\alpha$ -dihydroxy- 6β -methoxyeremophil-7(11)-en- 12.8β olide (7), as well as 2β -hydroxyeremophil-7(11)-en-12,8 α olide (8), a known synthetic compound. Extraction and isolation were carried out as described in the Experimental section.

Compound 1 was isolated as a colorless oil, $[\alpha]_D$ – 118.0°. The molecular formula was determined to be $C_{13}H_{18}O_2$ by high-resolution (HR)-MS. The IR spectrum suggested the presence of a six-membered ring ke-

tone (1712 cm⁻¹) and an α,β -unsaturated ketone (1666, 1625 cm⁻¹). The UV spectrum also suggested the presence of an α,β -unsaturated ketone (λ_{max} : 235 nm). The ¹H- (Table 1) and ¹³C-NMR (Table 2) spectra showed signals due to a tertiary methyl group [$\delta_{\rm H}$ 0.67 (s, H-13), $\delta_{\rm C}$ 22.1 (C-13)], a secondary methyl group [$\delta_{\rm H}$ 0.96 (d, $J=6.6\,\mathrm{Hz},\;\mathrm{H}\text{-}12),\;\delta_\mathrm{C}\;8.8\;\mathrm{(C}\text{-}12)],\;\mathrm{a}\;\mathrm{methine}\;[\delta_\mathrm{H}\;1.52\;\mathrm{(m,}$ H-9), $\delta_{\rm C}$ 44.5 (C-9)], an acetyl group [$\delta_{\rm H}$ 1.97 (s, H-11), $\delta_{\rm C}$ 26.2 (C-11), 195.4 (C-10)], a secondary methyl-bearing methine [$\delta_{\rm H}$ 2.09 (q, J=6.6 Hz, H-4), $\delta_{\rm C}$ 47.7 (C-4)], a methylene [$\delta_{\rm H}$ 2.28 (ddd, J = 16.9, 5.5, 1.8 Hz, H-8 α), 2.80 (ddd, J = 16.9, 8.8, 1.8 Hz, H-8 β), $\delta_{\rm C}$ 37.2 (C-8)], a trisubstituted double bond [δ_H 5.99 (dd, J=1.8, 1.8 Hz, H-6), $\delta_{\rm C}$ 147.7 (C-6), 142.8 (C-7)] and a carbonyl group $[\delta_{\rm C} \ 210.4 \ (\text{C-3})]$. These spectral data and molecular formula suggested that compound 1 is a dinor-sesquiterpene derivative. By ¹H-¹H shift correlation spectroscopy (1H-1H COSY) and the 1H-detected heteronuclear multiple bond correlation (HMBC) spectra, the planar structure of 1 was deduced to be as shown in Fig. 1. The relative stereostructure was determined by the nuclear Overhauser effect (NOE) difference spectra, in which

Chart 1

Table 1. ¹H-NMR Chemical Shifts of Compounds 1—8 (400 MHz)

Proton	1 a)	2"	3 ^{a)}	4 ^{a)}	5 ^{b)}	6 ^{b)}	7°)	86)
1							α 2.18 m	
2							β 1.75 m α 1.68 m β 1.52 m	3.83 m
3			3.35 ddd (2.9, 2.9, 2.9)	$3.15 \text{br s}^{d,g)}$	5.146 ddd (11.7, 4.8, 4.8)	5.146 ddd (11.4, 4.4, 4.4)	4.02 br d (11.7)	α 1.76 dd (11.4, 4.8) β 1.27 ddd (12.8, 12.8, 11.4
4	2.09 q (6.6)	2.03 q (6.6)	1.11 qd (7.0, 2.9)	0.85 qd (7.0, 2.6)	$2.239 \mathrm{m}^{e)}$	$2.234\mathrm{m}^{f)}$	2.36 m	(12.0, 12.0, 11.4
6	5.99 dd (1.8, 1.8)	5.96 dd (1.8, 1.8)	6.26 d (2.2)	$3.15 \mathrm{br}\mathrm{s}^{d,g)}$	6.187 br s	6.185 br s	4.47 br s	α 2.90 d (14.3) β 1.92 br d (14.3)
8	α 2.28 ddd (16.9, 5.5, 1.8) β 2.80 ddd (16.9, 8.8, 1.8)	β 2.79 ddd	α 2.37 ddd (16.1, 9.5, 2.2) β 2.60 dd (16.1, 6.6)	α 1.76 dd (13.9, 7.6) β 2.30 dd (13.9, 11.4)	4.923 m	4.913 m		4.60 m
9	1.52 m	1.87 m	1.87 m	1.65 m	$\alpha \ 2.239 \mathrm{m}^{e)}$ $\beta \ 1.611 \mathrm{m}$	$\alpha \ 2.234 \mathrm{m}^{f}$) $\beta \ 1.610 \mathrm{m}$		β 2.23 ddd (12.8, 6.6, 3.7)
11 12	1.97 s 0.96 d (6.6)	1.85 s 1.02 d (6.6)	2.01 s 0.87 d (7.0)	1.83 s 0.77 d (7.0)	p	p 1.010 iii		(12.0, 0.0, 3.7)
13	0.67 s	0.84 s	1.18 s	1.26 s	1.802 dd (1.8, 1.8)	1.802 dd (1.8, 1.8)	1.95 br s	1.81 dd (1.5, 1.5)
14					0.986 d (7.3)	0.992 d (5.9)	0.93 d (7.3)	0.86 d (7.0)
15					0.984 s	0.984 s	0.81 s	1.07 s
3′					6.260 qq (7.3, 1.5)	6.260 qq (7.3, 1.5)		
4′					2.067 dq (7.3, 1.5)	2.067 dq (7.3, 1.5)		
5′					1.998 dq (1.5, 1.5)	1.998 dq (1.5, 1.5)		
2"					6.659 d (15.0)	6.651 d (15.0)		
3"					7.600 d (15.0)	7.591 d (15.0)		
4″ OCH ₃					2.703 s	2.711 s	2.47 a	
OCH ₃							3.47 s	

Coupling constants (J in Hz) are given in parentheses. a) Measurement in C_6D_6 . b) Measurement in CDCl₃. c) Measurement in CDCl₃ with small amounts of CD₃OD. d—f) Signals were overlapped. g) H-3 and H-6 appeared at δ 3.76 (br s) and δ 3.45 (s), respectively, in CDCl₃.

Table 2. ¹³C-NMR Chemical Shifts of Compounds 1—8 (100 MHz)

							0 (100 11112)	
Carbon	1 a)	2 ^{a)}	3 ^{a)}	4 ^{a)}	5 ^{b)}	6 ^{b)}	7 ^{c)}	8 ^{b)}
I	26.6	25.3	19.7	16.8	26.72	26.70	27.1	35.8
2	37.7	35.0	28.9	28.7	25.13	25.14	28.7	66.0
3	210.4	210.7	70.6	70.7	72.57	72.56	68.7	40.0
4	47.7	49.6	39.8	35.9	35.64	35.64	38.1	29.5
5	53.4	54.3	50.1	42.8	45.46	45.45	47.3	39.2
6	147.7	144.9	153.5	70.1	70.78	70.77	79.6	35.6
7	142.8	144.4	143.6	68.4	158.04	158.01	159.4	160.4
8	37.2	36.6	34.0	28.3	77.22	77.20	104.5	80.0
9	44.5	42.0	45.1	38.3	34.24	34.22	38.9	35.9
10	195.4	195.0	195.9	204.7	35.12	35.11	35.1	41.0
11	26.2	26.1	26.0	24.5	122.46	122.45	123.8	121.0
12	8.8	9.4	13.3	13.7	174.00	173.97	172.4	174.7
13	22.1	27.2	21.4	18.0	8.20	8.19	8.2	8.3
14					8.36	8.36	7.6	15.9
15					20.32	20.31	18.9	21.7
1'					166.54	166.50		
2′					126.56	126.54		
3′					141.31	141.31		
4′					15.99	15.98		
5'					20.61	20.60		
1''					162.75	162.67		
2''					126.15	126.22		
3''					150.90	150.77		
4′′					39.74	39.70		
OCH,							59.5	

a) Measurement in C_0D_6 . b) Measurement in CDCl₃. c) Measurement in CDCl₃ with small amounts of CD₃OD.

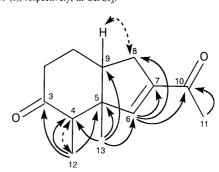


Fig. 1. ${}^{1}H^{-1}H$ COSY (\longleftarrow) and HMBC (\longrightarrow) Connections for Compound 1

NOEs were detected between H-13 and H-6; H-13 and H-9; H-13 and H-12; and H-12 and H-6 (Fig. 2). The absolute stereostructure was determined by a circular dichroism (CD) spectrum. The CD spectrum of 1 showed a negative Cotton effect by a C-3 carbonyl group at 290.5 nm. The application of the octant rule⁷⁾ to 1 suggests that the expected sign of the Cotton effect should be negative (Fig. 3). On the basis of the above data, the structure of eremopetasinorone A (1) was determined to be as shown in Chart 1.

Compound 2 was isolated as a colorless oil, $[\alpha]_D + 8.8^\circ$. The molecular formula was determined to be $C_{13}H_{18}O_2$ by HR-MS. The IR spectrum suggested the presence of a six-membered ring ketone (1710 cm⁻¹) and an α,β -

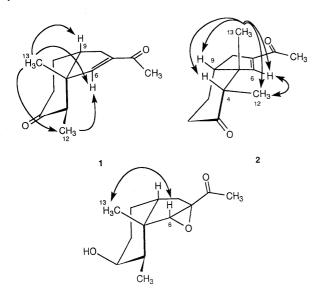


Fig. 2. NOEs Detected for Compounds 1, 2 and 4

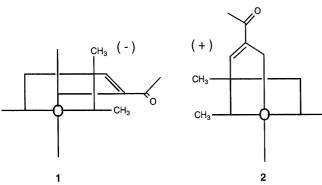


Fig. 3. Back Octant for Compounds 1 and 2

unsaturated ketone (1666, 1626 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 2 were similar to those of 1. A ¹H-¹H COSY correlation was observed between H-8 and H-9. HMBC correlations were observed between H-6 and C-5, C-8 and C-9; H-11 and C-10; H-12 and C-3, C-4 and C-5; and H-13 and C-4, C-5, C-6 and C-9. These data suggested that the planar structure of 2 was identical with that of 1. The relative stereostructure was determined by NOE difference spectra, in which NOEs were detected between H-6 and H-12; H-12 and H-6; H-13 and H-4; H-13 and H-6; H-13 and H-9; and H-13 and H-12 (Fig. 2). The absolute stereostructure was determined by CD spectrum, in which a positive Cotton effect by the C-3 carbonyl group was shown at 292.5 nm. Application of the octant rule⁷⁾ to 2 suggested that the expected sign of the Cotton effect should be positive (Fig. 3). From the above data, the structure of eremopetasinorone B (2) was determined to be as shown in Chart 1.

Compound 3 was isolated as a colorless oil, $[\alpha]_D - 28.4^\circ$. The molecular formula was determined to be $C_{13}H_{20}O_2$ by HR-MS. The IR spectrum suggested the presence of a hydroxyl group (3616, 3485 cm⁻¹) and an α,β -unsaturated ketone (1658, 1606 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 3 were similar to those of 1, except that the C-3 carbonyl group in 1 was replaced by a hydroxyl group $[\delta_H 3.35]$ (ddd, J=2.9, 2.9, 2.9 Hz, H-3), δ_C 70.6 (C-3)] in 3. The position of this hydroxyl group was determined to be C-3

by $^{1}H^{-1}H$ COSY spectrum. The $^{1}H^{-1}H$ COSY spectrum gave a cross peak between H-8 and H-9. The relative stereostructure was determined by the NOE difference spectra, in which NOEs were detected between H-13 and H-6; H-13 and H-9; H-13 and H-12; H-12 and H-3; and H-12 and H-6. The coupling patterns and constants for H-3 [$\delta_{\rm H}$ 3.35, ddd, J=2.9, 2.9, 2.9 Hz] suggested that the hydroxyl group at C-3 is a β -configuration. Treatment of 3 with pyridinium chlorochromate (PCC)–Al $_{\rm 2}$ O $_{\rm 3}$ in n-hexane gave a ketone which was completely identical with 1 in all respects. From the above data, the absolute structure of eremopetasinorol was determined to be 3.

Compound 4 was isolated as a colorless oil, $[\alpha]_D - 10.5^\circ$. The molecular formula was determined to be $C_{13}H_{20}O_3$ by HR-MS. The IR spectrum suggested the presence of a hydroxyl group (3630, 3503 cm⁻¹), a carbonyl group $(1703 \,\mathrm{cm}^{-1})$ and an epoxide $(917, 839 \,\mathrm{cm}^{-1})$. The ¹H- and ¹³C-NMR spectra of 4 were closely related to those of 3 except that the 6,7-double bond of 3 was replaced by a 6,7-epoxy functionality. The HMBC spectrum of 4 supported this structure. The relative configuration of the epoxide was determined to be α from the NOE correlation spectroscopy (NOESY) spectrum, in which a cross-peak was seen between H-6 β and H-13 (Fig. 2). Treatment of 3 with hydrogen peroxide and NaOH in MeOH gave an epoxide which was completely identical with 4 in all respects. From the above data, the absolute structure of epoxyeremopetasinorol was determined to be 4. Compounds 1—4 are the first dinor-eremophilane derivatives isolated from the genus Petasites plants. Naturally occurring dinor-eremophilane derivatives of this class are rare. 2-Acetyl-5 β -angeloyloxy-3a, β -methyl-3a,4,5,6,7,7ahexahydroinden- 4β -carboxylic acid (9)^{8a)} and 2-acetyl- $3a,\beta$ -methyl-3a,4,5,6,7,7a-hexahydroinden- 4β -carboxylic acid methyl ester $(10)^{8b}$ are the only other known members of this class. Compounds 2 and 4 are the first dinoreremophilane derivatives of this class, with a 4α-methyl group and C₆-C₇ epoxide isolated from natural sources, respectively. A possible mechanism for the formation of 1—4 is shown in Fig. 4.8a) Compounds 1—4 are presumably formed from eremopetasidione (11), which was isolated from the rhizomes of *Petasites japonicus*.⁴⁾

Compound 5 was isolated as pale yellow oil, $[\alpha]_D$ -13.2° . The molecular formula was determined to be C₂₄H₃₂O₇S by HR-MS. The IR spectrum suggested the presence of an α,β -unsaturated- γ -lactone (1751 cm⁻¹), an α,β -unsaturated ester (1719, 1648, 1623 cm⁻¹) and a sulphoxide (1041 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 5, obtained with the aid of ¹H-¹H COSY, ¹H-detected heteronuclear multiple quantum coherence (HMQC) and HMBC spectra, were virtually identical to those of 3β , 6β -diangeloyloxyeremophil-7(11)-en-12, 8β -olide^{3a)} except for the presence of an (E)-3-methylsulphinylacryloyloxyl group $[\delta_{\rm H} \ 6.659 \ (d, J=15.0 \, {\rm Hz}, \ {\rm H}\text{-}2''), \ 7.600 \ (d, J=15.0 \, {\rm Hz}, \ {\rm H}\text{-}2'')]$ J=15.0 Hz, H-3"), 2.703 (s, H-4"), $\delta_{\rm C}$ 162.75 (C-1"), 126.15 (C-2"), 150.90 (C-3"), 39.74 (C-4")]⁹⁾ in place of a C-3 β angeloyloxyl group. The stereochemistry of 5 was determined on the basis of a procedure outlined by Naya et al., 10) that is, homoallylic coupling (J=1.0-1.8 Hz)between the olefinic methyl group (H-13) and H-6α found in eremophil-7(11)-en-12,8 β -olide derivatives, which had

1734 Vol. 44, No. 9

HO HO HO
$$\stackrel{\text{COOH}}{\longrightarrow}$$
 0 $\stackrel{\text{-H}_2O}{\longrightarrow}$ 1 - 4

Fig. 4. Possible Formation of Compounds 1—4

Fig. 5. NOEs Detected for Compounds 5 and 7

a non-steroidal conformation, while this long-range coupling was absent in eremophil-7(11)-en-12,8α-olide derivatives, which had a steroidal conformation. The sign of the specific rotation of eremophil-7(11)-en-12,8 β -olide derivatives was negative, and that of eremophil-7(11)-en-12,8α-olide derivatives was positive. The ¹H-NMR spectrum of 5 showed homoallylic coupling ($J = 1.8 \,\mathrm{Hz}$) of the olefinic methyl group (H-13) with H-6α. In the NOESY spectrum. NOE was seen between H-3 α and H-6 α . The sign of the specific rotation of 5 was negative. These data indicated that 5 is an eremophil-7(11)-en-12,8 β -olide derivative which has a non-steroidal conformation (Fig. 5). The configuration of the acyl groups at C-3 and C-6 were shown to be β , respectively, by the NOESY spectrum, giving a cross-peak between H-3 α and H-6 α (Fig. 5). Compound 5 has UV absorption at 270 nm (shoulder), which corresponds to an (E)-3-methylsulphinylacryloyloxyl moiety. The CD spectrum of 5 showed a positive Cotton effect at 273.5 nm ($\Delta \varepsilon = +1.29$), indicating that the absolute configuration of sulphoxide group should be $R^{(11)}$ Based on this evidence, the structure of eremosulphoxinolide A (5) was determined to be as shown in Chart 1.

Compound **6** was isolated as pale yellow oil, $[\alpha]_D$ –77.6°. The molecular formula was determined to be $C_{24}H_{32}O_7S$ by HR-MS. The IR spectrum suggested the presence of an α,β -unsaturated- γ -lactone (1751 cm⁻¹), an α,β -unsaturated ester (1720, 1644, 1623 cm⁻¹) and a sulphoxide (1041 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **6**, obtained with the aid of ¹H-¹H, ¹³C-¹H COSY and HMBC spectra, resembled the data of **5**, except for the chemical shift differences of the C-3 $\beta(E)$ -3-methylsulphinylacryloyloxyl moiety. The CD spectrum of **6** showed a negative Cotton effect at 279.5 nm ($\Delta \varepsilon = -2.09$), indicating

that the absolute configuration of a sulphoxide group should be S. From the above data, the structure of eremosulphoxinolide B(6) was determined to be the epimer of S at the sulphur atom. Compounds S and S are the first eremophilenolide derivatives with an (E)-3-methylsulphinylacryloyloxyl group isolated from natural sources, respectively.

Compound 7 was isolated as an amorphous powder, $[\alpha]_D - 164.8^\circ$. The molecular formula was determined to be C₁₆H₂₄O₅ by HR-MS. The IR spectrum suggested the presence of a hydroxyl group (3529, 3233 cm⁻¹) and an α,β -unsaturated- γ -lactone (1727, 1683 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 7 were virtually identical to those of 3β -hydroxy- 6β -methoxyeremophil-7(11)-en- $12,8\beta$ -olide (12), 3b) except that 7 contained one more hydroxyl group. The ¹³C-NMR spectrum of 7 showed a signal due to a hemi-ketal carbon [$\delta_{\rm C}$ 104.5 (C-8)], suggesting that the hydroxyl group was attached to C-8.31 The NOESY spectrum gave cross-peaks between H-1α and H-6α, and between H-3 α and H-6 α . A Dreiding model showed that an 8α-hydroxyl group was the only possible structure which could account for this NOE (Fig. 5). On the basis of this evidence, the structure of 7 was determined to be 3β , 8α -dihydroxy- 6β -methoxyeremophil-7(11)-en-12, 8β -

Compound **8** was isolated as a colorless oil, $[\alpha]_D$ + 106.6°. The molecular formula was determined to be $C_{15}H_{22}O_3$ by HR-MS. The IR spectrum suggested the presence of a hydroxyl group (3606, 3475 cm⁻¹) and an α,β -unsaturated- γ -lactone (1746, 1688 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **8**, obtained with the aid of ¹H-¹H, ¹³C-¹H COSY and HMBC spectra, were in accord with those of 2β -hydroxyeremophil-7(11)-en-12,8 α -olide. ¹²⁾

Thus, compound **8** was as shown in Chart 1. Compound **8** was isolated from a natural source for the first time, although **8** has already been synthesized by Kitahara *et al.*¹²⁾

Experimental

General Procedures Optical rotations were determined using a JASCO DIP-360 digital polarimeter. CD spectra were performed on a JASCO J-720 spectropolarimeter. IR spectra were recorded with a Perkin-Elmer FT-IR 1725X infrared spectrophotometer and UV spectra with a Beckman DU-64 spectrophotometer. $^1\mathrm{H}$ - and $^{13}\mathrm{C}$ -NMR spectra were recorded with a JEOL JNM-GSX 400 (400 and 100 MHz, respectively) spectrometer. Chemical shifts were given on a δ (ppm) scale with tetramethylsilane as an internal standard (s, singlet; br s, broad singlet; d, doublet; br d, broad doublet; dd, double doublet; ddd, double doublet doublet; dq, double quartet; q, quartet; qd, quartet doublet; qq, quartet quartet; m, multiplet). The EI-MS and HR-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried out on Kieselgel 60 (Merck; 230—400 mesh). Preparative HPLC was carried out on a Tosoh HPLC system (pump, CCPD; detector, UV-8011 or RI-8010) using a TSK gel ODS-120T column (Tosoh).

Plant Material Dried and chopped rhizomes of *Petasites japonicus* were purchased from Tochimoto Tenkaido Co., Ltd. in 1990.

Extraction and Isolation The dried rhizomes of Petasites japonicus (3.0 kg) were extracted three times with MeOH at room temperature for 2 weeks. The MeOH extract was concentrated under reduced pressure and the residue was suspended in a small excess of water. This suspension was extracted with CHCl₃, Et₂O, AcOEt and n-BuOH, successively. The CHCl₃-soluble fraction was concentrated under reduced pressure to afford a residue (112.5 g). This residue (60.0 g) was chromatographed on a silica-gel column using benzene-AcOEt (9:1, 8:2, 7:3) and CHCl3-MeOH (8:2), to afford 4 fractions (frs. 1-4). Fraction 4 was rechromatographed on a silica-gel column using benzene-AcOEt (6:4, 5:5, 4:6, 3:7) and CHCl₃-MeOH (9:1, 8:2), to afford 4 fractions (frs. 1'-4'). Fraction 2' was rechromatographed on a silica-gel column using *n*-hexane–acetone (5:4,5:5,4:5,3:6) and acetone, to afford 5 fractions (frs. 1"-5"). Fraction 2" was rechromatographed on a silica gel column using benzene-AcOEt (3:2) to afford 7 fractions (frs. 1"'-7"'). Fraction 2" was purified by preparative HPLC (Column, TSK gel ODS-120T, $7.8 \, \text{mm} \, \text{i.d.} \times 30 \, \text{cm}$; mobile phase, MeOH-H₂O (2:3); column temperature, 40 °C; flow rate, 1.0 ml/min; UV detector, 220 nm) to give 1 (3.2 mg), 3 (10.9 mg) and a mixture of 2 and 4. The mixture of 2 and 4 was purified by preparative HPLC (Column, TSK gel ODS-120T, $7.8\,\mathrm{mm}$ i.d. $\times\,30\,\mathrm{cm}$; mobile phase, MeOH-H₂O (4:7); column temperature, 40 °C; flow late, 1.0 ml/min; refractive index (RI) detector) to give 2 (1.1 mg) and 4 (1.0 mg). Fraction 4" was separated by preparative HPLC (Column, TSK gel ODS-120T, 21.5 mm i.d. × 30 cm; mobile phase, MeOH-H₂O (1:1); flow rate, 4.0 ml/min; UV detector, 220 nm) to give a mixture of 7 and 8. The mixture of 7 and 8 was separated by preparative HPLC (Column, TSK gel ODS-120T, 21.5 mm i.d. \times 30cm; moble phase, MeOH-H₂O (1:2); column temperature, 40 °C; flow rate, 4.0 ml/min; UV detector, $220\,\mathrm{nm}$) to give pure 7 ($10.6\,\mathrm{mg}$) and crude 8. The crude 8 was purified by preparative HPLC (Column, TSK gel ODS-120T, 7.8 mm i.d. × 30 cm; mobile phase, MeOH-H₂O (1:3); column temperature, 40 °C; flow rate, 2.5 ml/min; UV detector, 220 nm) to give pure 8 (2.0 mg). Fraction 5" was purified by preparative HPLC (Column, TSK gel ODS-120T, 21.5 mm i.d. × 30 cm; mobile phase, MeOH-H₂O (1:1); column temperature, 40 °C; flow rate, 4.5 ml/min; UV detector, 220 nm) to give 5 (3.8 mg) and 6 (4.5 mg).

Eremopetasinorone A (1) Colorless oil. $[\alpha]_{\rm D}^{118} - 118.0^{\circ}$ (c = 0.3, MeOH). CD ($c = 1.54 \times 10^{-4}$, MeOH) $\Delta \varepsilon$ (nm): -6.08 (290.5), +7.61 (242.5), -2.2 (208). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1712, 1666, 1625. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 235 (3.8). HR-MS m/z: 206.1305 (M⁺, Calcd for C₁₃H₁₈O₂; 206.1307). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Eremopetasinorone B (2) Colorless oil. [α]_b¹⁸ + 8.8° (c = 0.1, MeOH). CD (c = 1.38 × 10⁻⁴, MeOH) Δε (nm): +0.55 (292.5), +0.35 (230), -0.62 (213). IR $ν_{max}^{\text{CHCl}_3}$ cm⁻¹: 1710, 1666, 1626. UV $λ_{max}^{\text{MeOH}}$ nm (log ε): 228 (3.8). HR-MS m/z: 206.1320 (M⁺, Calcd for $C_{13}H_{18}O_2$; 206.1307). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Eremopetasinorol (3) Colorless oil. $[\alpha]_D^{24} - 28.4^{\circ} (c=1.1, \text{ MeOH})$. IR $\nu_{\max}^{\text{CHCl}_3} \text{ cm}^{-1}$: 3616, 3485, 1658, 1606. UV $\lambda_{\max}^{\text{MeOH}} \text{ nm} (\log \epsilon)$: 241 (3.9). HR-MS m/z: 208.1456 (M⁺, Calcd for $C_{13}H_{20}O_2$; 208.1463). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Epoxyeremopetasinorol (4) Colorless oil. $[\alpha]_D^{20} - 10.5^\circ$ (c = 0.1, MeOH). IR $v_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3630, 3507, 1703, 917, 839. HR-MS m/z: 224.1435 (M⁺, Calcd for C₁₃H₂₀O₃; 224.1413). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Eremosulphoxinolide A (5) Pale yellow oil. $[\alpha]_{\rm D}^{24} - 13.2^{\circ}$ (c = 0.4, CHCl₃). CD ($c = 3.77 \times 10^{-5}$, MeOH) $\Delta \varepsilon$ (nm): +1.29 (273.5), -4.77 (216.0). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1751, 1719, 1648, 1623, 1041. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 216 (4.3), 270 sh (3.6). HR-MS m/z: 464.1833 (M⁺, Calcd for C₂₄H₃₂O₇S; 464.1869). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Eremosulphoxinolide B (6) Pale yellow oil. $[\alpha]_D^{24} - 77.6^\circ$ (c = 0.5, CHCl₃). CD ($c = 4.48 \times 10^{-5}$, MeOH) $\Delta \varepsilon$ (nm): -2.09 (279.5), -7.76 (218.5). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1751, 1720, 1644, 1623, 1041. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 215 (4.3), 270 sh (3.6). HR-MS m/z: 464.1896 (M⁺, calcd for $C_{24}H_{32}O_7S$; 464.1869). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

3β,8z-Dihydroxy-6β-methoxyeremophil-7(11)-en-12,8β-olide (7) Amorphous powder. $[\alpha]_{19}^{19}$ – 164.8° (c = 1.1, MeOH). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3529, 3233, 1727, 1683. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 219 (4.0). HR-MS m/z: 296.1649 (M⁺, Calcd for C₁₆H₂₄O₅; 296.1624). 1 H-NMR: see Table 1. 13 C-NMR: see Table 2.

2β-Hydroxyeremophil-7(11)-en-12,8α-olide (8) Colorless oil. $[\alpha]_D^{25}$ +106.6° (c=0.2, CHCl₃). IR $\nu_{\max}^{\text{CHCl}_3}$ cm⁻¹: 3606, 3475, 1746, 1688. UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 220 (4.0). HR-MS m/z: 250.1560 (M⁺, Calcd for $C_{15}H_{22}O_3$; 250.1569). ¹H-NMR: see Table 1. ¹³C-NMR: see Table 2.

Oxidation of Eremopetasinorol (3) To a solution of compound 3 (5 mg) in n-hexane (10 ml), PCC-Al $_2$ O $_3$ (120 mg) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was filtered and the filtrates were evaporated. The product was purified by preparative HPLC (Column, TSK gel ODS-120T, 7.8 mm i.d. \times 30 cm; mobile phase, MeOH-H $_2$ O (1:1); column temperature, 40 °C; flow rate, 1.0 ml/min; UV detector, 241 nm) to give 1 (2.5 mg).

Epoxidation of Eremopetasinorol (3) To a solution of compound 3 (1.9 mg) in MeOH (1 ml), 10% NaOH (25 μ l) and 30% hydrogen peroxide (25 μ l) were added. The reaction mixture was allowed to stand at 0 °C for 96 h, water (2 ml) was added, and the mixture was extracted with CHCl₃. After work-up, the product was purified by preparative HPLC (Column, TSK gel ODS-120T, 7.8 mm i.d. × 30 cm; moble phase, MeOH–H₂O (1:1); column temperature, 40 °C; flow rate, 1.0 ml/min; RI detector) to give 4 (0.8 mg).

Acknowledgements The authors are grateful to Dr. S. Suzuki, Dr. K. Hisamichi and Mr. S. Sato (Tohoku College of Pharmacy) for their measurements of mass spectra and NMR spectra.

References

- Part IX in a series of studies on the constituents of the rhizomes of *Petasites japonicus* MAXIM., Part VIII: Yaoita Y., Kikuchi M., *Phytochemistry*, 42, 751—755 (1996).
- Shanghai Scientific Technological Publishers and Shougakukan (eds.), "Dictionary of Chinese Materia Medica," Vol. 4, Shougakukan, Tokyo, 1985, p. 2386.
- a) Yaoita Y., Nagata K., Suzuki N., Kikuchi M., Chem. Pharm. Bull., 40, 3277—3279 (1992); b) Yaoita Y., Kikuchi M., ibid., 42, 1944—1947 (1994); c) Idem, ibid., 43, 1738—1743 (1995); d) Idem, Nat. Med., 50, 49—53 (1996).
- 4) Yaoita Y., Kikuchi M., Phytochemistry, 37, 1765—1766 (1994).
- Yaoita Y., Kikuchi M., Tohoku Yakka Daigaku Kenkyu Nempo, 40, 111—114 (1993).
- 6) Yaoita Y., Kikuchi M., Phytochemistry, 37, 1773—1774 (1994).
- 7) Moffitt W., Woodward R. B., Moscowitz A., Klyne W., Djerassi C., *J. Am. Chem. Soc.*, **83**, 4013—4018 (1961).
- a) Bohlmann F., Zdero C., Grenz M., Chem. Ber., 107, 3928—3945 (1974);
 b) Zhao Y., Jia Z., Peng H., J. Nat. Prod., 58, 1358—1364 (1995).
- 9) Wu T., Chang F., Wu P., Phytochemistry, 39, 1453—1457 (1995).
- a) Naya K., Kanazawa R., Sawada M., Bull. Chem. Soc. Jpn., 48, 3220—3225 (1975); b) Naya K., Nogi N., Makiyama Y., Takashina H., Imagawa T., ibid., 50, 3002—3006 (1977); c) Naya K., Shimizu M., Nishio H., Takada M., Oka S., Hirota K., ibid., 64, 1071—1080 (1991).
- Ikegami F., Sekine T., Duangteraprecha S., Matsushita N., Matsuda N., Ruangungsi N., Murakoshi I., *Phytochemistry*, 28, 881—882 (1989).
- Kitahara Y., Maeda S., Ueno M., Funamizu M., Kata T., Novotny L., Herout V., Sorm F., Chem. Lett., 1977, 1031—1034.