Two New Sesquiterpene Polyesters from the Seeds of *Euonymus nanoides* Loes.

Hong Wang*,a and Xuan Tianb

^a College of Pharmaceutical Science, Zhejiang University of Technology; Hangzhou, 310014, P. R. China: and ^b State key Laboratory of Applied Organic Chemistry, Lanzhou University; Lanzhou, 730000, P. R. China.

Received July 6, 2005; accepted October 26, 2005

Two new β -dihydroagarofuran sesquiterpene polyesters, 1S,13-diacetyloxy-4S-hydroxy-6R-(3-)furancar-bonyloxy-9S-cinnamoyloxy- β -dihydroagarofuran (1) and 1S,6R-di(2-)methylbutanoyloxy-4S-hydroxy-8S-benzoyloxy-9R-(3-)furancarbonyloxy-13-acetyloxy- β -dihydroagarofuran (2), together with one known compound (3) were isolated from the seeds of *Euonymus nanoides* Loes. Their structures were elucidated by spectroscopic data interpretation. Compound 2 showed moderate antitumor activity against BEL-7402, P-388, HL-60 and A-549.

Key words *Euonymus nanoides*; antitumor activity; β -dihydroagarofuran

Plants belonging to the family Celastraceae have used worldwide as medicines and have been the subject of many investigations for their biologically active components.¹⁾ In a previous study on the chemical constituents of Celastraceae, we have recently reported on the isolation and structural elucidation of several new sesquiterpene polyesters with β -dihydroagarofuran skeletons^{2,3)} and triterpenes.^{4,5)} Some of these novel isolates exhibited antitumor activities. Continuing studies on the seeds of E. nanoides have provided two additional 1S,13-diacetyloxy-4S-hydroxy-6R-(3-)furancarbonyloxy-9S-cinnamoyloxy- β -dihydroagarofuran (1), 1S,6R-di(2-) methylbutanoyloxy-4S-hydroxy-8S-benzoyloxy-9R-(3-)furancarbonyloxy-13-acetyloxy- β -dihydroagarofuran (2) and one known 1S-diacetyloxy-4S,6R-dihydroxy-9S-benzoyloxy-13-cinnamovloxy- β -dihydroagarofuran (3). The pure compounds were tested on a panel of three human and one mouse cancer cell lines. Details of the isolation and structure determination of 1 and 2 are presented here.

Results and Discussion

Silica gel column chromatography and vacuum liquid chromatography (VLC) of the acetone extract of the seeds of *E. nanoides* afforded 20 fractions. Further separation of these fractions using thin layer chromatography (TLC) and reversed phase column chromatography (RP-18) yielded compounds 1—3. The known compound 3 was identified by comparison of their physical and spectral data with those reported in the literature.⁶⁾

The molecular formula of **1** was established as $C_{33}H_{38}O_{11}$ by analysis of NMR and HR-ESI-MS data. IR spectrum revealed a characteristic ester absorption band at 1735 cm⁻¹ and a free OH absorption band at 3427 cm⁻¹. The NMR spectra suggested the presence of two acetate esters [δ_H 1.78 (3H, s, Me), 2.20 (3H, s, Me); δ_C 21.0 (q), 21.3 (q), 169.7 (s), 170.5 (s)], one cinnamate ester [δ_H 6.38 (1H, d), 7.41 (2H, m), 7.47 (1H, m), 7.55 (2H, m), 7.70 (1H, d); δ_C 117.7 (d), 128.3 (2×d), 129.7 (2×d), 130.5 (d), 134.2 (s), 145.7 (d), 165.8 (s)], and one (3-)furancarboxylate ester [δ_H 6.73 (1H, d), 7.50 (1H, d), 8.27 (1H, s); δ_C 109.8 (d), 118.9 (s), 144.1 (d), 148.7 (d), 161.8 (s)]. The ¹H-NMR spectrum of **1** showed the presence of three tertiary methyl groups at δ 1.35 (s, H-12), 1.42 (s, H-14), 1.50 (s, H-15). The ¹H signals observed at δ 5.66 (1H, dd, H-1), 5.72 (1H, s, H-6) and 5.28

(1H, d, H-9) were assigned to those of the protons of three methine groups bearing an acyloxy group by the ¹H-¹H COSY spectrum, while signals at δ 4.50 (d, H-13a) and δ 5.09 (d, H-13b) were assigned to the two protons of one methylene group bearing an acyloxy group. In addition, the ¹³C-NMR and DEPT spectra indicated that the parent skeleton consists of fifteen carbons: three methyl carbons ($\delta_{\rm C}$ 29.1, 25.3, 24.2), four methylene carbons ($\delta_{\rm C}$ 31.0, 40.7, 33.3, 66.3), four methine carbons ($\delta_{\rm C}$ 70.2, 69.5, 43.3, 69.3) and four quaternary carbons ($\delta_{\rm C}$ 69.4, 89.7, 50.9, 83.7). These data were in good agreement with the spectral values assigned to the 5-substituted β -dihydroagarofuran parent skeleton.^{7,8)} Moreover, the molecular composition suggested the presence of one free hydroxyl group. One free hydroxyl group and the four esters mentioned above locates at C-1, C-4, C-6, C-9 and C-13 of β -dihydroagarofuran.

The carbonyl signal at δ 161.8 and 165.8 were correlated with the proton signals at H-6 and H-9 respectively, revealing that the (3-)furancarboxylate ester was located at C-6 and cinnamate ester was located at C-9. Also, two acetate esters were positioned at C-1 and C-13 respectively, because the carbonyl signals at δ 169.7 and 170.5 were correlated with the proton signals H-1 and H-13, respectively.

The relative stereochemistry of 1 was determined on the

220 Vol. 54, No. 2

Table 1. NMR Data for Compounds 1—3 in CDCl₃ (δ ppm)

No. –	1		2		3	
	$\delta_{\scriptscriptstyle m C}$	$\delta_{\scriptscriptstyle m H}$	$\delta_{\scriptscriptstyle m C}$	$\delta_{\scriptscriptstyle m H}$	$\delta_{\scriptscriptstyle m C}$	$\delta_{\scriptscriptstyle m H}$
1	70.2	5.66 dd, 3.6, 11.4	68.0	5.59 dd, 3.5, 11.6	72.5	5.50 dd, 4.4, 11.2
2	31.0	2.45 m	31.7	2.40 m	23.6	2.04 m
		2.10 m		2.08 m		2.07 m
3	40.7	2.04 m	41.6	1.50 m	37.1	1.78 m
		1.45 m		2.05 m		1.98 m
4	69.4		69.6		73.0	
5	89.7		89.7		91.2	
6	69.5	5.72 s	68.2	6.71 s	79.2	4.81 d, 5.4
7	43.3	2.45 m	43.3	2.31 d, 3.2	49.9	2.31 m
8	33.3	2.66 m	69.7	5.31 dd, 6.0, 3.2	34.2	2.25 m
		2.07 m				2.47 m
9	69.3	5.28 d, 6.9	69.9	5.19 d, 6.0	68.4	5.68 d, 7.3
10	50.9		50.9		53.4	
11	83.7		83.6		84.7	
12	29.1	1.35 s	29.0	1.30 s	23.3	1.45 s
13	66.3	5.09 d, 12.8	66.1	4.84 d, 12.8	65.0	4.95 d, 12.2
		4.50 d, 12.8		4.46 d, 12.8		4.73 d, 12.2
14	25.3	1.42 s	26.4	1.42 s	30.0	1.61 s
15	24.2	1.50 s	24.1	1.40 s	26.6	1.58 s
Ас-О	21.0	1.78 3H, s	21.3	2.17 3H, s	20.6	1.45 3H, s
	169.7		170.4		169.7	
Ac-O	21.3	2.20 3H, s				
	170.5					
Bz-O			128.2	7.39 2H, t, 7.3	128.5	7.40 2H, t, 7.5
			128.7	7.43 1H, t, 7.3	129.0	7.45 1H, t, 7.5
			130.1	8.02 2H, d, 8.0	130.9	8.05 2H, d, 8.2
			133.3		134.0	
			165.3		165.2	
Fu–O	109.8	6.73 1H, d, 1.2	109.8	6.73 1H, d, 1.2		
	118.9	7.50 1H, d, 1.2	118.8	7.53 1H, d, 1.2		
	144.1	8.27 1H, s	143.6	7.99 1H, s		
	148.7		148.7			
	161.8		161.9			
MeBu–O			11.2	0.55 t, 3H),		
			15.9	0.86 3H, d, 6.8		
			25.0	0.90 1H, m		
			40.6	1.18 2H, m		
			174.5			
MeBu–O			11.5	0.66 3H, t		
			16.4	0.88 3H, d, 6.8		
			25.5	0.92 1H, m		
			40.7	2.00 2H, m		
			175.1			
Cin-O	117.7	6.38 1H, d, 15.6			117.2	6.50 1H, d, 16.6
	128.3	7.41 2H, m			128.3	7.43 2H, m
	129.7	7.47 1H, m			129.5	7.48 1H, m
	130.5	7.55 2H, m			130.5	7.57 2H, m
	134.2	7.70 1H, d, 15.6			134.8	7.78 1H, d, 16.6
	145.7				146.2	
** 0	165.8				166.4	
H–O						5.18 d, 5.4

Figures after $\delta_{\rm H}$ values are coupling constants in Hz. All signals were assigned using 1D and 2D NMR.

basis of NOESY and 1 H-NMR data. As usually found in this class of skeleton, H-1, H-6 and Me-4 have axial stereochemistry, the free hydroxyl group was assumed to be at C-4 and the H-6 was assigned to single peak because the dihedral angles between H-6 and H-7 was $ca.~90^{\circ}.^{8-10}$ From the NOESY spectrum of 1, the strong correlation between H-7/H-9 and H-9/H-13 indicated the presence of cis-orientation of H-9. Thus, compound 1 was identified as 1S,13-diacety-loxy-4S-hydroxy-6R-(3-)furancarbonyloxy-9S-cinnamoy-loxy- θ -dihydroagarofuran.

Compound 2 was obtained as yellow oil and assigned the

molecular formula $C_{39}H_{50}O_{13}$ on the basis of its ^{13}C -NMR, DEPT and HR-ESI-MS. IR spectrum revealed a characteristic ester absorption band at $1727 \, \mathrm{cm}^{-1}$ and a free OH absorption band at $3432 \, \mathrm{cm}^{-1}$. The NMR spectra suggested the presence of two 2-methylbutanoate esters, one acetate ester, one benzoate ester and one (3-)furancarboxylate ester. The 1 H- and 13 C-NMR spectra of **2** were very similar to those of **1**, except that it was apparent that **2** has one more substituted moiety at C-8, suggesting that **2** contain the 1,6,8,9,13-pentasubstituted- β -dihydroagarofuran skeleton and that **2** has the same stereochemistry for H-1, H-6 and OH-4 as **1**. The cou-

February 2006 221

pling constant, $J_{8,9}=6.0\,\mathrm{Hz}$ suggested that H-8 and H-9 have a different orientation. The stereochemistry for H-8 and H-9 was determined from the NOESY spectrum, which showed cross-peaks between H-7/H-8, H-7/H-9, H-8/H-13 and H-9/H-13, suggesting that H-8 is axial and H-9 is equatorial, respectively. The locations of the ester groups were also identified by the HMBC cross-peaks between H-8 and the benzoate carbonyl signal at δ 165.3, H-9 and the (3-)furancarboxylate carbonyl at δ 161.9, the H-13 and the acetate carbonyl at δ 170.4, and H-1 and H-6 between 2-methylbutanoate carbonyl groups at δ 174.5 and 175.1, respectively. Therefore, the structure of compound 2 was assigned as 1*S*,6*R*-di(2-)methylbutanoyloxy-4*S*-hydroxy-8*S*-benzoyloxy-9*R*-(3-)furancarbonyloxy-13-acetyloxy- δ -dihydroagarofuran.

Using a previously published protocol, ²⁾ the compounds **1—3** were tested for *in vitro* antitumor activity against three human tumor cell lines: A-549, HL-60, BEL-7402 and one mouse tumor cell line of P-388. These results showed that compounds were able to inhibit activity with IC₅₀ values below 100 μ m. Compounds **1** and **3** were inactive with all IC₅₀ >100 μ m; compound **2** showed moderate activity against BEL-7402, HL-60, P-388 and A-549 with IC₅₀ values of 6.9, 51.4, 51.2 and 81.7 μ m, respectively.

Experimental

General experimental procedures have been described elsewhere.²⁾ ¹H-NMR data were obtained at 400 MHz (Bruker AM-400), and ¹³C-NMR data were obtained at 100 MHz (Bruker AM-400). NMR data were recorded in CDCl₃, and the chemical shifts were referred to the residual solvent signals ($\delta_{\rm H}$ 7.24/ $\delta_{\rm C}$ 77.0). Mass spectra (EI-MS, FAB-MS and HR-ESI-MS) were recorded on a HP-5988 MS and APEX TMII Bruker 4.7TAS spectrometer. Optical rotation (OR): Perkin Elmer Model 341.

Plant Material The collection and identification of the seeds of E. *nanoides* (No. 971001) were described previously.²⁾

Extraction and Isolation Dried, powdered seed (1.2 kg) of *E. nanoides* were extracted with acetone $(3000 \text{ ml} \times 7 \text{ d} \times 3)$ by percolation at room temperature to give a residue (102.8 g) after evaporation. This residue was separated on VLC and CC with a gradient of petroleum ether (60-90 °C)-acetone as eluent to give 20 fractions. Fraction 10 (3.0 g) was subjected to CC

and eluted with petroleum ether–acetone (3:1) obtaining compound 1, was purified by TLC yielding pure 1 (42.1 mg, petroleum ether–acetone (3:2)). Compounds 2 and 3 were yielded by CC with petroleum ether–acetone (1:1) from fraction 16 and purified by RP-18 short column $(20\times250 \text{ mm}, \text{MeOH-H}_2\text{O} 4:1)$: 2 (63.1 mg) and 3 (1.4 mg).

Compund 1: Yellow oil. $[\alpha]_D$ +87.5° (c=4.20, CHCl₃). UV λ_{max} (MeOH): (log ε) 202 (4.00), 225 (3.72), 279 (3.48). IR ν_{max} (KBr): 3427, 2933, 1735, 1635, 1230 cm⁻¹. 1 H- and 13 C-NMR: Table 1. EI-MS: m/z 550 (M⁺-AcOH, 4.4), 438 (550-FuOH, 4.0) 290 (438-CinOH, 27.0), 230 (290-AcOH, 100). FAB-MS: m/z 611 [M+H]⁺. HR-ESI-MS: m/z 611.2494 [M+H]⁺ (Calcd for $C_{33}H_{39}O_{11}$, 611.2487).

Compound **2**: Yellow oil. $[\alpha]_{\rm D}$ +39.4° (c=6.30, CHCl₃); UV $\lambda_{\rm max}$ (MeOH): (log ε) 205 (3.77), 225 (3.70), 272 (3.01). IR $\nu_{\rm max}$ (KBr): 3432, 2928, 1727, 1642, 1460 cm⁻¹. ¹H- and ¹³C-NMR: Table 1. EI-MS: m/z 614 (M⁺-FuOH, 14.0), 604 (M⁺-BzOH, 12.0), 492 (614-BzOH, 12.0), 392 (492+H-MeBuO, 54.0), 230 (392-MeBuOH-AcOH, 92), 50 (100). FAB-MS: m/z 727 [M+H]⁺. HR-ESI-MS: m/z 727.3338 [M+H]⁺ (Calcd for $C_{30}H_{51}O_{13}$, 727.3330).

Acknowledgment This work was supported by the Sciences Foundation of Zhejiang University of Technology (No. 116001129).

References

- 1) Bruning R., Wagner H., Phytochemistry, 17, 1821—1858 (1978).
- Wang H., Tian X., Pan Y. J., Helv. Chim. Acta, 86, 3320—3325 (2003).
- Liu Z. L., Jia Z. J., Tian X., Wang H., Planta Med., 70, 353—358 (2004).
- Luo D. Q., Wang H., Tian X., Shao H. J., Liu J. K., Pest Manag. Sci., 61, 85—90 (2005).
- Wang H., Tian X., Chen Y. Z., J. Chin. Chem. Soc., 49, 433—436 (2002).
- Nakano K., Yoshida C., Furukawa W., Takaishi Y., Shishido K., Phytochemistry, 49, 1821—1824 (1998).
- Wakabayashi N., Wu W. J., Waters R. M., Redfern R. E., Mills G. D. J., Demilo A. B., Lusby W. R., Andrzejewski D., J. Nat. Prod., 51, 537— 542 (1988).
- Kim S. E., Kim H. S., Hong Y. S., Kim Y. C., Lee J. J., J. Nat. Prod., 62, 697—700 (1999).
- Wang Y., Yang L., Tu Y., Zhang K., Chen Y., Fan J., J. Nat. Prod., 61, 942—944 (1998).
- Wu W., Wang M., Zhu J., Zhou W., Hu Z., Ji Z., J. Nat. Prod., 64, 364—367 (2001).