Stereostructure of Excoecarin H, a Novel seco-Labdane-Type Diterpene from Excoecaria agallocha

Tenji Konishi,* Takao Konoshima, Yasuhiro Fujiwara, and Shiu Kiyosawa

Kyoto Pharmaceutical University, Nakauchi-cho 5, Misasagi, Yamashina-ku, Kyoto 607, Japan. Recieved November 21, 1997; accepted December 13, 1997

A novel seco-labdane-type diterpene, excoecarin H was isolated from resinous wood of Excoecaria agallocha collected from Okinawa prefecture. Stereochemistry of the new diterpene was determined on the basis of chemical and physicochemical evidence.

Key words Excoecaria agallocha; Euphorbiaceae; excoecarin H; seco-labdane-type diterpene

In the course of our studies on constituents of *Excoecaria agallocha*, which has been used as a fish poison¹⁾ and which is known to be a skin irritant,²⁾ we reported the diterpene constituents with an inhibitory effect on the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-*O*-tetradecanoylphorbol 13-acetate (TPA) in Raji cells.³⁾ As a continuing study, we isolated nine diterpenes from resinous wood of *E. agallocha* collected in Okinawa prefecture, Japan.^{3,4)} In this paper, we describe evidence consistent with the stereochemistry of a new compound, excoecarin H (1). The ether extract of the resinous wood was purified by repeated ordinary and reverse-phase silica gel column chromatography and, finally, by recycling HPLC to give excoecarin H (1, 0.0011%).

1 was obtained as colorless needles, mp 153—156 °C and showed $[\alpha]_D$ —46.0°. Its molecular formula was determined by high-resolution fast atom bombardment MS (HR-FAB-MS) measurement to be $C_{20}H_{34}O_4$ (m/z 338), which was 14 mass units less than that of the known seco-diterpene (2).⁵⁾ IR spectrum of 1 showed a hydroxyl group (3400 cm⁻¹), a carbonyl group (1709 cm⁻¹), an ether group (1094, 1068 cm⁻¹), and monosubstituted olefin (1640, 983, 916 cm⁻¹). The positive detection of 1 for 2,6-dichlorophenol-indophenol sodium salt on TLC

also revealed the presence of carboxylic acid group. 6)

The ¹H-NMR (CDCl₃) spectrum of 1 indicated the presence of five tert-methyls $[\delta 0.90 (20-H_3), 1.14 (16-H_3),$ $1.23 (19-H_3), 1.24 (17-H_3), 1.30 (18-H_3)$, six methylenes, and monosubstituted olefin [δ 4.93 (1H, d, J=11.0 Hz, 15-H), 4.98 (1H, d, $J = 18.0 \,\text{Hz}$, 15-H), 6.05 (1H, dd, $J = 11.0, 18.0 \,\mathrm{Hz}, 14-\mathrm{H}$]. The ¹³C-NMR and distortionless enhancement by polarization transfer (DEPT) spectra of 1 showed 20 carbons (Table 1). The carbons of B and C rings were similar to those of ribenone (3), $^{4b,7)}$ except for two methyl carbons (δ 27.0, 34.5), three methylene carbons (δ 23.6, 29.0, 33.7), two quaternary carbons $(\delta 75.9, 179.5)$, and a methine carbon $(\delta 50.9)$. Treatment of 1 with diazomethane in MeOH gave the monomethylester (1a). These data and detailed ¹³C- and ¹H-NMR studies of 1 with the aid of 13C-1H correlation spectroscopy (COSY) and the comparison of spectra for 1 and 1a with those of 2⁵⁾ led us to conclude that 1 and 1a may be 13-epi-seco-labdane type diterpenes with cleavage of ring A. The partial structure of ring A was confirmed by the measurements of proton decoupling, ¹³C⁻¹H long range coupling and nuclear Overhauser effect (NOE) difference spectra for 1a (Chart 1). On irradiation of methyl group, resonance at $\delta 0.89$ (20-H₃) produced NOE enhancements for the signal of 1-H $[\delta 2.55]$ (1H, ddd,

* To whom correspondence should be addressed.

© 1998 Pharmaceutical Society of Japan

Table 1. ¹³C-NMR Spectral Data of Compounds 1, 1a, 2 and 3^{a)}

Carbon	1	1a	2	3
1	33.7	33.6	40.1	38.2
2	29.0	28.7	177.5	33.9
3	179.5	175.5	187.6	17.4
4	75.9	75.5	45.0	47.3
5	50.9	50.8	46.1	54.6
6	23.6	23.7	20.3	20.8
7	42.2	42.2	42.4	42.2
8	76.2	76.0	74.7	75.5
9	51.0	51.1	48.5	57.7
10	40.8	40.8	41.0	36.4
11	15.6	15.7	15.8	16.4
12	34.8	34.9	34.8	34.8
13	73.3	73.3	73.3	73.6
14	147.4	147.4	147.0	147.4
15	109.8	109.8	110.7	109.8
16	32.5	32.6	25.4	32.7
17	23.2	23.2	28.6	23.4
18	34.5	34.2	30.5	26.7
19	27.0	27.3	25.4	20.9
20	20.3	20.3	20.3	15.5
OMe		51.7		

a) Those of $^{13}\text{C-signals}$ were determined by DEPT and $^{13}\text{C-}^{1}\text{H}$ COSY experiments.

 $J=5.0,\ 10.5,\ 15.0\ Hz)$] which coupled with 2-H [δ 2.16 (1H, ddd, $J=4.5,\ 10.5,\ 16.0\ Hz)$, 2.47 (1H, ddd, $J=5.0,\ 11.0,\ 16.0\ Hz)$]. In the $^{13}C^{-1}H$ long range coupling spectrum, irradiation of H-2 proton (δ 2.16) produced the enhancement of carbon signal at δ 175.5 (C-3).

These data confirmed that ring A possessed the structure with cleavage between C-3 and C-4. The relative stereochemistry of 1 was established by NOE difference spectra measurements. On irradiation of methyl protons at δ 0.90, 20-H₃ produced NOE enhancements for the signal of 19-H₃, furthermore, the NOE were detected between the signals of 20-H₃ and 17-H₃, 17-H₃ and 14-H and between the signal of 14-H and 16-H₃. Thus the relative stereochemistry of this compound was shown to be 1. The stereochemistry of 1 was confirmed by chemical evidence. To determine the total stereochemistry of 1 including its absolute configuration, we carried out chemical correlation of 1 and 3. Oxidation of 3 with m-chloroperbenzoic acid (MCPA) gave the compound (1, yield 9.6%) together with R,S-epoxides (4, 5^{4a}) yield 20, 25%, respectively) (Chart 1). The structure of this compound was identified from the measurement of the ¹H-NMR, ¹³C-NMR and NOE difference spectra. Consequently, the absolute stereochemistry of excoecarin H (1) was determined as shown in Chart 1. This compound is the first example of a 3,4-seco-labdane type of diterpene.

Experimental

The instrument used for obtaining physical data and the conditions for chromatography were as described in the preceding paper, Silica gel (Merck), Sephadex LH-20 (Pharmacia), Jai-gel GS-310 (Nihon Bunseki Kogyo), and Lichroprep Rp-18 (Merck) were used for column

chromatography. Preparative recycling HPLC was carried out on an LC-09 instrument (Nihon Bunseki Kogyo).

Isolation of Compound 1 The ether extract (30 g) of *E. agallocha* was subjected to column chromatography on silica gel with a binary solvent system (hexane + AcOEt gradient and CHCl₃+MeOH gradient) to obtain ten fractions, Frs. 1-10.4 Fraction 7 (2.3 g) was chromatographed on silica gel (CHCl₃:MeOH=10:1), Lichroprep Rp-18 (MeOH: $H_2O=6:4$), and recycling HPLC (MeOH) to afford compound 1 (25.4 mg).

Excoecarin H (1): Colorless needles, mp 153—156 °C, $[\alpha]_D^{23}$ —46.0° $(c=0.77, \text{ CHCl}_3)$, 2,6-dichlrophenol-indophenol reagent: positive. IR (KBr, cm⁻¹): 3400, 1709, 1640, 1094, 1068, 983, 916. ¹H-NMR (CDCl₃, δ): 0.90 (3H, s, 20-H₃), 1.14 (3H, s, 16-H₃), 1.23 (3H, s, 19-H₃), 1.24 (3H, s, 17-H₃), 1.30 (3H, s, 18-H₃), 1.73 (1H, m, 7-H), 1.74 (1H, m, 1a-H), 2.15 (1H, m, 2a-H), 2.22 (1H, m, 12-H), 2.49 (1H, m, 2b-H), 2.52 (1H, br d, J=15.0 Hz, 1b-H), 4.93 (1H, d, J=11.0 Hz, 15-H), 4.98 (1H, d, J=18.0 Hz, 15-H), 6.05 (1H, dd, J=11.0, 18.0 Hz, 14-H). EI-MS m/z: 337 (M-H)⁺, 323 (M-15)⁺, 306 (M-H₂O)⁺. HR-FAB-MS (m/z): Calcd for $C_{20}H_{34}O_4$ (M)⁺: 338.4722. Found: 338.4701.

Methylation of Excoecarin H (1) with Diazomethane A solution of 1 (20 mg) in MeOH (5 ml) was treated with 3.0% CH₂N₂-ether solution, and the reaction mixture was left standing at room temperature for $10 \, \text{min}$. The reaction solution evaporated to dryness under reduced pressure to give 1a (18 mg).

1a: A white powder. $[\alpha]_D^{23} - 42.4^{\circ} (c = 0.40, \text{CHCl}_3)$. IR (KBr, cm⁻¹): 3260, 1728, 1194, 1091, 1070, 981, 918. ¹H-NMR (CDCl₃, δ): 0.89 (3H, s, 20-H₃), 1.14 (3H, s, 16-H₃), 1.21 (3H, s, 19-H₃), 1.24 (3H, s, 17-H₃), 1.28 (3H, s, 18-H₃), 1.60 (1H, m, 7-H), 1.72 (1H, m, 1a-H), 2.16 (1H, ddd, J=4.5, 10.5, 16.0 Hz, 2a-H), 2.23 (1H, m, 12-H), 2.47 (1H, ddd, J=5.0, 11.0, 16.0 Hz, 2b-H), 2.55 (1H, ddd, J=5.0, 10.5, 15.0 Hz, 1b-H), 3.68 (3H, s, OCH₃), 4.93 (1H, d, J=11.0 Hz, 15-H), 4.97 (1H, d, J=18.0 Hz, 15-H), 6.00 (1H, dd, J=11.0, 18.0 Hz, 14-H). HR-FAB-MS (m/z): Calcd for C₂₁H₃₇O₄ (M+H)⁺: 353.2691. Found: 353.2697.

Oxidation of 3 with m-Chloroperbenzoic Acid A solution of 3 (100 mg) and m-chloroperbenzoic acid (110 mg) in CHCl₃ (15 ml) was stirred at room temperature for 38 h. The reaction mixture was diluted with CHCl₃ (35 ml), washed with aqueous Na₂CO₃, dried with Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography to obtain 1 (9.6 mg) as colorless needles which was identified as excoecarin H by direct comparison with authentic sample, together with 4 (20.0 mg) and 5 (25.0 mg).

Acknowledgments The authors would like to thank Ms. K. Oda and Dr. M. Takasaki of this university for MS and NMR measurements.

References

- Ohigashi H., Katsumata H., Kawazu K., Koshimizu K., Mitsui T., Agri. Biol. Chem., 38, 1093—1095 (1974).
- Karalai C., Wiryachitra P., Opferkuch H. J., Hecker E., Panta Med., 60, 351—355 (1994); Wiriyachitra P., Hajiwangoh H., Boonton P., Adolf W., Opferkuch. H. J., Hecker E., ibid., 51, 368—372 (1985).
- Konishi T., Fujiwara Y., Kiyosawa S., Konoshima T., Abstracts of Papers of 38th Symposium on the Chemistry of Natural Products, Sendai, Japan, 1996, pp.319—324.
- a) Konishi T., Kiyosawa S., Konoshima T., Fujiwara Y., Chem. Pharm. Bull., 44, 2100—2102 (1996); b) Konishi T., Azuma M., Itoga R., Kiyosawa S., Fujiwara Y., Shimada Y., ibid., 44, 229—231 (1996).
- Cambie R. C., Moratti S. C., Rutledge P. S., Woodgate P. D., Aust. J. Chem., 43, 791—794 (1990).
- 6) "Dyeing Reagent for Thin Layer and Paper Chromatography," E. Merck, Darmstadt, 1980, p. 27; Passera C., Pedrotti A., Ferrari G., J. Chromatog., 14, 289—291 (1964).
- Algarra J., Gracía-Granados A., Sáenz de Buruaga A., Sáenz de Buruaga J. M., *Phytochemistry*, 22, 1779—1782 (1983); González A., Fraga B. M., Hernández M. G., Luís J. G., *ibid.*, 12, 1113—1116 (1973).