Chemical Evaluation of *Betula* Species in Japan. IV.¹⁾ Constituents of *Betula davurica*

Hiroyuki Fuchino, Tetsuya Satoh, Midori Shimizu, and Nobutoshi Tanaka*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Funakawara-machi, Ichigaya, Shinjuku-ku, Tokyo 162, Japan. Received August 1, 1997; accepted October 6, 1997

The constituents of *Betula davurica* Pall. were identified as follows: Fresh leaves: 12-O-acetylbetulafolienetetraol oxide I, 5,8-dihydroxy-6,7-dimethoxyflavone, rutin. Outer bark: betulin, betulin 3-O-caffeate, oleanolic acid, oleanolic acid 3-O-acetate, 3 β -acetoxy-12 α -hydroxyoleanan-28, 13 β -olide, betulinic acid 3-O-caffeate, oleanolic acid 3-O-caffeate, betulonic acid. Inner bark: acerogenin E, (3R)-3,5'-dihydroxy-4'-methoxy-3',4''-oxo-1,7-diphenyl-1-heptene, 17-O-methyl-7-oxoacerogenin E*, 15-methoxy-17-O-methyl-7-oxoacerogenin E*, (-)-lyoniresinol 3 α -O- β -D-xylopyranoside (= nudiposide), (+)-catechin, (+)-catechin 7-O- β -D-xylopyranoside, 3,4,5-trimethoxyphenol β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside, monogynol A, roseoside. Root bark: betulin 3-O-caffeate, 3 β ,27-dihydroxyolean-12-en-28-oic acid 27-O-caffeate. The two compounds with an asterisk are new.

Key words Betula davurica; diarylheptanoid; dammarane; lupane; flavonoid; oleanane

Eleven species of the genus *Betula* are known in Japan. *B. ermanii* Cham., ²⁾ *B. platyphylla* Sukat. var. *japonica* Hara³⁾ and *B. maximowicziana* Regel¹⁾ have white bark and their constituents have been investigated in our earlier studies. *B. davurica* Pall., yaegawakanba in Japanese, has morphologically different bark from the former three, so a different chemical profile is anticipated. In this paper, we describe the constituents of *B. davurica*.

Constituents of Fresh Leaves The leaves of Siberian species had been reported⁴⁾ to have a dammarane-type triterpene, betulafolienetriol oxide. In this study, 12-*O*-acetyl betulafolienetetraol oxide I¹⁾ was obtained. Other constituents were flavonoids, 5,8-dihydroxy-6,7-dimethoxyflavone⁵⁾ and rutin.⁶⁾ Their structures were determined by comparison of their physical properties and spectral data with those previously reported.

Constituents of Outer Bark From the air-dried outer bark collected in June, 8 known compounds: betulin, 20 betulin 20 betulinic acid 20 -caffeate, 20 betulinic acid 20 -caffeate, 20 betulonic acid, 30 oleanolic acid, 30 oleanolic acid 30 -caffeate, 30 oleanolic acid 30 -caffeate, 30 oleanolic acid 30 -caffeate, 30 and 30 -acetoxy- 30 -12 30 -nydroxyoleanan- 30 -olide, 30 -olide. They are commonly obtained from other Betula species except for 30 -acetoxy- 30 -nydroxyoleanan- 30 -olide. Their structures were easily determined by comparison of their physical properties and spectral data with those previously reported. The yield of betulin, which was 30 -cand 30 -for 30 -caffeate, 30 -caffe

Constituents of Inner Bark From the air-dried inner bark collected in June, acerogenin E (1),¹¹⁾ (3*R*)-3,5′-dihydroxy-4′-methoxy-3′,4″-oxo-1,7-diphenyl-1-heptene,³⁾ (—)-lyoniresinol 3 α -O- β -D-xylopyranoside (= nudiposide),²⁾ (+)-catechin 7-O- β -D-xylopyranoside,²⁾ (+)-catechin,²⁾ 3,4,5-trimethoxyphenol β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside,²⁾ monogynol A,²⁾ roseoside¹²⁾ and two new diarylheptanoids, **2** and **3**, were isolated (Chart 1).

Compound **2**, a colorless amorphous powder, was formulated as $C_{20}H_{20}O_4$ by high-resolution electron impact mass spectrum (HR-EI-MS). The 13 C-NMR data showed the presence of two carbonyl groups (δ 199.7, 211.9), an aromatic methoxyl group (δ 56.7), five methylenic (δ 21.9, 28.1, 39.5, 41.6, 44.8) and twelve aromatic carbons (δ 111.6, 118.3, 125.2, 126.7, 127.7, 129.1, 129.4, 133.9, 133.9, 139.1, 153.3, 158.5) and the UV spectrum of **2** was similar to that of **1**. ¹¹ These results suggested that **2** was a biphenyl-type diarylheptanoid. The structure of **2** was determined as 17-*O*-methyl-7-oxoacerogenin E by measurement of the $^1H_-^1H$, long-range $^{13}C_-^1H$ correlation spectroscopy (COSY) and nuclear Overhauser effect correlation spectroscopy (NOESY) (Fig. 1).

Compound 3, colorless needles, mp 223—224 °C, was formulated as C₂₁H₂₂O₅ by HR-EI-MS. The UV, IR spectral data were similar to those of 2 but ¹H- and ¹³C-NMR spectra showed the presence of an additional aromatic methoxyl group compared to those of 2. The coupling patterns of aromatic protons in ¹H-NMR spectra

Chart 1. Chemical Structures of 1, 2 and 3

* To whom correspondence should be addressed.

© 1998 Pharmaceutical Society of Japan

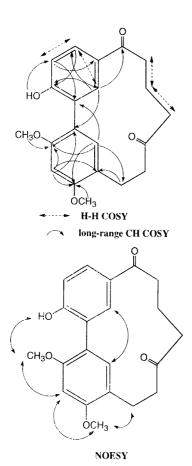


Fig. 1. ¹H-¹H COSY, Long-Range ¹³C-¹H COSY and NOESY Connections for **2**

(δ 6.51 (s), 6.73 (s)) suggested that the additional methoxyl group was situated at C-5 or C-15. As the NOESY correlation between one methoxyl proton (δ 3.92) and a benzylic methylene proton (δ 2.96, H-22) was observed, the structure of **3** was determined to be 15-methoxy-17-*O*-methyl-7-oxoacerogenin E. The 2D-NMR (1 H- 1 H COSY, long-range 13 C- 1 H COSY) spectra supported its structure (Fig. 2).

Constituents of Root Bark From the air-dried root bark collected in June, betulin 3-O-caffeate and 3β ,27-dihydroxyolean-12-en-28-oic acid 27-O-caffeate, which had been isolated from *Melianthus comosus* by Anderson and his colleagues¹³⁾ were obtained.

In this study, 22 compounds including two new ones, 2 and 3, were isolated and the following remarkable features were revealed. 1: The dammarane-type triterpenes of leaves of *B. davurica* have 3α ,17 α ,20-hydroxyl groups, while those of *B. ermanii* have 3β ,11 α ,20-hydroxyl groups and those of *B. maximowicziana* have 3α ,12 β ,20-hydroxyl groups. 2: It is noteworthy that (+)-catechin and its xyloside are included in large amounts, 0.4% and 0.9%, respectively. 3: The content of betulin is below 1%, which is the least amount in all species we have examined to date.

Experimental

The instruments, materials and experimental conditions were the same as described in Part 1 of this series.²⁾

Isolation. Leaves Fresh leaves (2 kg) collected in June at Yachi-ho Highland in Nagano Prefecture, were extracted with MeOH (20 l) at room temperature for 2 weeks. The extract and 10 l of MeOH were passed over activated charcoal (130 g) to give fr. M. The column was further eluted with 30% CHCl₃/MeOH to give fr. C–M. Each fraction

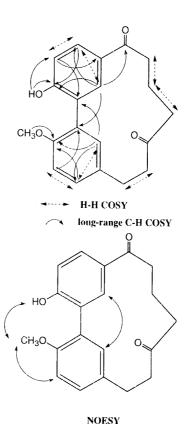


Fig. 2. ¹H-¹H COSY, Long-Range ¹³C-¹H COSY and NOESY Connections for **3**

was concentrated to a syrup under reduced pressure. The syrup from fr. M was subjected to column chromatography on silica gel using CHCl₃–MeOH to give 20 fractions. Fractions 15—16 were crystallized from MeOH to afford rutin (148 mg). Fraction 8 was rechromatographed on Sephadex LH-20 using MeOH, on silica gel using CHCl₃–MeOH–H₂O (100:15:1) and on Chromatorex ODS (Fuji Silysia Chemical, Ltd.) using 40% H₂O/MeOH to give 12-*O*-acetyl betulafolienetetraol oxide I (12 mg). The syrup from fr. C–M was rechromatographed on Sephadex LH-20 using MeOH to give 6-methoxygalangin 3-methylether (30 mg).

Outer Bark Air-dried outer bark (447 g) was extracted with 41 of CHCl₃ under reflux for 5h. The extract was concentrated to a syrup and chromatographed on silica gel using CHCl₃-EtOAc to obtain 20 fractions. Oleanolic acid 3-O-caffeate (91 mg) was obtained from fr. 12-15. Fractions 2-6 were rechromatographed on silica gel using n-hexane-AcOEt, CHCl₃-AcOEt and on silica gel impregnated with 20% AgNO₃ using *n*-hexane–AcOEt to obtain betulin (442 mg), oleanolic acid 3-O-acetate (1055 mg), 3β -acetoxy-12 α -hydroxyoleanan-28,13 β olide (122 mg) and betulonic acid (10 mg). Fractions 7-11 were rechromatographed on silica gel using n-hexane-AcOEt, CHCl₃-AcOEt and on Sephadex LH-20 using MeOH to gain oleanolic acid (256 mg). Fractions containing betulin 3-O-caffeate and betulinic acid 3-O-caffeate were subjected to acetylation with acetic anhydride in pyridine, and then rechromatographed on silica gel using n-hexane-AcOEt to obtain 28-O-acetylbetulin 3-O-(3,4-di-O-acetyl)caffeate (3.3 mg) and betulinic acid 3-O-(3,4-di-O-acetyl)caffeate (49 mg).

Inner Bark Air-dried inner bark (937 g) was extracted with 31 of MeOH under reflux for 6 h. The extract was concentrated and partitioned with CHCl₃-MeOH-H₂O (4:4:3). Then the upper layer was concentrated and chromatographed on silica gel using CHCl₃ and MeOH to obtain 20 fractions. Fractions were rechromatographed on Sephadex LH-20 using MeOH-H₂O or EtOH-H₂O, on Chromatorex ODS using MeOH-H₂O, then on silica gel using CHCl₃-MeOH-H₂O (100:15:1) and subjected to HPLC (Capcellpak C-18 SG with 30% CH₃CN/H₂O and Carbon 500 with 80% MeCN/H₂O) to obtain nudiposide (187 mg), (+)-catechin 7-O-β-D-xylopyranoside (8850 mg), (+)-catechin (3630 mg), 3,4,5-trimethoxyphenol β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (670 mg) and roseoside (30 mg). The lower layer was concentrated and chromatographed on silica gel using CHCl₃ and MeOH to obtain 20 fractions. Fractions 11—12 were rechromatographed on silica gel

using n-hexane—AcOEt and subjected to HPLC (Carbon 500 with CH₃CN) to gain 1 (14 mg), 2 (17 mg) and 3 (22 mg). Fractions 13—16 were purified by Sephadex LH-20 column chromatography using MeOH and preparative thin-layer chromatography (TLC) using n-hexane—AcOEt to gain (3R)-3,5'-dihydroxy-4'-methoxy-3',4"-oxo-1,7-diphenyl-1-heptene (30 mg) and monogynol A (150 mg).

Root Bark Air-dried root bark (519 g) was extracted with 2 l of MeOH under reflux for 5 h. The extract was concentrated and partitioned with $CHCl_3$ –MeOH– H_2O (4:4:3). The lower layer was chromatographed on silica gel using $CHCl_3$ –AcOEt to obtain 20 fractions. Fractions 7—10 were rechromatographed on Chromatorex ODS using MeOH to obtain betulin-3-O-caffeate (444 mg). Fractions 14—20 were purified by silica gel column chromatography using $CHCl_3$ –MeOH– H_2O –AcOH (460: 30:2:1) and preparative TLC using $CHCl_3$ –MeOH– H_2O –AcOH (480: 30:2:1) to gain 3β ,27-dihydroxyolean-12-en-28-oic acid 27-O-caffeate (17 mg).

17-*O*-Methyl-7-oxoacerogenin E (2) A colorless amorphous powder, $[\alpha]_D$ 0° $(c=0.5, \text{CHCl}_3)$. UV λ_{max} (MeOH) nm (log ε): 283 (4.18), 250 (4.32). EI-MS m/z: 324 (M⁺), 296, 253, 240, 212, 120. HR-EI-MS m/z: 324.1371 (M⁺); Calcd for C₁₂H₂₀O₄, 324.1361. IR (KBr) cm⁻¹: 3300, 2910, 1700, 1670, 1562, 1510, 1235. ¹H-NMR (CDCl₃) δ: 2.18 (2H, quint, J=6.9 Hz), 2.80—2.91 (4H, m), 2.96 (2H, t, J=6.9 Hz), 3.05—3.14 (2H, m), 4.01 (3H, s), 6.82 (1H, d, J=2.3 Hz), 6.96 (1H, d, J=8.6 Hz), 7.02 (1H, d, J=8.6 Hz), 7.23 (1H, dd, J=8.6, 2.3 Hz), 7.64 (1H, d, J=2.3 Hz), 7.88 (1H, dd, J=8.6, 2.3 Hz). ¹³C-NMR (CDCl₃) δ: 125.2 (C-1), 126.7 (C-2), 153.3 (C-3), 111.6 (C-4), 129.4 (C-5), 133.9 (C-6), 28.1 (C-7), 41.6 (C-8), 211.9 (C-9), 44.8 (C-10), 21.9 (C-11), 39.5 (C-12), 199.7 (C-13), 127.7 (C-14), 129.1 (C-15), 118.3 (C-16), 158.5 (C-17), 139.1 (C-18), 133.9 (C-19), 56.7 (CH₃O).

5-Methoxy-3-*O***-methyl-7-oxoacerogenin E (3)** Colorless needles from acetonitrile, mp 223—224 °C, [α]_D 0° (c=0.5, CHCl₃). UV λ_{max} (MeOH) nm (log ε): 288 (4.15), 261 (4.42). EI-MS m/z: 354 (M⁺), 326, 283, 269, 242, 135. HR-EI-MS m/z: 354.1469 (M⁺); Calcd for C₂₁H₂₂O₅, 354.1467. IR (KBr) cm⁻¹: 3380, 2920, 1600, 1658, 1620, 1570, 1510. ¹H-NMR (CDCl₃) δ: 2.08—2.20 (2H, m), 2.68—2.76 (2H, m), 2.96 (4H, s), 3.06 (2H, br t, J=7.6 Hz), 3.92 (3H, s), 4.01 (3H, s), 6.51 (1H, s), 6.73 (1H, s), 7.00 (1H, d, J=8.6 Hz), 7.65 (1H, d, J=2.5 Hz), 7.83 (1H, dd, J=8.6,

2.5 Hz), 8.00 (1H, s). ¹³C-NMR (CDCl₃) δ: 125.1 (C-1), 117.7 (C-2), 154.0 (C-3), 95.1 (C-4), 158.9 (C-5), 121.6 (C-6), 21.5 (C-7), 40.2 (C-8), 211.1 (C-9), 42.2 (C-10), 22.7 (C-11), 38.8 (C-12), 199.9 (C-13), 128.1 (C-14), 128.3 (C-15), 117.9 (C-16), 158.2 (C-17), 139.2 (C-18), 134.6 (C-19), 55.7, 57.0 (CH₃O).

Acknowledgement We thank the staff members of the village office of Yachiho for the supply of fresh plants of *B. davurica*.

References

- Part III: Fuchino H., Satoh T., Tanaka N., Chem. Pharm. Bull., 44, 1748—1753 (1996).
- Fuchino H., Satoh T., Tanaka N., Chem. Pharm. Bull., 43, 1937—1942 (1995).
- Fuchino H., Konishi S., Satoh T., Yagi A., Saitsu K., Tatsumi T., Tanaka N., Chem. Pharm. Bull., 44, 1033—1038 (1996).
- Polonik S. G., Pokhilo N. D., Baranov V.I., Uvarova N. I., Khim. Prir. Soedin., 349—350 (1977).
- Tomimori T., Miyaichi Y., Kizu H., Yakugaku Zasshi, 102, 388—391 (1982).
- 6) Markham K. R., Ternai B., Tetrahedron, 32, 2607-2612 (1976).
- 7) Ohara S., Yatagai M., Hayashi Y., *Mokuzai Gakkaishi*, **32**, 266—273 (1986).
- a) Inada A., Somekawa M., Murata H., Nakanishi T., Tokuda H., Nishino H., Iwashima A., Darnaedi D., Murata J., Chem. Pharm. Bull., 41, 617—619 (1993); b) Gonzalez A. G., Amaro J., Fraga B. M., Luis J. G., Phytochemistry, 22, 1828—1830 (1983).
- Pan H., Lundgren L. N., Andersson R., Phytochemistry, 37, 795—799 (1974).
- 10) Hui W.-H., Li M.-M., Phytochemistry, 15, 1741—1743 (1976).
- Nagumo S., Kaji N., Inoue T., Nagai M., Chem. Pharm. Bull., 41, 1255—1257 (1993).
- a) Andersson R., Lundgren L. N., *Phytochemistry*, 27, 559—562 (1988); b) Tschesche R., Ciper F., Harz A., *ibid.*, 15, 1990—1991 (1976).
- Koekemoer J. M., Vermeulen N. M. J., Anderson L. A. P., J. South African Chem. Inst., XXVII, 131—136 (1974).