New C₁₀-Diterpenoid Alkaloids from Aconitum piepunense

Le Cai, Dong-Lin Chen, Shuang-Yong Liu, and Feng-Peng Wang*

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University; No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China. Received September 29, 2005; accepted January 7, 2006

Two new C_{19} -diterpenoid alkaloids, piepunensine A (1) and 18-acetylcammaconine (2), have been isolated from the roots of *Aconitum piepunense* together with five known alkaloids pengshenine B (3), talatisamine (4), aconosine (5), yunaconitine (6), and talatizidine (7). The structures of the new alkaloids were established on the basis of spectral data (1D- and 2D-NMR, HR-MS).

Key words Aconitum piepunense; C₁₉-diterpenoid alkaloid; piepunensine A; 18-acetylcammaconine

The plant *Aconitum piepunense* Hand-Mazz. Symb. Sin. grows in Diqing county, Yunnan province, China at an elevation of 3000 m.¹⁾ To our knowledge, no phytochemical investigation of this plant has been undertaken. In the course of our continued studies of diterpenoid alkaloids from *Aconitum* and *Delphinium* plants, two new C₁₉-diterpenoid alkaloids, piepunensine A (1) and 18-acetylcammaconine (2), along with five known norditerpenoids pengshenine B (3), talatisamine (4), aconosine (5), yunaconitine (6), and talatizidine (7) were isolated from the roots of *Aconitum piepunense*. This paper reports the isolation and structural elucidation of these alkaloids.

Results and Discussion

During the course of isolation, five known alkaloids pengshenine B (3), ⁶⁾ talatisamine (4), ⁷⁾ aconosine (5), ⁸⁾ yunaconitine (6), ⁹⁾ and talatizidine $(7)^{10}$ were obtained and their structures were identified by comparison of the NMR data with reported values and co-TLC behavior with authentic samples. It is emphasised that piepunensine A (1) is the first known naturally occurring aconitine-type diterpenoid alkaloid with both the lactam and *N*-deethyl groups.

The molecular formula of piepunensine A (1) $(C_{22}H_{33}NO_6)$ was determined by HR-ESI-MS [M+Na]⁺ 430.2200. The NMR spectra strongly suggested an aconitine-type alkaloid for 1.²⁾ Its NMR and IR spectra displayed absence of an *N*-ethyl group and characteristic signals at $\delta_{\rm H}$ 6.31 (1H, d, J=4.8 Hz), $\delta_{\rm C}$ 174.5 (s) for an NH group and a

OCH₃
R₁
OCH₃
R₂
R₃=R₅=H, R₃=CH₂OAc, R₄=OH
S R₁=OCH₃, R₂=R₅=H, R₃=CH₂OCH₃, R₄=OH
S R₁=OCH₃, R₂=R₅=H, R₃=CH₂OCH₃, R₄=OAc
7 R₁=R₄=OH, R₃=R₅=H, R₃=CH₂OCH₃
S R₁=OCH₃, R₂=R₅=H, R₃=CH₂OCH₃
S R₁=OCH₃, R₂=R₂=H, R₃=CH₂OCH₃
S R₁=OCH₃, R₂=R₃=H, R₃=CH₂OCH₃
S R₁=OCH₃, R₂=R₃=R₃=H, R₃=CH

lactam moiety (1648 cm⁻¹). The signal at δ 174.5 (s) was attributed to C-19 on the basis of the long-range ¹H⁻¹³C HMBC correlations of 17-H (δ 3.63), 18-H (δ 3.57, 3.64) with C-19 (δ 174.5). Three methoxyl groups ($\delta_{\rm H}$ 3.28, 3.35, 3.36, each 3H, s; $\delta_{\rm C}$ 55.9 q, 56.5 q, 59.4 q) were present in the NMR spectra of 1. These groups could be assigned at C-1, C-16, and C-18 due to the correlations between 1-OCH₃ (δ 3.28), C-1 (δ 84.3), 16-OCH₃ (δ 3.36), C-16 (δ 81.9), 18-OCH₃ (δ 3.35), and C-18 (δ 74.4), in HMBC spectrum. In the ¹H-NMR spectrum of 1, one proton triplet ($J=4.8 \,\mathrm{Hz}$) at δ 4.14 could be assigned to H-14 β , suggesting the presence of a 14-hydroxyl group.^{2,3)} The IR (3424 cm⁻¹) and ¹³C-NMR (δ 71.5 s, 75.1 d) spectra also showed to have one each of secondary hydroxyl (14-OH) and tertiary hydroxyl group (8-OH). On the basis of these observations, the structure of piepunensine A was established as 1.

18-Acetylcammaconine (2) was isolated as white amorphous powder with mp 123—125 °C. The HR-ESI-MS at m/z 450.2862 corresponded to the protonated molecular ion $[M+H]^+$ ($C_{25}H_{40}NO_6$). The NMR spectrum of 2 exhibited characteristic features of the aconitine-type C_{19} -diterpenoid alkaloids, bearing an N-ethyl group (δ_H 1.06, 3H, t, J=7.2 Hz; δ_C 13.5 q, 49.3 t), two methoxyl groups (δ_H 3.28, 3.34, each 3H, s; δ_C 56.2 q, 56.4 q), and an acetyl group (δ_H 2.06, s; δ_C 20.8 q, 171.0 s). Comparison of the MS and NMR spectra of 2 with those of cammaconine (8)⁴⁾ showed that it had an additional acetyl group instead of a hydroxyl group. The 13 C-NMR spectra of 2 and 8 are very similar except for C-4 and C-18 due to the substituted effect (OH \rightarrow OAc)⁵⁾

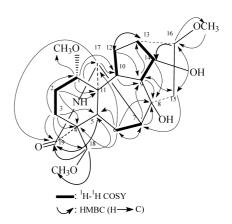


Fig. 1. The Key $^1H^{-1}H$ COSY and HMBC Correlations of Piepunensine A (1)

780 Vol. 54, No. 6

(Table 1). Herein, this extra acetyl group could be located at C-18 according to the correlations between H_2 -18 (δ 3.77, 3.81) and 18-OCOCH₃ (δ 171.0). Therefore, the structure of 18-acetylcammaconine (2) was determined.

Experimental

General Experimental Procedures Melting points were ascertained by thermal values analysis using a microscope and were uncorrected. Optical rotations were recorded on a Perkin-Elmer 341 polarimeter. IR spectra were obtained on a Nicolet FT-IR 200SXY spectrophotomer. ¹H- and ¹³C-NMR

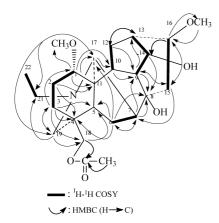


Fig. 2. The Key ¹H-¹H COSY and HMBC Correlations of 18-Acetylcam-maconine (2)

were measured in CDCl₃, with TMS as internal standard, on a Varian Unity INOVA 400/54 NMR spectrometer. MS spectra were measured by Finnigan LCQ and Micromass Auto Ultima-Tof spectrometer. Silica gel H (Qindao Sea Chemical Factory, China) was used for TLC and column chromatography.

Plant Material Aconitum piepunense HAND-MAZZ. Symb. Sin. was collected in Diqing County of Yunnan Province, China in August 2004, and authenticated by Professor Qin-Er Yang, Institute of Botany, Chinese Academy of Sciences, China. A voucher specimen has been deposited in West China College of Pharmacy, Sichuan University.

Extraction and Isolation Powdered roots (3.6 kg) of Aconitum piepunense were percolated with 0.1 mol/l HCl (40 l). The filtrate was then alkalized with 28% aqueous NH₄OH (1.2 l) to pH>9, extracted with ethyl acetate (each 20 l) for 5 cycles, and evaporated to give the total crude alkaloids (36.6 g). The crude alkaloids (36 g) were chromatographed over silica gel column eluting with petroleum ether–acetone (6:1 \rightarrow 3:1) gradient system to give fractions A (1.3 g), B (4.4 g), C (6.1 g), D (11.4 g), and E (11.5 g). Fraction B (4.4 g) was chromatographed on a silica gel column eluting with cyclohexane–acetone (8:1) to give talatisamine (4) (0.4 g), aconosine (5) (0.6 g), and the fraction B-1 (1.1 g) which was chromatographed on a silica gel column eluting with CHCl₃–CH₃OH (98:2) to afford piepunensine A (1) (58 mg) and pengshenine B (3) (120 mg). Silica gel column chromatography of fraction D (11 g) eluting with ether–ethyl acetate (6:1) gave 18-acetylcammaconine (2) (120 mg), yunaconitine (6) (60 mg), and talatizidine (7) (45 mg).

Piepunensine A (1): White amorphous powder, mp 94—96 °C; $[\alpha]_D^{20}$ –16.9° (c=0.5, CHCl₃); IR (KBr) cm⁻¹: 3424, 2932, 1647, 1458, 1094; ¹H-NMR (400 MHz, CDCl₃) and ¹³C-NMR (100 MHz, CDCl₃): see Table 1; HR-ESI-MS: [M+Na]⁺ 430.2200, Calcd for C₂₂H₃₃NO₆Na, 430.2205.

18-Acetylcammaconine (2): White amorphous powder, mp 123—125 °C; $[\alpha]_D^{20}$ – 1.7° (c=0.5, CHCl₃); IR (KBr) cm⁻¹: 3434, 2945, 1735, 1224, 1085;

Table 1. ¹H- and ¹³C-NMR Data of Compounds (**1**, **2**, **8**) (¹H: 400 MHz, ¹³C: 100 MHz; CDCl₃)

No.	1		2		8
	$\delta_{\scriptscriptstyle m C}$	δ_{H} Mult (J =Hz)	$\delta_{ ext{C}}$	δ_{H} Mult (J =Hz)	$\delta_{\scriptscriptstyle m C}$
1	84.3 d	3.25 m	86.0 d	3.10 m	86.3
2	26.3 t	$1.80 \text{ m} (\alpha)$ $2.22 \text{ m} (\beta)$	25.6 t	$1.82 \text{ m} (\alpha)$ $2.09 \text{ m} (\beta)$	25.8
3	30.3 t	$1.70 \text{ m } (\alpha)$ $2.04 \text{ m } (\beta)$	32.4 t	1.63 m (α) 1.82 m (hidden) (β)	33.2
4	51.1 s	_	37.8 s	_	39.1
5	36.9 d	2.32 m	37.5 d	2.38 m (hidden)	37.6
6	26.1 t	1.67 m (hidden) (α) 2.09 m (β)	24.8 t	1.28 m (α) 1.44 m (β)	24.6
7	54.8 d	2.14 m	45.9 d	1.69 m	45.9
8	71.5 s	_	72.7 s	_	73.7
9	45.7 d	2.34 m	46.9 d	2.30 m	47.0
10	43.0 d	2.06 m	45.7 d	1.82 m	46.0
11	47.1 s	_	48.7 s	_	48.8
12	27.0 t	1.85 m (hidden) (β) 1.89 m (α)	27.6 t	1.72 m (hidden) (β) 1.92 m (α)	27.7
13	45.7 d	1.86 m (hidden)	46.0 d	2.20 m	45.6
14	75.1 d	4.14 t (4.8)	75.5 d	4.14 t (4.4)	75.6
15	36.7 t	2.18 m (α) 2.38 m (β)	38.3 t	2.12 m (α) 2.56 m (β)	38.3
16	81.9 d	3.47 m	82.2 d	3.43 m	82.3
17	56.2 d	3.63 br s	62.6 d	3.18 br s	63.0
18	74.4 t	3.57 ABq (10.0) 3.64 ABq (10.0)	70.0 t	3.77 ABq (11.2) 3.81 ABq (11.2)	68.8
19	174.5 s	_	52.7 t	2.07 ABq (11.2) 2.53 ABq (11.2)	53.1
21	_	_	49.3 t	2.36 m 2.46 m	49.2
22	_	_	13.5 q	1.06 t (7.2)	13.7
1-OCH ₃	55.9 q	3.28 s	56.2 q	3.28 s	56.3
16-OCH ₃	56.5 q	3.36 s	56.4 q	3.34 s	56.5
18-OCH ₃	59.4 q	3.35 s	_ '	_	_
OAc	_ •	_	171.0 s	_	_
			20.8 q	2.06 s	_

June 2006 781

 1H -NMR (400 MHz, CDCl₃) and ^{13}C -NMR (100 MHz, CDCl₃): see Table 1; HR-ESI-MS: [M+H] $^+$ 450.2862, Calcd for $C_{25}H_{40}NO_6,$ 450.2856.

References

- 1) Yang Q. E., Acta Phytotaxonomica Sinica, 6, 514—544 (1999).
- Pelletier S. W., Mody N. V., Joshi B. S., Schramm L. C., "Alkaloids: Chemical and Biological Perspectives," Vol. 2, ed. by Pelletier S. W., Wiley, New York, 1984, p. 205.
- 3) Xie G. B., Wang F. P., Heterocycles, 3, 631—636 (1997).
- 4) Mody N. V., Pelletier S. W., Mollov N. M., Heterocycles, 14, 1751—

1752 (1980).

- 5) Wang F. P., Chin. J. Org. Chem., 3, 161—169 (1982).
- 6) Peng C. S., Wang F. P., Jian X. X., Chin. Chem. Lett., 3, 233—236 (2002).
- Yunusov M. S., Yunusov S. Y., Khim. Prir. Soedin, 6, 190—194 (1970).
- 8) Chen S. Y., Qiu L. G., Acta Botan. Yunn., 3, 267—270 (1989).
- 9) Chen S. Y., Acta Chim. Sinica, 37, 15—19 (1979).
- Pelletier S. W., Djarmati I., J. Am. Chem. Soc., 98, 2626—2637 (1976).