

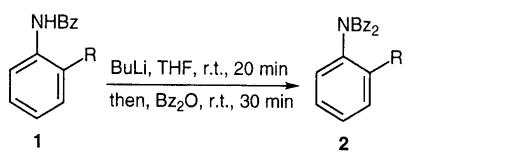
## 2-Chloro-*N,N*-dibenzoylaniline: a Selective *N*-Benzoylating Reagent

Kazuhiro KONDO and Yasuoki MURAKAMI\*

School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.

Received February 25, 1998; accepted April 14, 1998

Highly selective benzoylation of a less hindered amino group in the presence of a more hindered amino group with 2-chloro-*N,N*-dibenzoylaniline (**2d**), a convenient to use and stable reagent, is described.


**Key words** *ortho*-substituted aniline; diacylaniline; 2-chloro-*N,N*-dibenzoylaniline; imide; selective *N*-benzoylation

*N*-Benzoylation is important for the protection of amines in organic and bioorganic synthesis,<sup>1)</sup> and selective benzoylation of a less hindered amino group in polyamines is often required. Several reagents have been developed for the above purpose.<sup>2-6)</sup> However, the conventional reagents are still unsatisfactory in terms of broad usefulness or selectivity. As part of a program directed toward the development of new families of acylating reagents, we have begun to explore the chemistry of *ortho*- (or 2-) substituted *N,N*-diacylanilines.<sup>7)</sup> In this paper, we wish to report that 2-chloro-*N,N*-dibenzoylaniline (**2d**) serves as an efficient reagent in the selective benzoylation of a less hindered amino group in the presence of a more hindered amino group.

The *N,N*-dibenzoylanilines **2** were readily prepared in good yields from the corresponding *N*-benzoylanilines **1** with BuLi-benzoic anhydride ( $Bz_2O$ ) in tetrahydrofuran (THF) (Table 1).<sup>8,9)</sup> After purification, the solid products **2** can be stored in a covered bottle at room temperature for several months without decomposition; the reagents can be weighed out in the air, and used directly for *N*-benzoylation.

We first investigated the benzoylating reactivity of various *N,N*-dibenzoylanilines **2** with respect to solvent (Table 2). All of the reagents evaluated reacted as a benzoylating reagent. The 2-unsubstituted dibenzoylaniline **2a** and 2-halogenated dibenzoylanilines **2c-e** were the most effective reagents. Every solvent evaluated (THF,  $CH_2Cl_2$ , and *N,N*-dimethylformamide (DMF)) was suitable for the reaction. Primary, secondary, and *N*-methyl amines all gave good yields of the corresponding benzamides, although the reaction time required for comple-

Table 1. Preparation of Various *N,N*-Dibenzoylanilines **2a-e**



| Entry | Starting <b>1</b> ( <i>R</i> ) | Recrystallized yield (%) of <b>2</b> |
|-------|--------------------------------|--------------------------------------|
| 1     | H ( <b>1a</b> )                | 86                                   |
| 2     | Me ( <b>1b</b> )               | 88                                   |
| 3     | F ( <b>1c</b> )                | 80                                   |
| 4     | Cl ( <b>1d</b> )               | 82                                   |
| 5     | Br ( <b>1e</b> )               | 79                                   |

r.t. = room temperature.

\* To whom correspondence should be addressed.

tion depended on the bulkiness of amine. Even sterically hindered cumylamine (**6**) gave a moderate yield at 100°C in dioxane.<sup>10)</sup>

The substantial difference in reaction rates between hindered and less hindered amines prompted us to examine the selective benzoylation of amines. We chose to investigate the selectivity in the benzoylation of a 1:1 mixture of a hindered amine and a less hindered amine with the dibenzoylanilines **2a, c-e** (0.5 eq to total amines). The results are summarized in Table 3. 2-Chloro-*N,N*-dibenzoylaniline (**2d**) showed the highest selectivity (Table 3, entries 3, 4, 6). Comparison with  $Bz_2O$ ,  $BzCN$ ,<sup>4)</sup> and  $Bz_2NOMe$ ,<sup>5)</sup> the currently used reagents for *N*-benzoylation was also made (Table 3, entries 8-10). The selectivity was obviously worse, compared with the same reaction using 2-chloro-*N,N*-dibenzoylaniline (**2d**).

The generality of the above selective benzoylation by the dibenzoylaniline **2d** was tested with a variety of other substrates, with positive results, as indicated in Table 4. As can be seen, the less hindered benzoylated products were obtained in good yields.<sup>11)</sup>

Table 2. *N*-Benzoylation of Various Amines Using **2a-e**

| Entry            | Amine | Reagent (R)      | Solvent    | Conditions  | Product | Yield (%) <sup>a</sup> |
|------------------|-------|------------------|------------|-------------|---------|------------------------|
| 1                |       | H ( <b>2a</b> )  | THF        | r.t., 2 h   |         | 95                     |
| 2                |       | Me ( <b>2b</b> ) | THF        | 30°C, 12 h  |         | 91                     |
| 3                |       | F                | THF        | r.t., 2 h   |         | 97                     |
| 4                |       | F                | $CH_2Cl_2$ | r.t., 2 h   |         | 96                     |
| 5                |       | F                | DMF        | r.t., 2 h   |         | 96                     |
| 6                |       | Cl ( <b>2d</b> ) | THF        | r.t., 2 h   |         | 95                     |
| 7                |       | Cl               | $CH_2Cl_2$ | r.t., 2 h   |         | 97                     |
| 8                |       | Cl               | DMF        | r.t., 2 h   |         | 97                     |
| 9                |       | Br ( <b>2e</b> ) | THF        | r.t., 2 h   |         | 97                     |
| 10               |       | F                | THF        | r.t., 2 h   |         | 97                     |
| 11               |       | Cl               | THF        | r.t., 1 h   |         | 95                     |
| 12               |       | Br               | THF        | r.t., 1 h   |         | 94                     |
| 13               |       | F                | THF        | r.t., 12 h  |         | 95                     |
| 14               |       | Cl               | THF        | r.t., 8 h   |         | 97                     |
| 15               |       | Br               | THF        | r.t., 10 h  |         | 93                     |
| 16 <sup>b)</sup> |       | Cl               | Dioxane    | 100°C, 72 h |         | 70                     |

a) Isolated yield. b) 2.0 eq of **2d** (2.0 eq) was used.

© 1998 Pharmaceutical Society of Japan

Table 3. Competition Reaction

| Entry | Benzoylating reagent                                                               | Solvent                         | Conditions                      |          | Yield (%) <sup>a</sup> | Selectivity <sup>b</sup> (7:9) |
|-------|------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------|------------------------|--------------------------------|
|       |                                                                                    |                                 | Temp. (°C)                      | Time (h) |                        |                                |
| 1     |   | THF                             | 0, 24                           |          | 89                     | 11:1                           |
| 2     |   | THF                             | 0, 24                           |          | —                      | 11:1 <sup>c</sup>              |
| 3     |   | THF                             | 0, 24                           |          | 91                     | >15:1                          |
| 4     |   | CH <sub>2</sub> Cl <sub>2</sub> | 0, 40                           |          | 88                     | >15:1                          |
| 5     |  | DMF                             | 0, 24                           |          | 83                     | 8:1                            |
| 6     |  | DMF                             | —30, 168                        |          | 84                     | 15:1                           |
| 7     |  | THF                             | 0, 24                           |          | —                      | 9:1 <sup>c</sup>               |
| 8     | Bz <sub>2</sub> O                                                                  | 11                              | THF                             | 0, 1     | 92                     | 5:1                            |
| 9     | BzCN                                                                               | 12                              | CH <sub>2</sub> Cl <sub>2</sub> | 0, 12    | 97                     | 5:1                            |
| 10    | Bz <sub>2</sub> NOMe                                                               | 13                              | THF                             | 0, 12    | 88                     | 3:1                            |

<sup>a</sup> Isolated yield. <sup>b</sup> Determined by <sup>1</sup>H-NMR analysis after workup. <sup>c</sup> Determined by <sup>1</sup>H-NMR analysis of the crude product.

Table 4. Selective Benzoylation of Various Amines Using **2d** (1.05 eq) in THF at 0 °C

| Entry          | Substrate                                                                           | Product                                                                             | Time (h) | Yield (%) <sup>a</sup> |
|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|------------------------|
| 1              |  |  | 12       | 96                     |
| 2 <sup>b</sup> |  |  | 36       | 94                     |
| 3              |  |  | 36       | 94                     |

<sup>a</sup> Isolated yield. <sup>b</sup> The reaction was run at -15 °C.

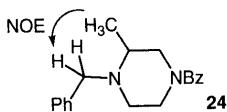
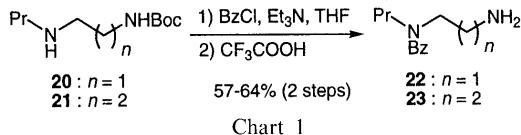




Fig. 1

In conclusion, 2-chloro-*N,N*-dibenzoylaniline (**2d**) is convenient to use, easy to handle, stable and effective in selective *N*-benzoylation. We believe that this novel benzoylating reagent can be widely used for the selective protection of various polyamino compounds.

## Experimental

All melting points were determined on a Yanagimoto melting point apparatus and are uncorrected. IR spectra were measured on a JASCO FT/IR-230 diffraction grating infrared spectrophotometer. <sup>1</sup>H-NMR spectra were recorded with a JEOL GX-400 NMR spectrometer with tetramethylsilane as an internal standard. MS were obtained from a JEOL JMS-DX-303 instrument.

All starting amines were commercially available. In general, reactions were carried out in dry solvents under an argon atmosphere. CH<sub>2</sub>Cl<sub>2</sub> was distilled under argon from CaH<sub>2</sub> before use. DMF was distilled under argon from CaH<sub>2</sub>. THF was distilled under argon from sodium/benzophenone ketyl before use. All reagents were available from commercial sources and used without further purification.

**2-Chloro-*N,N*-dibenzoylaniline (2d)** To a stirred solution of 2-chloro-*N,N*-dibenzoylaniline (**1d**, 6.61 g, 28.5 mmol) in THF (80.0 ml) was gradually added BuLi (1.57 N in hexane, 19.7 ml, 31.0 mmol) at 0 °C, and the mixture was stirred for 20 min at 23 °C. To this solution was then added Bz<sub>2</sub>O (7.00 g, 31.0 mmol) at 0 °C. The whole mixture was stirred at 23 °C for 1 h, quenched by the addition of sat. aq NH<sub>4</sub>Cl, and extracted with ethyl acetate. The organic extracts were successively washed with H<sub>2</sub>O, sat. aq NaHCO<sub>3</sub> and brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated. The residual solid was recrystallized from ethyl acetate–hexane to give 2-chloro-*N,N*-dibenzoylaniline (**2d**) (7.81 g, 82%) as colorless prisms, mp 167–169 °C. IR (Nujol) cm<sup>-1</sup>: 1703 (C=O), 1672 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 7.10–7.55 (m, 10H, aromatic H), 7.75–7.80 (m, 4H, aromatic H). FAB-MS *m/z*: 338 (MH<sup>+</sup> + 2), 336 (MH<sup>+</sup>). *Anal.* Calcd for C<sub>20</sub>H<sub>14</sub>CINO<sub>2</sub>: C, 71.54; H, 4.20; N, 4.17. Found: C, 71.75; H, 4.06; N, 4.10.

**Typical Procedure for an *N*-Benzoylation Corresponding to Table 3, Entry 1** To a stirred solution of amine **14** (76  $\mu$ l, 0.600 mmol) in THF (2.1 ml) was added 2-chloro-*N,N*-dibenzoylaniline (**2d**) (212 mg, 0.630 mmol) at 0 °C. The reaction mixture was stirred for 12 h at the same temperature and then concentrated. The residue was purified by silica gel column (ethyl acetate) to give *N*-benzoylamine **17** (121 mg, 96%) as a colorless oil. Chromatography was performed on Fuji Silysia NH-type silica gel chromatorex NHMD1020®.

**N-Benzyl-*N'*-propylethylenediamine (17)** A pale yellow oil. IR (neat) cm<sup>-1</sup>: 3300 (NH), 1644 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 0.90 (t, 3H, *J*=7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.48 (tq, 2H, *J*=7.3, 7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.57 (br s, 1H, NH), 2.58 (t, 2H, *J*=7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 2.83 (t, 2H, *J*=5.9 Hz, NHCH<sub>2</sub>CH<sub>2</sub>NHCO), 3.49 (d, 1H, *J*=5.9 Hz, one of NHCH<sub>2</sub>CH<sub>2</sub>NHCO), 3.52 (d, 1H, *J*=5.9 Hz, one of NHCH<sub>2</sub>CH<sub>2</sub>NHCO), 6.98 (br s, 1H, NHCO), 7.36–7.49 (m, 3H, aromatic H), 7.76–7.80 (m, 2H, aromatic H). FAB-MS *m/z*: 207 (MH<sup>+</sup>). *Anal.* Calcd for C<sub>12</sub>H<sub>18</sub>N<sub>2</sub>O: C, 69.87; H, 8.79; N, 13.58. Found: C, 69.55; H, 8.91; N, 13.37.

Physical data of the other benzamides are shown below.

**N-Benzylbenzamide (7)** Colorless prisms (ethyl acetate–hexane), mp 107–109 °C [lit.<sup>12</sup>] mp 105–106 °C. IR (Nujol) cm<sup>-1</sup>: 3288 (NH), 1634 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 4.65 (dd, 2H, *J*=5.7, 1.8 Hz, 2H, CH<sub>2</sub>), 6.49 (br s, 1H, NH), 7.27–7.82 (m, 8H, aromatic H), 7.77–7.82 (m, 2H, aromatic H). FAB-MS *m/z*: 212 (MH<sup>+</sup>).

**N-Benzyl-*N*-methylbenzamide (8)** A colorless oil. IR (neat) cm<sup>-1</sup>: 1633 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 2.86 and 3.03 (s, 3H, NCH<sub>3</sub>), 4.51 and 4.76 (s, 2H, CH<sub>2</sub>), 7.10–7.49 (m, 10H, aromatic H). FAB-MS *m/z*: 226 (MH<sup>+</sup>). *Anal.* Calcd for C<sub>15</sub>H<sub>15</sub>NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 79.84; H, 6.84; N, 6.18.

**N-( $\alpha$ -Phenylethyl)benzamide (9)** Colorless needles (ethyl acetate–hexane), mp 127–128 °C [lit.<sup>13</sup>] mp 124 °C. IR (Nujol) cm<sup>-1</sup>: 3356 (NH), 1633 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.61 (d, 3H, *J*=7.0 Hz, CHCH<sub>3</sub>), 5.34 (dt, 1H, *J*=7.0, 7.0 Hz, CHCH<sub>3</sub>), 6.24–6.40 (br, 1H, NH), 7.24–7.51 (m, 8H, aromatic H), 7.74–7.79 (m, 2H, arom-H). FAB-MS *m/z*: 226 (MH<sup>+</sup>).

**N-Cumylbenzamide (10)** Colorless needles (ethyl acetate–hexane), mp 161–163 °C [lit.<sup>14</sup>] mp 156–158 °C. IR (Nujol) cm<sup>-1</sup>: 3258 (NH), 1635 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.83 (s, 3H  $\times$  2, CH<sub>3</sub>), 6.39 (br s, 1H, NH), 7.22–7.51 (m, 8H, aromatic H), 7.73–7.78 (m, 2H, aromatic H). FAB-MS *m/z*: 240 (MH<sup>+</sup>).

**N-Benzoyl-*N'*-propyl-1,3-propanediamine (18)** A pale yellow oil. IR (neat) cm<sup>-1</sup>: 3457 (NH), 3291 (NH), 1644 (C=O). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 0.93 (t, 3H, *J*=7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.55 (tq, 2H, *J*=7.3, 7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.57 (br s, 1H, NH), 1.77 (tt, 2H, *J*=5.9, 5.9 Hz, NHCH<sub>2</sub>CH<sub>2</sub>NHCO), 2.60 (t, 2H, *J*=7.3 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 2.83 (t, 2H, *J*=5.9 Hz, NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NHCO), 3.57 (br d, 1H, *J*=5.9 Hz, one of NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NHCO), 3.59 (br d, 1H, *J*=5.9 Hz, one of NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NHCO), 3.59 (br d, 1H, *J*=5.9 Hz, one of NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NHCO).

$\text{NHCH}_2\text{CH}_2\text{CH}_2\text{NHCO}$ ), 7.38—7.50 (m, 3H, aromatic H), 7.78—7.83 (m, 2H, aromatic H), 8.31 (br s, 1H, NHCO). FAB-MS  $m/z$ : 221 ( $\text{MH}^+$ ). HRFAB-MS  $m/z$ : 221.1647 (Calcd for  $\text{MH}^+$ ,  $\text{C}_{13}\text{H}_{21}\text{N}_2\text{O}$ : 221.1654).

**1-Benzoyl-3-methylpiperazine (19)** A pale yellow oil. IR (neat)  $\text{cm}^{-1}$ : 3308 (NH), 1623 (C=O).  $^1\text{H-NMR}$  ( $\text{DMSO}-d_6$ , 100 °C)  $\delta$ : 0.93 (d, 3H,  $J=6.2$  Hz,  $\text{CHCH}_3$ ), 2.09 (br s, 1H, NH), 2.49—2.70 (m, 4H,  $\text{CHCH}_3$  and  $\text{CH}_2$ ), 2.80—3.00 (m, 3H,  $\text{CH}_2$ ), 7.29—7.43 (m, 5H, aromatic H). FAB-MS  $m/z$ : 205 ( $\text{MH}^+$ ). HRFAB-MS  $m/z$ : 205.1338 (Calcd for  $\text{MH}^+$ ,  $\text{C}_{12}\text{H}_{17}\text{N}_2\text{O}$ : 205.1341).

**Acknowledgements** This study was financially supported by a Grant-in-Aid for Scientific Research (No. 08877318) from the Ministry of Education, Science and Culture, Japan.

#### References and Notes

- Greene T. W., Wuts P. G. M., "Protective Groups in Organic Synthesis," John Wiley and Sons, Inc., New York, 1991, p. 355.
- Husson A., Besseliere R., Husson H.-P., *Tetrahedron Lett.*, **24**, 1031—1034 (1983).
- Joshua A. V., Scott J. R., *Tetrahedron Lett.*, **25**, 5725—5728 (1984).
- Murahashi S.-I., Naota T., Nakajima N., *Chem. Lett.*, **1987**, 879—882.
- Kikugawa Y., Mitsui K., Sakamoto T., Kawase M., Tamiya H., *Tetrahedron Lett.*, **31**, 243—246 (1990).
- For multistep methods for selective *N*-acylation, see: *a*) Ganem B., *Acc. Chem. Res.*, **15**, 290—298 (1982); *b*) Tice C. M., Ganem B., *J. Org. Chem.*, **48**, 2106—2108 (1983); *c*) Nordlander J. E., Payne M. J., Balk M. A., Gress J. L., Harris F. D., Lane J. S., Lewe R. F., Marshall S. E., Nagy D., Rachlin D. J., *J. Org. Chem.*, **49**, 133—138 (1984); *d*) Bergeron R. J., *Acc. Chem. Res.*, **19**, 105—113 (1986); *e*) Overman L. E., Okazaki M. E., Mishra P., *Tetrahedron Lett.*, **37**, 4391—4394 (1986); *f*) Bergeron R. J., McManis J. S., *J. Org. Chem.*, **53**, 3108—3111 (1988).
- Murakami Y., Kondo K., Miki K., Akiyama Y., Watanabe T., Yokoyama Y., *Tetrahedron Lett.*, **38**, 3751—3754 (1997).
- The *N,N*-dibenzoylanilines **2** could not be prepared at all with  $\text{Bz}_2\text{O}$  or  $\text{BzCl}$  in pyridine at 100 °C. For our *N,N*-diacylation conditions with an acylating reagent in pyridine, see: reference 7.
- Preparation of 2-trifluoromethyl-*N,N*-dibenzoylaniline was unsuccessful under these conditions ( $\text{BuLi-Bz}_2\text{O}$ ).
- Benzoylation of aniline gave *N*-phenylbenzamide in 78% yield at 100 °C in dioxane.
- The regiochemistry of **17** was determined by comparison of  $^1\text{H-NMR}$  data with **22**, prepared from **20** as shown in Chart 1. That of **18** was determined in a similar manner. The regiochemistry of **19** was determined by a NOE experiment of **24**, obtained on treatment of **19** with benzyl bromide and  $\text{NaH}$  in THF. The key NOE is shown in Fig. 1.
- Horner L., Steppan H., *Justus Liebigs Ann. Chem.*, **606**, 24—27 (1957) [*Chem. Abstr.*, **52**, 286e (1958)].
- Nerdel F., Goetz H., Wendenburg J., *Justus Liebigs Ann. Chem.*, **627**, 106—123 (1959) [*Chem. Abstr.*, **54**, 13030d (1960)].
- Barluenga J., Jiménez C., Nájera C., Yus M., *J. Chem. Soc., Perkin Trans. 1*, **1983**, 591—593.