ASYMMETRIC ADDITIONS OF ALKYLLITHIUM TO CHIRAL IMINES – α -NAPHTHYLETHYL GROUP AS A CHIRAL AUXILIARY –

Tomohiko KAWATE^a, Hideki YAMADA^a, Kentaro YAMAGUCHI^b, Atsushi NISHIDA^a, and Masako NAKAGAWA^{a*}

Faculty of Pharmaceutical Sciences^a and Chemical Analytical Center^b, Chiba University 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263 Japan

Asymmetric addition of alkyllithiums to N-alkylidene- α -naphthylethylamine was carried out. In the presence of BF3•OEt2, organolithiums reacted smoothly with the imine giving corresponding amines in high degrees of stereoselectivity (up to ~100% de).

KEY WORDS asymmetric alkylation; imine; α -naphthylethylamine; chiral auxiliary; optically active amines

The nucleophilic addition of organometallics to imines is one of the key methods of preparing various amines.¹⁾ During our research on the synthesis of optically active amines from imines, we reported the asymmetric reduction of imines using newly developed chiral boranes.²⁾ In this paper, we would like to report our results on the asymmetric alkylation of imines with various organolithiums, in which chiral α -naphthylethyl group is used as a chiral auxiliary (Chart 1).

The chiral *N*-alkylidenenaphthylethylimines, **1** and **2**, were easily prepared from (*R*)-α-naphthylethylamine and corresponding aldehydes.³⁾ The addition of *n*-BuLi (5 equivalents) to a toluene solution of **1** at -78°C gave a mixture of the alkylated amines, **3a** and **3b**, in a yield of only 30% (Table 1, entry 1). The diastereomeric excess was determined by ¹H-NMR analysis and found to be 50% de (**3a**:**3b**=75:25).⁴⁾ Tomioka and co-workers have reported the asymmetric alkylation of imine with MeLi in the presence of chiral ligands, in which coordinated Li cation acted as a chiral Lewis acid and activated the imines.¹¹⁻ⁿ⁾ In our reactions, although addition of MgBr₂•OEt₂ or Mg(OEt)₂ did not improve the yield or selectivity, the reaction of **1** with *n*-BuLi in the presence of BF₃•OEt₂ proceeded at 0°C to give **3** at a yield of 64% with 42% de (entry 4). The higher selectivity was observed when the reaction was carried out at lower reaction temperature. The reaction

September 1996

Table	 Alkylation 	of Imine	1 and	2 with	Organolithiums

Entry Imine R2Li Additive Solvent Conditions Result										
Entry	шшпе		Additive	Solvent	Conditions		Result			
		(mol eq)	(mol eq)		(°C)	(h)	amine	%	$\mathbf{a} : \mathbf{b}$	(% de)
ı	1	n-BuLi (5)	none	PhMe	-78	3	3	30	75 : 25	(50)
2	1	<i>n</i> -BuLi (2)	MgBr ₂ •OEt ₂ (1.6)	PhMe	-78	. 3	NR			
3	1	<i>n</i> -BuLi (2)	$Mg(OEt)_2$ (2)	PhMe	-78	3	3	21	76:24	(52)
4	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	0	2	3	64	71:29	(42)
5	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-20	2	3	80	79:21	(58)
6	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-45	1	3	84	87 : 13	(74)
7	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-78	1	3	76	93 : 7	(86)
8	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	THF	-78	2	3	61	94: 6	(88)
9	1	<i>n</i> -BuLi (2)	BF ₃ •OEt ₂ (1.6)	Et ₂ O	-78	0.5	3	79	90:10	(80)
10	1	MeLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-78	2	4	81	92 : 8	(84)
11	1	MeLi (5)	BF ₃ •OEt ₂ (1.6)	THF		a	4	55	90:10	(80)
12	1	t-BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-78	6	5	5	41:59	(18)
13	1	t-BuLi (2)	BF ₃ •OEt ₂ (1.6)	THF	-78	1	5	99	63:37	(26)
14	2	MeLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-78	1.5	6	76	>99 : 1	(~100)
15	2	n-BuLi (2)	BF ₃ •OEt ₂ (1.6)	PhMe	-78	1.5	7	93	85 : 15	(70)
2 78°C for 9 h then at for 2 h										

a. -78°C for 8 h, then rt for 3 h.

at -78°C showed 86% de (entries 5-7). Tetrahydrofuran and ether were also suitable solvents in this alkylation (entries 8-9). Among alkyllithiums screened, MeLi gave the best result (\sim 100% de, Entry 14), whereas bulky *t*-BuLi gave poor selectivity (Entries 12 and 13).

The absolute configuration of the new stereocenter was determined as follows: the chiral auxiliary was removed from 6a by hydrogenolysis [H₂, Pd(OH)₂/C] and the resulting chiral amine was converted to known *N*-tosyl-3,3-dimethyl-2-butylamine (8). Comparison of the specific rotation of 8, $[\alpha]_D^{15}$ +39.3 (c 1.05, EtOH), with the reported value⁵) showed the absolute configuration of 8 to be 8, hence the absolute configuration of 8 also showed that the absolute configuration of the new stereogenic center is 8 (Figure 1).

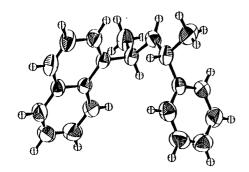


Fig. 1. Crystal Structure of 4a

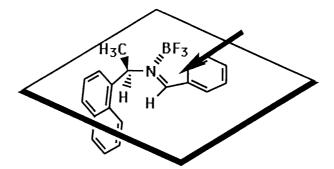


Fig. 2. Transition State Model for 1

1778 Vol. 44, No. 9

The lowest energy conformation of BF3-complexed 1, which was obtained by a semiempirical molecular orbital calculation (MOPAC, AM1), is shown in Figure 2. In this conformation, the naphthyl group was almost perpendicular to the π -plane which consisted of C=N double bond and the phenyl group. Therefore, the alkyl lithium reagent should attack from the top of the π -plane and give the observed diastereomer predominantly. The methylation of the chiral imine, which was prepared from (R)- α -methylbenzylamine and benzaldehyde, showed very poor asymmetric induction (4% de). This result is also explained by the transition model. Different from the naphthyl group, the phenyl group in the chiral auxiliary could not fulfill a spatial requirement to shield the π -plane.

Acknowledgments This research was supported by the Ministry of Education, Science, Sports and Culture in the form of a Grant-in-Aid. Financial support from Research Foundation of Optically Active Compounds, Japan Tobacco Inc., Fujisawa Foundation, and Naito Foundation is also gratefully acknowledged.

REFERENCES AND NOTES

- 1) Diastereoselective reactions: (a) H. Takahashi and Y. Suzuki, Chem. Pharm. Bull., 31, 4295-4299 (1983); (b) Y. Yamamoto, S. Nishii, K. Maruyama, T. Komatsu, and W. Ito, J. Am. Chem. Soc., 108, 7778-7786 (1986); (c) D. Enders, H. Shubert, and C. Nübling, Angew. Chem. Int. Ed. Engl., 25, 1109-1110 (1986); (d) C. Boga, D. Savoia, and A. Umani-Ronchi, Tetrahedron: Asymmetry, 1, 291-294 (1990); (e) S. Laschat and H. Kunz, J. Org. Chem., 56, 5883-5889 (1991); (f) Y. Ukaji, T. Watai, T. Sumi, and T. Fujisawa, Chem. Lett., 1991, 1555-1558; (g) S. E. Denmark, J. P. Edwards, and O. Nicaise, J. Org. Chem., 58, 569-578 (1993); (h) T. -K. Yang, R. -Y. Chen, D. -S. Lee, W. -S. Peng, Y. -Z. Jiang, A. -Q. Mi, and T. -T. Jong, J. Org. Chem., **59**, 914-921 (1994); (i) H. Suzuki, S. Aoyagi, and C. Kibayashi, Tetrahedron Lett., 36, 6709-6712 (1995); (i) D. S. Brown, P.T. Gallagher, A. P. Lightfoot, C. J. Moody, A. M. Z. Slawin, and E. Swann, Tetrahedron, 51, 11473-11488 (1995); (k) K. Higashiyama, H. Fujikura, and H. Takahashi, Chem. Pharm. Bull., 43, 722-728 (1995); Enantioselective reactions: (1) K. Tomioka, M. Shindo, and K. Koga, J. Am. Chem. Soc., 111, 8266-8268 (1989); (m) K. Tomioka, I. Inoue, M. Shindo, and K. Koga, Tetrahedron Lett., 31, 6681-6684 (1990); (n) K. Tomioka, I. Inoue, M. Shindo, and K. Koga, Tetrahedron Lett., 32, 3095-3098 (1991); (o) S. Itsuno, H. Yanaka, C. Hachisuka, and K. Ito, J. Chem. Soc., Perkin Trans. 1, 1991, 1341-1342; (p) K. Soai, T. Hatanaka, and T. Miyazawa, J. Chem. Soc., Chem. Commun., 1992, 1097-1098; (q) I. Inoue, M. Shindo, K. Koga, and K. Tomioka, Tetrahedron: Asymmetry, 4, 1603-1606 (1993); (r) I. Inoue, M. Shindo, K. Koga, and K. Tomioka, Tetrahedron, 50, 4429-4438 (1994); (s) S. E. Denmark, N. Nakajima, and O. J.-C. Nicaise, J. Am. Chem. Soc., 116, 8797-8798 (1994); (t) I. Inoue, M. Shindo, K. Koga, M. Kanai, and K. Tomioka, Tetrahedron: Asymmetry, 6, 2527-2533 (1995); Intramolecular reactions: (u) H. Waldmann, G. Schmidt, H. Henke, and M. Burkard, Angew. Chem. Int. Ed. Engl., 34, 2402-2403 (1995).
- 2) (a) T. Kawate, M. Nakagawa, T. Kakikawa, and T. Hino, *Tetrahedron: Asymmetry*, 3, 227-230 (1992); (b) M. Nakagawa, T. Kawate, T. Kakikawa, H. Yamada, T. Matsui, and T. Hino, *Tetrahedron*, 49, 1739-1748 (1993).
- 3) All new compounds are characterized spectroscopically (nmr, ir, low mass, high mass and/or elemental analysis).
- 4) Characteristic ${}^{1}H$ -NMR data (δ_{H}) of alkylation products used for calculation of diastereomer ratio:

·	PhC <u>H</u> N NC <u>H</u> Me	3a	3.35 4.36	3 b	3.76 4.48	4a	3.58 4.39		3.89 4.58	5a 3.07	5 b	3.61	
	<i>t</i> BuC <u>H</u> N NC <u>H</u> Me	6a	2.43 4.64	6 b	3.83 5.22	7a	3.17	7 b				0.4.0.5	- 11 -

5) M. Raban, C. P. Moulin, S. K. Lauderback, and B. Swilley, *Tetrahedron Lett.*, **1984**, 25, 3419; for 59% ee of (*S*)-**8**: [α]_D -12.85 (EtOH).

(Received July 10, 1996; accepted August 6, 1996)