Chemical Evaluation of *Betula* Species in Japan. V.¹⁾ Constituents of *Betula ovalifolia*

Hiroyuki Fuchino, Tetsuya Satoh, Mika Yokochi, and Nobutoshi Tanaka*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Funakawara-machi, Ichigaya, Shinjuku-ku, Tokyo 162, Japan. Received August 1, 1997; accepted October 6, 1997

Two new seco-dammarane-type triterpenes, called ovalifoliolides A and B, were isolated from the methanol extract of fresh leaves of *Betula ovalifolia* together with 12-O-acetylbetulafolienetriol, (3R)-3,5'-dihydroxy-4'-methoxy-3',4''-oxo-1,7-diphenyl-1-heptene and rutin. Betulin 3-caffeate, rhododendrin, (+)-catechin, (+)-catechin 7-O- β -D-xylopyranoside and procyanidin B-3 were also isolated from the bark. Their structures were determined by spectral data and chemical evidence.

Key words Betula ovalifolia; seco-dammarane; ovalifoliolide; betulin; catechin; flavonoid

Betula ovalifolia RUPR. is a small shrub found in wet habitats. It is rare and local in Hokkaido and listed in the red data book in Japan.²⁾ A small amount of fresh leaves and bark of twigs was collected from a cultivated shrub and their constituents were investigated.

From methanol extract of the fresh leaves, two new seco-dammarane-type triterpenes termed ovalifoliolides A and B were isolated together with 12-O-acetylbetulafolienetriol oxide I,³⁾ (3R)-3,5'-dihydroxy-4'-methoxy-3',4"-oxo-1,7-diphenyl-1-heptene³⁾ and rutin.

Ovalifoliolide A (1) was formulated as $C_{30}H_{48}O_3$ by high resolution (HR) EI-MS. The presence of a typical side chain for dammaranes, that is, 24-en-20(S)-ol, was deduced by fitting the ¹H- and ¹³C-NMR data to those of dammar-24-ene-3 β ,11 α ,20(S)-triol (4b).⁴⁾ The remaining data contained those for an isopropenyl, δ_H : 1.74 (3H, s), 4.70 (1H, br s), 4.86 (1H, br s), δ_C : 23.7 (CH₃), 114.1 (CH₂), 146.6 (C), and an ester, δ_H : 4.54 (1H, m), δ_C : 76.5 (CH), 176.3 (C), suggesting that 1 has a seco-dammarane skeleton like alnuselide (3) which has been isolated from the Betulaceous tree, Alnus serrulatoides.⁵⁾ The NMR data of 1 were in good agreement with those of 3 except for

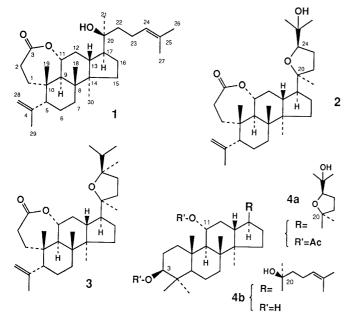


Chart 1

the side chain, $\delta_{\rm C}$ 176.3 (C-3), 146.7 (C-4), 76.5 (C-11), 17.0 (C-18), 18.8 (C-19), 114.1 (C-28), 23.7 (C-29), 15.6 (C-30); $\delta_{\rm H}$ 4.73 (H-28), 4.88 (H-28), 1.79 (H₃-29). Final confirmation of the structure was accomplished by two-dimensional shift correlation spectroscopy (2D-COSY). As shown in Figs. 1 and 2, the long-range $^{13}{\rm C}^{-1}{\rm H}$ COSY and nuclear Overhauser effect correlation spectroscopy (NOESY) confirmed the plane structure and the stereochemistry of 1.

Ovalifoliolide B (2) was formulated as $C_{30}H_{48}O_4$ by HR-EI-MS. The ¹H- and ¹³C-NMR data were the same as those of 1 except that the signals for side chain agreed more with those of 3β ,11 α -diacetoxy-20(S),24(R)-epoxy-25-hydroxydammarane (4a),⁴⁾ (Table 1). After confirmation of the structure by 2D-COSY, 2 was determined to

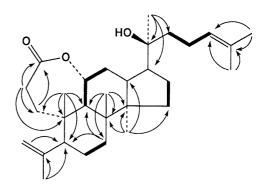


Fig. 1. Diagnostic Correlations Observed in the Long-Range C-H COSY () and H-H COSY () for 1

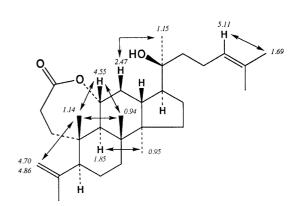


Fig. 2. Chemical Shifts of ¹H Signals and Diagnostic Correlations Observed in the NOESY for 1

© 1998 Pharmaceutical Society of Japan

^{*} To whom correspondence should be addressed.

Table 1. ¹³C-NMR Data in CDCl₃

C	1	2	4a	4b
1	39.1	39.2	40.9	39.8
2	29.7	29.8	27.5	23.8
3	176.3	176.3	78.4	80.3
4	146.6	146.7	39.0	38.2
5	57.3	57.3	55.7	55.7
6	25.0	25.1	18.1	18.0
7	33.5	33.6	36.2	35.5
8	40.5	40.5	40.7	40.8
9	52.1	52.2	56.0	52.6
10	39.4	39.5	39.4	38.6
11	76.5	76.5	71.1	72.5
12	35.8	35.5	39.7	34.7
13	38.8	39.6	41.3	39.8
14	49.8	49.6	49.8	50.0
15	30.6	30.9	31.0	30.6
16	24.9	25.6	25.6	24.9
17	51.0	50.7	49.3	49.8
18	17.0	16.9	16.7	16.9
19	18.8	18.9	16.6	16.0
20	74.8	85.5	85.9	75.0
21	25.3	23.5	23.2	25.6
22	40.9	36.5	36.0	40.2
23	22.6	26.3	26.2	22.6
24	124.4	83.4	83.3	124.5
25	131.8	71.4	71.4	131.7
26	25.7	24.3	24.2	25.7
27	17.7	27.4	27.4	17.7
28	114.1	114.1	28.2	28.1
29	23.7	23.7	15.4	16.4
30	15.6	15.6	16.3	16.8

be a 20(S), 24(R)-epoxy-25-hydroxy-derivative of 1.

From the methanol extract of the dried bark, betulin, 3) betulin 3-O-caffeate, 3) rhododendrin(= betuloside), 3) (+)-catechin, 4) (+)-catechin 7-O- β -D-xyropyranoside 4) and procyanidin B-36) were isolated.

Experimental

The instruments, materials and experimental conditions were the same as described in Part 1 of this series.³⁾

Isolation. Leaves Fresh leaves (450 g) collected in August at Kushiro, Hokkaido Prefecture, were extracted with MeOH (7 l) at room temperature for 2 weeks. The extract and then MeOH (8 l) were passed over activated charcoal (50 g) packed in a column of 5 cm diameter to

obtain fraction M. The column was further eluted with a mixture of CHCl₃ and MeOH (3:7) to obtain fraction C-M. Fraction M was concentrated to a syrup under reduced pressure. The syrup was chromatographed on silica gel using CHCl₃ and MeOH. The fractions containing triterpenes were collected and rechromatographed on silica gel using *n*-hexane and EtOAc to obtain 1 (128 mg), 2 (88 mg) and 12-O-acetylbetulafolienetriol (11 mg), while fractions containing (3*R*)-3,5'-dihydroxy-4'-methoxy-3',4"-oxo-1,7-diphenyl-1-heptene were collected and rechromatographed on Sephadex LH-20 using 90%MeOH for this purpose. Fraction C-M was concentrated and partitioned with CHCl₃-MeOH-H₂O (4:4:3). The upper layer was concentrated and chromatographed on Sephadex LH-20 to obtain rutin (218 mg).

Bark Air-dried bark (107 g) was extracted twice with MeOH (11) under reflux for 6 h. The extracts and 31 of MeOH were passed over activated charcoal (15 g) packed in a column of 3 cm diameter. The resultant solution was concentrated to a syrup under reduced pressure; this was chromatographed on silica gel using CHCl₃ and MeOH. The fractions containing triterpenes were rechromatographed on silica gel using *n*-hexane and EtOAc to obtain betulin (81 mg) and betulin 3-O-caffeate (34 mg). Those containing phenolics were rechromatographed on Sephadex LH-20 using 90% MeOH to obtain rhododendrin (174 mg), (+)-catechin (214 mg), (+)-catechin 7-O-β-D-xyropyranoside (390 mg). The fractions containing proanthocyanidins were rechromatographed on Sephadex LH-20 using 85% EtOH to obtain procyanidin B-3 (87 mg).

Ovalifoliolide A (1) A colorless amorphous powder, $[\alpha]_D + 90^\circ$ (c = 1.0, CHCl₃). 1 H-NMR (CDCl₃) δ : 0.94 (3H, s, H₃-18), 0.95 (3H, s, H₃-30), 1.14 (3H, s, H₃-19), 1.15 (3H, s, H₃-21), 1.63 (3H, s, H₃-27), 1.69 (3H, s, H₃-26), 1.74 (3H, s, H₃-29), 4.54 (1H, m, H-11), 4.70 (1H, br s, H-28), 4.86 (1H, br s, H-28), 5.11 (1H, t, J = 7.3Hz, H-24). EI-MS m/z: 456, 438, 109. HR-EI-MS m/z: 456.361 [M⁺], Calcd for C₃₀H₄₈O₃: 456.360.

Ovalifoliolide B (2) A colorless amorphous powder, $[\alpha]_D + 73^\circ$ (c = 2.3, CHCl₃). 1 H-NMR (CDCl₃) δ : 0.93 (3H, s, H₃-18), 0.95 (3H, s, H₃-30), 1.12 (3H, s), 1.13 (3H, s), 1.21 (3H, s), 1.73(3H, s, H₃-29), 3.72 (1H, t, J = 7.6 Hz, H-24), 4.52 (1H, m, H-11), 4.70 (1H, br s, H-28), 4.86 (1H, br s, H-28). EI-MS m/z: 472, 457, 143. HR-EI-MS m/z: 472.355 [M $^+$], Calcd for C₃₀H₄₈O₄: 472.355.

References

- Part 4: Fuchino H., Satoh T., Shimizu M., Tanaka N., Chem. Pharm. Bull., 46, 166—168 (1998).
- Red data book lists plant comunities which need urgent protection and conservation.
- Fuchino H., Konishi S., Satoh T., Yagi A., Saitsu K., Tatsumi T., Tanaka N., Chem. Pharm. Bull., 44, 1033—1038 (1996).
- Fuchino H., Satoh T., Tanaka N., Chem. Pharm. Bull., 43, 1937—1942 (1995).
-) Suga T., Hirata T., Bull. Chem. Soc. Jpn., 52, 1153-1155 (1979).
- Fletcher A. C., Porter L. J., Haslam E., Gupta R. K., J. Chem. Soc. Perkin Trans. 1, 1977, 1628—1637.