

Intramolecular Oxymercuration with Mercuric Triflate

Hiroshi IMAGAWA, Tokuko SHIGARAKI, Tokiko SUZUKI, Hiroko TAKAO, Hidetoshi YAMADA,¹⁾ Takumichi SUGIHARA and Mugio NISHIZAWA*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.

Received June 15, 1998; accepted June 25, 1998

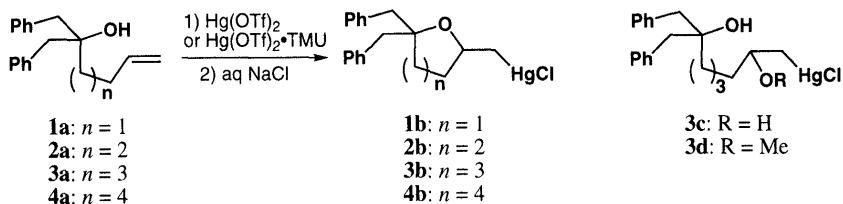
Five- and six-membered ring cyclic ethers are efficiently prepared by *exo*-mode oxymercuration of the corresponding olefinic alcohols with $Hg(OTf)_2$. A seven-membered ring ether is prepared using $Hg(OTf)_2$ along with TMU. However, this procedure is not effective for the preparation of four- and eight-membered ring ethers.

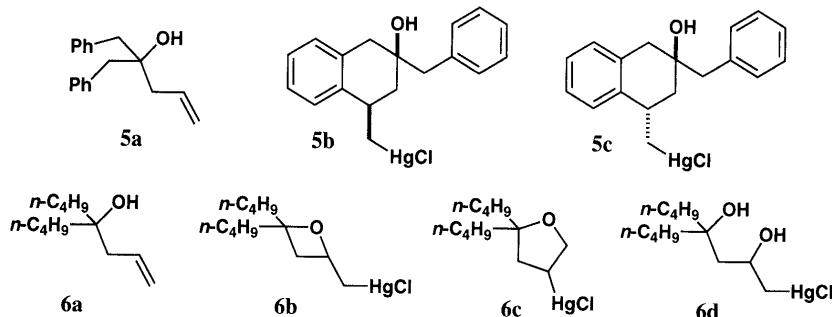
Key words mercuric triflate; oxymercuration; cyclic ether; *exo* cyclization

Mercuric triflate, $Hg(OTf)_2$, has been developed in this laboratory as an effective olefin cyclization agent^{2,3)} and employed for total syntheses of a variety of polycyclic terpenoids.⁴⁻⁹⁾ Although the oxymercuration with $Hg(OTf)_2$ is an efficient procedure for the preparation of cyclic ether during total syntheses of gelsemine,^{10,11)} the scope and limitation of the methodology have not been reported. To check the limitation, we examined the reaction of a less reactive substrate such as *tert*-alcohol containing monosubstituted olefin. We describe here the intramolecular oxymercuration with $Hg(OTf)_2$, which is an efficient procedure to prepare five-, six-, and seven-membered ring ethers *via exo*-mode cyclization, although, the procedure is not sufficiently effective to construct four- and eight-membered ring ethers. To prepare a seven-membered ring ether, the $Hg(OTf)_2$ itself is not useful

due to the equilibrium between the starting material and the product leading to low yield. However, $Hg(OTf)_2$ in the presence of tetramethylurea (TMU) affords a seven-membered ring ether in high yield under a kinetically controlled reaction.

A 1.2 equivalent of $Hg(OTf)_2$ is prepared *in situ* by mixing mercuric oxide yellow and triflic anhydride in acetonitrile,³⁾ and to this was added olefin alcohol at 0 or $-20^{\circ}C$. After stirring at the same temperature for 5 min, the mixture was quenched by the addition of brine and $NaHCO_3$ solution. The results are summarized in Table 1. Although the reaction of **1a** with $Hg(OTf)_2$ in acetonitrile at $0^{\circ}C$ afforded five-membered ring ether **1b** in 86% yield (entry 1), reaction at $-20^{\circ}C$ afforded 97% yield with nearly complete *exo* selectivity (entry 2). The *exo/endo* ratio was determined by GLC analysis




Table 1. Intramolecular Oxymercuration of Olefinic Alcohols with Mercuric Salts^{a)}

Entry	Substrate	Reagent	Solvent	Temp. (°C)	Yield	<i>Exo/Endo</i>
1	1a	$Hg(OTf)_2$	CH_3CN	0	86	>99:1
2	1a	$Hg(OTf)_2$	CH_3CN	-20	97	>99:1
3	1a	$Hg(OTf)_2$	CH_3NO_2	0	91	>99:1
4	1a	$Hg(OTf)_2$	CH_3NO_2	-20	96	>99:1
5	1a	$Hg(OTf)_2$	CH_2Cl_2	-20	99	>99:1
6	1a	$Hg(OAc)_2$	CH_3CN	-20	33	>99:1
7	1a	$Hg(OCOCF_3)_2$	CH_3CN	-20	90	>99:1
8	2a	$Hg(OTf)_2$	CH_3CN	0	95	>99:1
9	2a	$Hg(OTf)_2$	CH_3CN	-20	99	>99:1
10	2a	$Hg(OTf)_2$	CH_3NO_2	0	90	>99:1
11	2a	$Hg(OTf)_2 \cdot PhNMe_2$	CH_3CN	-20	92	>99:1
12	2a	$Hg(OAc)_2$	CH_3CN	-20	2	>99:1
13	2a	$Hg(OCOCF_3)_2$	CH_3CN	-20	98	>99:1
14	3a	$Hg(OTf)_2$	CH_3CN	-20	74	>99:1
15	3a	$Hg(OTf)_2 \cdot TMU$	CH_3CN	-20	92	>99:1
16	3a	$Hg(OAc)_2$	CH_3CN	-20	0	
17	3a	$Hg(OCOCF_3)_2$	CH_3CN	-20	77	>99:1
18	3a	$Hg(OCOCF_3)_2 \cdot TMU$	CH_3CN	-20	33	>99:1
19	4a	$Hg(OTf)_2 \cdot TMU$	CH_3CN	-20	0	

a) Each reaction was carried out with 1.2 equiv. of mercuric salt for 5 min.

* To whom correspondence should be addressed.

© 1998 Pharmaceutical Society of Japan

of the Bu_3SnH reduction¹²⁾ products by comparing with the authentic sample. Nitromethane and dichloromethane also gave similar results (entry 4 and 5). Although mercuric acetate, $\text{Hg}(\text{OAc})_2$, afforded poor results (entry 6), mercuric trifluoroacetate, $\text{Hg}(\text{OCOCF}_3)_2$, gave **1b** in satisfactory yield (entry 7). Both $\text{Hg}(\text{OTf})_2$ and $\text{Hg}(\text{OCOCF}_3)_2$ afforded six-membered ring ether **2b** by the reaction with **2a** in acetonitrile in high yield with complete *exo* selectivity (entry 9 and 13). Reaction of **3a** with $\text{Hg}(\text{OTf})_2$ afforded seven-membered ring ether **3b** in only 74% yield (entry 14) along with the starting material and hydroxymercuration product **3c**. When methanol was added to the reaction mixture before quenching, methoxymercuration product **3d** was isolated in 13% yield. Thus the existence of an equilibration between **3a** and a seven-membered ring ether related to **3b** under the reaction conditions is deduced. The equilibrium was confirmed by the exposure of seven-membered ring ether **3b** with $\text{Hg}(\text{OTf})_2$ (0.5 equiv.) in acetonitrile at -20°C for 5 min to give a mixture of **3a**, **3b**, and **3c** (38%, 56%, and 5% yields, respectively) after quenching with brine. A similar reverse reaction was also observed by treatment of **3b** with triflic acid (0.5 equiv.) in acetonitrile at -20°C for 5 min, providing a mixture of **3a** and **3b** (63% and 37%, respectively). However, the reaction of **3a** in the presence of TMU (1.2 equiv.) afforded the ether **3b** in 92% yield under the ordinary concentration in acetonitrile (entry 15). The $\text{Hg}(\text{OCOCF}_3)_2$ was not sufficiently reactive in the presence of TMU to prepare a seven-membered ring ether (entry 18). No trace of eight-membered ring ether **4b** was detected by the reaction of **4a** with $\text{Hg}(\text{OTf})_2$ even in the presence of TMU (entry 19), and starting **4a** was recovered.

When the reaction of homoallyl alcohol **5a** with $\text{Hg}(\text{OTf})_2$ was examined in acetonitrile at -20°C for

5 min, *exo*-mode cyclization toward the aromatic ring took place to give *cis* **5b** and *trans* **5c** in 15% and 47% yield, respectively.¹³⁾ Reaction of *n*-butyl analogue **6a** with $\text{Hg}(\text{OTf})_2$ under the same conditions afforded four-membered ring ether **6b** and five-membered ring ether **6c** in 17:83 ratio, respectively (total 9% yield), along with hydroxymercuration product **6d** in 55% yield.

Acknowledgments This study was financially supported by the Japan Private School Promotion Foundation and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sport, and Culture of the Japanese government.

References and Notes

- 1) Present address: *School of Science, Kwansei Gakuin University, Nishinomiya, Hyogo 662, Japan.*
- 2) Nishizawa M., Takenaka H., Nishide H., Hayashi Y., *Tetrahedron Lett.*, **24**, 2581–2584 (1983).
- 3) Nishizawa M., Morikuni E., Asoh K., Kan Y., Uenoyama K., Imagawa H., *Synlett*, **1995**, 169–170.
- 4) Nishizawa M., Takenaka H., Hirotsu K., Higuchi T., Hayashi Y., *J. Am. Chem. Soc.*, **106**, 4290–4291 (1984).
- 5) Nishizawa M., Takenaka H., Hayashi Y., *J. Am. Chem. Soc.*, **107**, 522–523 (1985).
- 6) Nishizawa M., Takenaka H., Hayashi Y., *J. Org. Chem.*, **51**, 806–813 (1986).
- 7) Nishizawa M., Yamada H., Hayashi Y., *J. Org. Chem.*, **52**, 4878–4884 (1987).
- 8) Nishizawa M., Takao H., Iwamoto Y., Yamada H., Imagawa H., *Synlett*, **1998**, 76–78, 78–79.
- 9) Nishizawa M., Imagawa H., Hyodo I., Takeji M., Morikuni E., Asoh K., Yamada H., *Tetrahedron Lett.*, **39**, 389–392 (1998).
- 10) Newcombe N. J., Ya F., Vijin R. J., Hiemstra H., Speckamp W. N., *J. Chem. Soc., Chem. Commun.*, **1994**, 767–768.
- 11) Fukuyama T., Liu G., *J. Am. Chem. Soc.*, **118**, 7426–7427 (1996).
- 12) Bratt K., Garavelas A., Perlmutter P., Westman G., *J. Org. Chem.*, **61**, 2109–2117 (1996).
- 13) Harring S. R., Livinghouse T., *Tetrahedron*, **50**, 9229–9254 (1994).