
Development of Soft-Based Double-
Stranded Peptide Chelators which
Selectively Separate Europium and
Lanthanum Ions Based on the Hardness
Concept

Shigeki KOBAYASHI,* Atuhiro MIZUSHIMA, 
Asako SASUGA, and Makoto WATANABE

Department of Analytical Chemistry of Medicines, Showa
Pharmaceutical University; 3–3165 Higashi-tamagawagakuen,
Machida, Tokyo 194–8543, Japan.
Received December 2, 2005; accepted February 16, 2006

New double-stranded peptide chelators (1) conjugated Cat
(2,3-dihydroxybenzoic acid) were synthesized and formed a mo-
lecular complex 1-Eu3� (or 1-Lu3�) with Eu3� and Lu3� but not
La3�. The double-stranded peptide chelator may prove to be
useful tools for studying the selective separation of lanthanide
ions.
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Many studies have described the determination of lumi-
nescence, radiotherapeutic applications, and development of
chelators for lanthanide ions (Ln3�) in the past several
years.1—3) In the application of lanthanide ions for photome-
try, fluorometry and bioassay,4,5) the development of selective
chelators and probes for lanthanide ions is important. The
electronic configurations of lanthanide ions have 4f elec-
trons, for instance Eu3� and Lu3� have 7 and 14 4f electrons,
respectively, except for Y3� (4f�0) and La3� (4f�0). How-
ever, information about the development of the chelators
which selectively form the complexes with Y3�, La3�, Eu3�,
and Lu3� ions is lacking since lanthanide ions have ex-
tremely similar chemical properties. Here, we used La
(4f�0), Eu (4f�7), and Lu (4f�14) to study in order to show
clearly whether the ability of complexation changes with 
the number of 4f electrons. Although 18-crown-6 ether
(1),6,7) ethylenediaminetetraacetic acid (EDTA) (2),8) and
calix[6]arene (3)9—11) have often been used as chelators for
the complexation of lanthanide ions, these chelators form the
complexes with La3�, Eu3� and Lu3� ions and have no selec-
tivity for selective complexation of their ions. Our aims in
this study are the molecular design and synthesis of novel
chelators for the highly selective recognition of Y3�, La3�,
Eu3� and Lu3� corresponding to the number of 4f electrons,
0, 0, 7, and 14, respectively.

To achieve the molecular design and the synthesis of func-
tional chelators which selectively bind with Y3�, La3�, Eu3�

or Lu3� ions, we synthesized target double-stranded amino
acid-Cat(OH) (8) and double-stranded peptide-Cat(OH) (9)
by conjugation with two 2,3-dihydroxybenzoic acid (Cat, 5)
at N-terminus of the double-stranded peptide (or amino acid)
conjugated with two -Ile-Phe- or -Phe- residues to a
spacer.12,13) In designing the functional chelators we have de-
signed them using absolute hardness (h) and absolute elec-
tronegativity (c) based on the hardness concept.14—17) The
values of c and h were calculated by Eqs. 1 and 2.14,15)

c ��m��(∂E /∂N )u (r)�(Ip�Ea) / 2 (1)

h �1/2(∂m /∂N )u (r)�1/2(∂2E /∂N 2)u (r)�(Ip�Ea) / 2 (2)

Where E is the electronic energy of a molecule or a atom, N
is the number of electrons, and u (r) is the external electro-
static potential. The Ip and Ea are the ionization energy and
the electron affinity (eV), respectively. To analyze the elec-
tron structure of lanthanide ions and chelators, the coordi-
nate of the electron structure was defined as r(c , h)�
r(�(∂E/∂N)u (r), 1/2(∂2E/∂N2)u (r)). We used c , h , and the dia-
gram r(c , h) in the development of chelators. The coordinate
diagram r(c , h) of electronic structure showed that Ce3�,
Pr3�, Sm3�, Eu3�, and Tb3� groups are chemically softer
than Sc3�, Y3�, La3�, Pm3�, Gd3�, and Dy3�–Lu3� groups
(Fig. 1). Absolute electronegativity and hardness values of
lanthanide ions (Ln3�) were calculated from the Eq. 3 using
date from lit.18)

Ln3� : Ln3�(Ea)→Ln4�(Ip)�e� (3)

For instance, the r(c , h) values of Eu3� and La3� are
r(33.809, 8.893) and r(40.561, 20.040), respectively.

As the soft-based chelator is favorable to bind the soft-acid
metals Mn� ion according to the hardness concept, we syn-
thesized and chose chelators 8 (r(3.015, 5.635)) and 9
(r(2.810, 5.500))19) as soft-based chelators which are a softer
chelator than 1 (r(2.495, 8.345)), 2 (r(3.180, 7.500)), and 3
(r(2.370, 5.910)). Because, the s (0.177) of 8 is smaller than
that of 1 (0.120), 2 (0.133), and 3 (0.169) since the reciprocal
of the h is the global softness (s); s�1/h (eV). The s is a
measure of chemical softness.

The target chelators were synthesized as shown in Fig. 2.
Removal of the Boc groups of Boc-protected bis(L-Phe)-1,4-
diaminodimethylbenzene (4) by trifluoroacetic acid (TFA) af-
forded the free compound (6) in good yield.13) Conjugation
of 2,3-bis(benzyloxy)benzoic acid, was prepared from 2,3-di-
hydroxybenzoic acid (5), with N-terminal of 6 afforded by
treating CDI in dry CHCl3. Deprotection of Bn group in 7
using 5% Pd/C–H2 gave new functional double-stranded pep-
tide-Cat(OH) chelators (8) (and (9)), in 60—65% yield. All
compounds 6, 7, 8 and 9, provided satisfactory analysis by
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Fig. 1. Plot of a Coordinate Diagram r(c , h) of the Electronic Structure
for Lanthanide Ions (Ln3�)a) and Chelatorsb)

a) The data of lanthanide ions was taken from lit.18) b) At the HF/6-31G* level.
c) Open and closed squares show the coordinate of electronic structure of chelators and
lanthanide ions, respectively.



IR, 1H-, 13C-NMR, C–H COSY NMR, and FAB-MS.20,21)

The UV/Vis spectra of the chelators 8 and 9 were obtained
in a 10 mM HEPES buffer in 85% MeCN (pH�5.8), and the
first excited wavelength (lmax) was 315 nm. The absorption
intensity of 8 at 315 nm decreased by the addition of the
Eu3� ion increased from 0.0 to 5.00�10�4 mol/l under a
fixed concentration of 8 (final concentration of 7.26�10�5

mol/l). It was found that the absorption intensity of a new
lmax at 338 nm increased by addition of Eu3� ion. Figure 3A
shows the result of the UV/Vis titration studies. However, the
shift of lmax at 315 nm was not observed in titration experi-
ments of 8 and 9 with La3� ion (Figs. 3B, C).

In the titration studies, the expression of a new lmax con-
firms that the double-stranded peptide chelator 8 and 9 form

the molecular complexes with Y3�, Eu3� and Lu3+ but not
La3�. In order to characterize the new complex, the binding
constants (Kb), ratio (n : m) in composition of the complex,
and the molar absorbance coefficient (e) were obtained from
the UV/vis titration data. The Kb values of the complexes,
which were determined by a Benesi–Hildebrand plot using
UV/Vis titration,22) were about 104—105 mol�1· l levels. 
It was found that the magnitude of Kb value increases in 
the following order: 8-La3� (Kb�0)��8-Lu3� (Kb�7.11�
103)�8-Y3� (Kb�1.751�104)�8-Eu3� (Kb�7.04�104). Al-
though the Kb of 8 (and 9-)-La3� complexation was deter-
mined by a similar method, the slope of the Benesi–Hilde-
brand plot was parallel against the x-axis. From the slope, 
the binding constants for 8-La3� and 9-La3� are near 0. 
The Kb�0 supports in comparison with the results of
calix[4]arene-La3� complexation (slope�0). The stoichiome-
try for the ratio (n : m) of composition for 8-Ln3� complexa-
tion was determined by the molar ratio method23) and was
found to be 1 : 1 ratio since numbers n and m were n�m�1.
It is found that the other chelators also form the complex of
1 : 1 ratio with Y3�, Eu3�, and Lu3� ions.

Although the ionization potential (Ip) and electron affinity
(Ea) values of lanthanide ions are almost the same value, the
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Fig. 3. UV Spectra for Double-Stranded Peptide Chelator as a Function of
Eu3� (A) and La3� (B, C) Ions

(A) [8]�7.26�10�4 mol/l; [Eu3�]�0.0, 1.0�10�5, 2.0�10�5, 3.0�10�5, 5.0�10�5,
6.0�10�5, 8.0�10�5, 10.0�10�5, 20.0�10�5, 40.0�10�5, and 50.0�10�5 mol/l, (B)
[8]�6.48�10�4 mol/l; [La3�]�0.0, 1.0�10�5, 2.0�10�5, 3.0�10�5, 5.0�10�5,
6.0�10�5, 8.0�10�5, 10.0�10�5, 20.0�10�5, 40.0�10�5, and 50.0�10�5 mol/l, and
(C) [9]�5.74�10�4 mol/l; [La3�]�0.0, 1.0�10�5, 2.0�10�5, 3.0�10�5, 5.0�10�5,
6.0�10�5, 8.0�10�5, 10.0�10�5, 20.0�10�5, 40.0�10�5, and 50.0�10�5 mol/l 10 mM

HEPES buffer (85% MeCN, pH�5.8).

Fig. 4. Benesi–Hildebrand Plots (A) for Chelation of Double-Stranded
Peptide Chelator 8 with Lanthanide Ion and Determination of 1 : 1 Complex
Formation (B)

(A) a, [8]�6.13�10�4 mol/l. [Y3�]�2.0�10�5, 3.0�10�5, 5.0�10�5, 6.0�10�5,
8.0�10�5, 10.0�10�5, 20.0�10�5, and 40.0�10�5 mol/l in 10 mM HEPES 85% MeCN
buffer (pH�5.8). b, [8]�7.26�10�4 mol/l. [Eu3�]�2.0�10�5, 3.0�10�5, 5.0�10�5,
6.0�10�5, 8.0�10�5, 10.0�10�5, 20.0�10�5, and 40.0�10�5 mol/l; in 10 mM HEPES
85% MeCN buffer (pH�5.8), (B) [8]/[Y3�]�0.11, 0.25, 0.43, 0.67, 1.00, 1.50, 2.33,
4.0, and 9.0 (from left); at lmax�348.0 nm; in 10 mM HEPES 85% MeCN buffer
(pH�5.8).

Fig. 2. Synthesis of Double-Stranded Peptide Chelators

Reagents: (i) Cat (5), CDI, in dry CHCl3; (ii) 5%Pd–C/H2, in MeOH.



values of c and h shown with horizontal and vertical lines
respectively, greatly change in the r(c , h) diagram (Fig. 1).
In the diagram, lanthanum (La3�)-pimeritium (Pm3�) haven
h values from 2.741 (eV) to 2.659 (eV) are chemically softer
than Y3�, Eu3�, Yb3�, and Lu3�, etc. Moreover, the lan-
thanum (La3�) ion which has a smaller value than c value of
Y3�, Eu3�, Yb3�, and Lu3� possesses powerful acidity since
La without the f electron has the small first Ip (forth Ip too) in
order not to receive lanthanide contraction.

Here, the double-stranded peptide chelators 8 and 9 are
chemically softer than EDTA, Cat, and calixarene. It is ex-
pected that if the double-stranded peptide chelators 8 and 9
are interacted with Eu3� and Y3� ions, the binding of Eu3�

and Y3� ions to 8 and 9 form stable 8 (and 9)-Eu3� and 8
(and 9)-Y3� complexes. However, the stabilization by the
binding of chemically softer La3� ion to 8 and 9 decreases by
decreasing of the formation energy of 8 (and 9)-Y3� com-
plex.

In summary, we have developed new functional double-
stranded peptide chelators 8 and 9, using the coordinate dia-
gram r(c , h) of electronic structure, which have the ability to
recognize Y3� and Eu3� but not La3�. In addition, chelators 8
and 9 can expect to function as the probe or luminosensor for
fluorescence since maximum excitation and emission were
observed at 315 and 340 nm, respectively, to 8 and 9. This in-
teresting selective recognition suggests that this class of dou-
ble-stranded peptide chelators offer useful tools for studying
the separation and the development of new peptide chelators.
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