Properties of the Solute-Stationary Liquid Interactions in Gas Liquid Chromatography

Hideko Kawaki

Pharmaceutical Research and Technology Institute, Kinki University; 3–4–1 Kowakae, Higashi-Osaka 577–8502, Japan. Received November 12, 2007; accepted December 14, 2007; published online December 18, 2007

The solute-stationary liquid interaction in gas liquid chromatography (GLC) was determined using Eyring's model. The interaction was determined to be the physical adsorption. The descriptor $\sigma_{\rm M}$ was derived and estimated by van der Waals interactions. The CH/ π interaction energies were calculated by Tsuzuki *et al.* using the high-level *ab initio* calculations. The CH/ π interaction energy was concluded to consist of the dispersion energy ($E_{\rm dis}$) rather than the electrostatic ($E_{\rm es}$) and charge-transfer ($E_{\rm ct}$) energies. These energies were in good agreement with our descriptor $\sigma_{\rm M}$. Furthermore, the macroscopic $\sigma_{\rm M}$ also had microscopic support through the weak CH/ π interactions. In substituted benzenes, regression analyses were carried out using $\sigma_{\rm M}$ for the relative retention values, $\log \gamma$, as a measure of the solute–stationary liquid interaction. The analyses revealed good results under non-polar conditions. The $\log \gamma$ values therefore consisted primarily of contributions from the dispersion interaction and the CH/ π complex. Moreover, these values were useful when added to the electrostatic term (our descriptor $\sigma_{\rm es}$) for polar solutes. That is, the $\log \gamma$ values were estimated by the regression analyses using both $\sigma_{\rm M}$ and $\sigma_{\rm es}$, and were in good agreement with the predicted values.

Key words physical adsorption; van der Waals interaction; CH/π interaction; gas liquid chromatography; solute–stationary liquid interaction; substituted benzene

Noncovalent interactions are very important in molecular recognition of biochemistry, molecular crystals, 1-3) and hostguest complexes.⁴⁾ In addition, they play a key role in determining the molecular orientation in molecular assemblies. The weak interaction between the C-H bond and the aromatic π system called the CH/ π interaction,⁵⁾ has been determined to be a primary contributor to the electrostatic and charge-transfer terms^{5,6)} based on primary ab initio calculations using a small basis set. In recent years, high-level ab *initio* calculations of the typical CH/π complex have shown that dispersion is a major source of attraction. 7—9) MP2 interaction energy depends strongly on the basis set and small basis sets (6-31G*, 6-311G** and cc-pVDZ) greatly underestimate the attraction. Therefore, MP2/cc-pVXZ (X=T or Q) or MP2/aug-cc-pVXZ (X=D or T) level calculations are necessary for quantitative evaluation of the dispersion energy. 10) The estimated CCSD(T) interaction energy for a methane-benzene complex as an example of a typical CH/π interaction at the basis set limit (De) was reported to be -1.43 kcal mol⁻¹ by Shibasaki et al. Takahashi et al. 11) reported a value of -1.01 kcal mol⁻¹ for the same structure using MP2/6-311++G (d, p) level calculations. The binding energy D_0 was estimated by the D_e and vibrational zero-point energy. This value showed that the former D_0 (1.13 kcal mol⁻¹) was close to the experimental D_0 (1.03—1.13 kcal mol⁻¹). Furthermore, DEF calculations were discussed using BLYP, B3LYP, PW91 and PBE functions were determined to be in appropriate for the quantitative evaluation of the CH/ π interaction energy. ^{12—14)} The calculated energy $E_{\rm CCSD(T)(limit)}$ was determined to be appropriate for a quantitative evaluation of the CH/ π interaction.

In the solute–staitonary liquid interaction of gas liquid chromatography, the entropy changes $\Delta\Delta S_s^o$ of dissolution were determined to be correlated to the descriptor σ_M in order to evaluate a physical adsorption using Eyring's model. These findings supported the fact that van der Waals interactions were responsible for the formation CH/ π

complexes between C–H bond of squalane as the stationary liquid and the aromatic π system of the solute. Herein, we discuss the physical origin of the microscopic conditions under which the descriptor $\sigma_{\rm M}$ is correlated to the CH/ π interaction energy introduced into the high-level *ab initio* calculations.

Experimental

Relative Retention Value log γ The log γ defined by Eq. 1.¹⁷⁾

$$\log \gamma = \log[t_{R}(B)/t_{R}(A)] = -\left[\Delta H_{s}^{\circ}(B) - \Delta H_{s}^{\circ}(A)\right]/2.303RT + \left[\Delta S_{s}^{\circ}(B) - \Delta S_{s}^{\circ}(A)\right]/2.303R$$
(1)

Where $t_{\rm R}({\rm A})$ and $t_{\rm R}({\rm B})$ are the retention times of the reference and substituted benzenes, respectively. $\Delta H_{\rm s}^{\rm o}$ and $\Delta S_{\rm s}^{\rm o}$ denote the enthalpy and entropy of dissolution of A and B. All data for $\log \gamma$ and the thermodynamic parameters were cited in references, $^{18-20)}$ and the regression analyses were carried out using the statistical program. $^{21)}$

Descriptors σ_{M} and σ_{es} for Regression Analysis The descriptor σ_{M} was derived from the Eyring's method: The activated translational entropy change $\Delta\Delta S_{ABC}^{\dagger}$ for Eyring's equation¹⁵ is given by the following equation, when there is the interaction between the solutes (A and B are the reference and its derivatives) and the non-polar stationary liquid (where C is constant).

$$\Delta S_{\rm AC}^{\dagger} = -R \ln[(2\pi m_{\rm A} k T e)^{3/2}/h^3]$$
 (2)

$$\Delta S_{\rm BC}^{\dagger} = -R \ln[(2\pi m_{\rm B} k T e)^{3/2}/h^3] \tag{3}$$

Where R, k, T and h are the gas constant, Boltzmann's constant, absolute temperature and Plank's constant, respectively.

$$\Delta \Delta S_{ABC}^{\dagger} = \Delta S_{BC}^{\dagger} - \Delta S_{AC}^{\dagger} = -3/2R \ln[2\pi m_B k T e/2\pi m_A k T e]$$
 (4)

When T is constant, Eq. 5 is given by,

$$\Delta \Delta S_{\text{ABC}}^{\dagger} = -3/2R \ln(m_{\text{B}}/m_{\text{A}}) \tag{5}$$

where $m_{\rm A}$ and $m_{\rm B}$ take the relative molecular mass ($M_{\rm A}$ and $M_{\rm B}$) and $\Delta\Delta S_{\rm ABC}^{\dagger}$ becomes the linear relation $\ln(M_{\rm B}/M_{\rm A})$. The $\ln(M_{\rm B}/M_{\rm A})$ can now be replaced with the descriptor $\sigma_{\rm M}$ as follows,

$$\ln(M_{\rm B}/M_{\rm A}) = 2.303 \log(M_{\rm B}/M_{\rm A}) = \sigma_{\rm M} \tag{6}$$

$$\Delta \Delta S_{ABC}^{\dagger} \propto \sigma_{M} \tag{7}$$

The descriptor $\sigma_{\rm M}$ is evaluates the van der Waals interaction energy as phys-

324 Vol. 56, No. 3

ical adsorption.

The descriptor σ_{es} can be derived from induction and orientation energies: Induction energy is defined by the following equations:

$$E_{\text{ind,AC}} = -[(\alpha_{\text{A}}\mu_{\text{C}}^2 + \alpha_{\text{C}}\mu_{\text{A}}^2)]/r_{\text{AC}}^6$$
 (8)

$$E_{\text{ind BC}} = -[(\alpha_{\text{B}}\mu_{\text{C}}^2 + \alpha_{\text{C}}\mu_{\text{B}}^2)]/r_{\text{BC}}^6$$
(9)

 α and μ are polarizability²²⁾ and dipole moment,²³⁾ respectively. When r_{AC}^{6} and r_{BC}^{6} equal $\alpha_{\text{A}}\alpha_{\text{C}}$ and $\alpha_{\text{B}}\alpha_{\text{C}}$, and $\mu_{\text{C}}^{2}/\alpha_{\text{C}}$ is the constant, both $E_{\text{ind, AC}}$ and $E_{\text{ind, BC}}$ are correlated to $\mu_{\text{A}}^{2}/\alpha_{\text{A}}$ and $\mu_{\text{B}}^{2}/\alpha_{\text{B}}$, respectively.

The descriptor $\sigma_{\rm es}$ is defined by the following equation,

$$\sigma_{\rm es} = \log[(\mu_{\rm B}^2/\alpha_{\rm B})/(\mu_{\rm A}^2/\alpha_{\rm A})] \tag{10}$$

The $\mu_{\rm A}$ of benzene reference is 0.31 $D^{24,25)}$ for $\mu_{\rm Csp3-H}$.

 $\Delta E_{\rm ind,ABC}$ is related to $\sigma_{\rm es}$ and the orientation energy change $\Delta E_{\rm ori,ABC}$ is defined by,

$$\Delta E_{\text{ind, ABC}} \propto \sigma_{\text{es}}$$
 (11)

$$\Delta E_{\text{ori, ABC}} \propto \sigma_{\text{es}}$$
 (12)

The descriptor $\sigma_{\rm es}$ can be evaluated by both induction and orientation energies, and is identical to the electrostatic interaction energy.

Results and Disscussion

Relation between Interaction Energy of Substituted Methane–Benzene and Methane–Substituted Benzene Complexes and the Descriptor $\sigma_{\rm M}$ The electrostatic and charge-transfer terms have been reported to be very important based on the primary calculations of CH/ π complexes.^{5,6)} However, typical CH/ π complexes such as benzene–methane^{7—9)} have been shown primarily of dispersion interactions based on high-level *ab initio* calculations. The interaction energies were also consistent with the experimental binding energy $D_{\rm o}$ of benzene–X (X=methane, ¹⁰⁾ ethylene and acetylene, ²⁶⁾ and benzene^{27,28)} as CH/ π complexes and benzene–XH₂ (X=N²⁹⁾ and O^{30–32)}) as the T-shape form of hydrogen bonds. Both the calculated and experimental binding energies in the weak interaction showed a linear correlation, as shown in Fig. 1.

Therefore, the high-level *ab initio* calculation is suitable for the evaluation of the CH/ π interaction energy as the dispersion interaction is the major source of the attraction. Results of the calculation suggested that $\sigma_{\rm M}$ values were good linear relations to the total energy $E_{\rm total}$ of the typical complexes such as methane—benzene³³⁾ and activated complexes such as halomethane—benzene^{8,34)} as shown in Fig. 2. The interaction between the acidic CH group and π -electrons in the halomethane—benzene complex was categorized as a conventional π -hydrogen bond rather than as a van der Waals interaction.³⁵⁾ The large slope observed in Fig. 2 represents the halomethane—benzene series, and the difference between the two slopes accounts for the electrostatic interaction.

The regression analyses of E_{total} are given by,

$$-E_{\text{total}} = 5.16(0.51)\sigma_{\text{M}} - 2.51(0.47) \tag{13}$$

n=14, r=0.946, F=102.0, S.D.=0.17

$$-E_{\text{total}} = 12.20(0.94)\sigma_{\text{M}} - 7.81(0.86) \tag{14}$$

$$n=12$$
, $r=0.972$, $F=169.2$, S.D.=0.29

 $(C_6H_6-CH_4,\ C_6H_6-C_2H_4,\ -C_2H_2,\ -CH_3F,\ -CH_3Cl,\ -CH_2ClNH_2,\ -CH_2ClOH,\ -CH_2Cl_2,\ -CH_2FCl,\ -CH_2F_2,\ -CHCl_3,\ -CHF_3)$

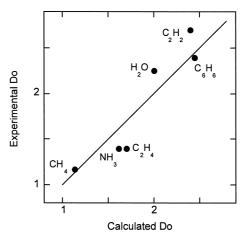


Fig. 1. Correlation between the Calculated and Experimental Binding Energies $D_o/\text{kcal mol}^{-1}$ with Benzene Complexes

Fig. 2. Plots of CH/ π Interaction Energy E_{total} versus the Descriptor σ_{M} \bigcirc , \bullet and \circledcirc estimated E_{total} by Tsuzuki et al. and Morita et al., and by Sinnokrot et al., 38 respectively.

$$-E_{\text{total}} = 6.82(0.53)\sigma_{\text{M}} - 0.82(0.06)E_{\text{es}} - 4.11(0.49)$$

$$n = 25, r = 0.976, F = 225.5, \text{ S.D.} = 0.23$$
(15)

These findings suggest that the typical and activated CH/π complexes consisted primarily of the dispersion energy E_{dis} (Eqs. 13, 14). The difference of two groups is E_{es} and it is negligible small for the typical CH/π complex. The two groups (Eqs.13, 14) could be defined by one equation as in Eq. 15, since E_{es} contributed to the activated CH/π complex. The typical CH/π complex differs from the hydrogen bond and the orientation dependence is very small. On the other hand, the activated CH/π complex is close to weak hydrogen bond as $\text{C}_6\text{H}_6\text{-H}_2\text{O}$ $etc.^{36}$ The descriptors σ_{M} will be compared with the correlation interaction energy E_{corr} in the following section.

The Relationship between $E_{\rm corr}$ and $\sigma_{\rm M}$ The relationship between $E_{\rm corr}$ and $\sigma_{\rm M}$ was linear up to relative large energy values in the activated CH/ π interaction. The relationship could be described by the following regression analyses, as shown in Fig. 3.

$$E_{\text{corr}} = -17.03(1.92)\sigma_{\text{M}} + 11.45(1.78) \tag{16}$$

$$n=9$$
 (C₆H₆-CH₃F, -CH₃Cl, -CH₂ClNH₂, CH₂ClOH, -CH₂Cl₂, -CH₂FCl, -CHCl₃, -C₂H₂, -CH₄), $r=0.958$, $F=78.9$, S.D.=0.54

The $\sigma_{\rm M}$ is proposed to be representative of the $E_{\rm dis}$, since the $E_{\rm corr}$ consists primarily of attractive dispersion energy.

The Relationship between E_{es} and σ_{es} Hartree–Fock

March 2008 325

(HF) calculation does not depend on the basis set. Therefore, the descriptor $\sigma_{\rm es}$ values were comparable with the electrostatic energies $E_{\rm es}$ using MP2/6-31G*(0.25) in pyridine-substituted benzenes complexes³⁷⁾ (Fig. 4).

This regression analyses is given by,

$$\Delta E_{\rm es} = -0.23(0.04)\sigma_{\rm es} -0.08(0.06)$$
 (17)
 $n=8$ (H, Me, OH, NH₂, CHO, COOH, CN, NO₂), $r=0.905$, $F=27.0$, S.D.=0.09

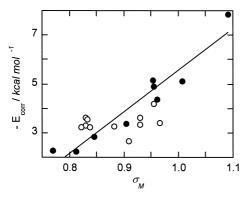


Fig. 3. Correlation between $E_{\rm corr}$ and the Descriptor $\sigma_{\rm M}$ in Benzene–Methanes and Methane–Benzenes Complexes

• and O are chloro- and substituted compounds, respectively.

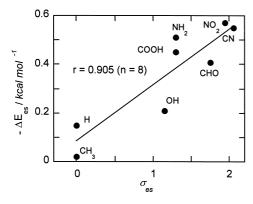


Fig. 4. Correlation between $-\Delta E_{\rm es}$ of Pyridine–Monosubstituted Benzenes Complexes and the Descriptor $\sigma_{\rm es}$

The two descriptors $\sigma_{\rm M}$ and $\sigma_{\rm es}$ were in good agreement with $E_{\rm corr}$ and $E_{\rm es}$ in Eqs. 16 and 17, respectively. Therefore, both descriptors could be used to estimate the relatively weak interaction. Next, regression analyses were carried out using $\sigma_{\rm M}$ and $\sigma_{\rm es}$ in the solute–stationary liquid interaction.

The Relation between $\sigma_{\rm M}$ and $\Delta\Delta S_{\rm s}^{\circ}$ The activated translational entropy change $\Delta\Delta S^{\dagger}$ derived using Eyring's model could be correlated with $\sigma_{\rm M}$. Furthermore, these thermodynamic parameters were obtained, because the relative retention values, $\log \gamma$, varied with temperature. If the interactions were based on physical adsorption, the resolution entropy changes $\Delta\Delta S_{\rm s}^{\circ}$ would be related to $\sigma_{\rm M}$. The $\Delta\Delta S_{\rm s}^{\circ}$ (np) values showed a linear relationship for mono-substituted benzenes—squalane under non-polar conditions. (Fig. 5).

These results suggested that the solute–stationary liquid interaction primarily consisted of van der Waals interactions, which was reflected in the physical adsorption. Table 1 shows a list of regression analyses for mono-, 1,3- and 1,4-substituted benzenes under non-polar conditions. The predicted values were fitted to the observed values (Fig. 6).

The $\Delta\Delta S_{\rm s}^{\,\circ}$ (sp) values estimated under semi-polar conditions as (dinonyl phthalate) were also analyzed using $\sigma_{\rm M}$. Furthermore, the values were well fit in addition to descriptor $\sigma_{\rm es}$. When the stationary phase was polar, the contribution from $\sigma_{\rm es}$ was significant. The solute–stationary liquid inter-

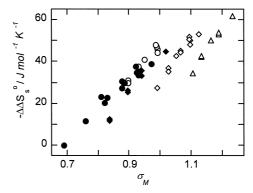


Fig. 5. Correlation between the Entropy Change $\Delta\Delta S_s^\circ$ and the Descriptor σ_M in Substituted Benzenes

ullet=R, H; ullet=F, R; \bigcirc =Cl, R; \diamondsuit =Br, R; \triangle =I, R compounds.

Table 1. The Results of the Regression Analyses for the Resolution Entropy Changes $\Delta\Delta S_s^{\circ}$ and Relative Retention Values, $\log \gamma$, in for the Solute–Squalane Interactions for Substituted Benzenes

	Coeff. of $\sigma_{\scriptscriptstyle M}$	Coeff. of σ_{es}	Const.	$n^{a)}$	$r^{b)}$	$F^{c)}$	$S.D.^{d)}$
$-\Delta\Delta S_{s}^{\circ}$	206.64 (11.57)		2.41 (1.51)	13	0.982	296.6	2.16
$-\Delta\Delta S_{s}^{\circ}$	190.64 (15.18)		-145.95(13.88)	8	0.982	157.8	2.41
$-\Delta\Delta S_{s}^{\circ}$	165.61 (15.05)		-117.18(14.35)	9	0.972	121.2	1.65
$-\Delta\Delta S_{s}^{\circ}$	195.25 (13.74)		-164.56(14.71)	12	0.976	201.9	1.76
$-\Delta\Delta S_{s}^{\circ}$	206.64 (11.57)		-192.28(13.47)	7	0.992	318.9	1.25
$-\Delta\Delta S_{s}^{\circ}$	143.56 (5.93)		-98.54(5.61)	49	0.962	585.8	3.49
$\log \gamma$	4.308 (0.334)		-2.936(0.288)	13	0.968	165.9	0.089
	3.934 (0.246)	0.087 (0.023)	-2.696(0.204)		0.987	190.68	0.060
$\log \gamma$	4.247 (0.226)		-2.935(0.213)	18	0.978	353.7	0.085
	3.842 (0.226)	0.087 (0.028)	-2.661(0.194)		0.987	274.2	0.068
$\log \gamma$	4.626 (0.254)	· · · · ·	-3.199(0.243)	13	0.984	332.9	0.093
	4.196 (0.217)	0.108 (0.031)	-2.953(0.185)		0.993	342.4	0.066
$\log \gamma$	4.942 (0.331)		-3.462(0.317)	24	0.954	222.5	0.143
	3.959 (0.279)	0.179 (0.032)	-2.775(0.241)		0.982	277.9	0.091
$\log \gamma$	4.653 (0.188)	, , , ,	-3.236(0.178)	64	0.953	614.8	0.123
	4.099 (0.165)	0.126 (0.019)	-2.886(0.145)		0.973	549.9	0.094

326 Vol. 56, No. 3

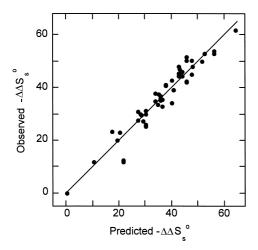


Fig. 6. Correlation between the Predicted and Observed Entropy Changes $\Delta\Delta S_s^\circ/J \, \text{mol}^{-1} \, \text{K}^{-1}$ in Substituted Benzene–Squalane Complexes

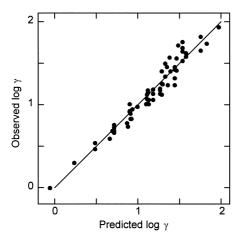


Fig. 7. Correlation between the Predicted and Observed $\log \gamma$ in Substituted Benzene–Squalane Complexes

action however consisted with primarily van der Waals interactions. Further the standard coefficients for $\sigma_{\rm M}$ were greater than 98% and 80% under non- and semi-polar conditions, respectively, in GLC.

$$-\Delta \Delta S_{s}^{\circ}(np) = 131.79(7.44)\sigma_{M} + 1.62(0.69)\sigma_{es} + 2.01(1.28)$$
 (18)

n=13 (H, Me, Et, n-Pr, n-Bu, OMe, OEt, COMe, COEt, CO $_2$ Me, CO $_2$ Et, CN, NO $_2$), r=0.988, F=211.0, S.D.=1.82

$$-\Delta\Delta S_{s}^{\circ}(sp) = 147.67(9.39)\sigma_{M} + 6.71(0.88)\sigma_{es} + 3.35(1.61)$$

$$n=13, r=0.990, F=241.5, S.D.=2.30$$
(19)

Regression Analyses of the Relative Retention Value $\log \gamma$ The relative retention values $\log \gamma$ were analyzed using two descriptors $\sigma_{\rm M}$ and $\sigma_{\rm es}$ for mono- and di-substituted benzenes–squalane interactions under non-polar conditions (Table 1).

The observed values for $\log \gamma$ were in good agreement with predicted values (Fig. 7). Therefore, the descriptor $\sigma_{\rm M}$ is expected to be useful for determining the relative contribution of very weak interactions such as the CH/ π interaction.

Conclusion

The solute-stationary liquid interaction in GLC was determined using Eyring's model to be the physical adsorption.

The descriptor $\sigma_{\rm M}$ derived using Eyring's model was used to estimate the van der Waals interactions and was in good agreement with the CH/ π interaction energy introduced into high-level *ab initio* calculations. This suggested that the solute–stationary liquid interaction for halo-benzenes consisted primarily of van der Waals interactions under the gas conditions. In other words, the induced macroscopic $\sigma_{\rm M}$ was correlated with the microscopic high-level calculated energy as the CH/ π interaction. Regression analyses of the log γ values were carried out using $\sigma_{\rm M}$ and the predicted values were determined to be in good agreement with the observed values.

References and Notes

- Karle I. L., Butcher R. J., Wolak M. A., Silva F., Dementrio A., Uchida M., Breads J.-L., Kafafi Z. H., J. Phys. Chem., C, 111, 9543—9547 (2007).
- Sada K., Miyata M., Matsumoto A., Cryst. Growth Des., 3, 247—256 (2003).
- Matsumoto A., Tanaka T., Tsubouchi T., Tashiro K., Saragai S., Nakamoto S., J. Am. Chem. Soc., 124, 889—902 (2002).
- 4) Umezawa Y., Nishio M., Bioorg. Med. Chem., 6, 493—504 (1998).
- 5) Nishio M., Hirota M., Umezawa Y., "The CH/π interaction," Wiley-VCH, New York, 1998.
- 6) Sakaki S., Kato K., Miyazaki T., Musashi Y., Ohkubo K., Ihara H., Hirayama C., *J. Chem. Soc. Faraday Trans.*, **89**, 659—664 (1993).
- Tarakeshwar P, Choi H. S., Kim K. S., J. Am. Chem. Soc., 123, 3323—3331 (2001).
- Tsuzuki S., Honda K., Uchimaru T., Mikami M., Tanabe K., J. Phys. Chem., A, 106, 4423—4428 (2002).
- Sundararajan K., Sankaran K., Viswandthan K. S., Kulkarni A. D., Gadre S. R., J. Phys. Chem., A, 106, 1504—1510 (2002).
- Shibasaki K., Fujii A., Mikami N., Tsuzuki S., J. Phys. Chem., A, 110, 4397—4404 (2006).
- Takahashi O., Kohno Y., Iwasaki S., Saito K., Iwaoka M., Tomoda S., Umezawa Y., Tsuboyama S., Nishio M., Bull. Chem. Soc. Jpn., 74, 2421—2430 (2001).
- 12) Meijer E. J., Sprik M., J. Chem. Phys., 105, 8684—8689 (1996).
- 13) Tsuzuki S., Luthi H. P., J. Chem. Phys., 114, 3949—3957 (2001).
- 14) Sato T., Tsuneda T., Hirao K., Mol. Phys., 103, 1164—1151 (2005).
- Glasstone S., Laidler K. J., Eyring H., "The Theory of Rate Processes—The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena—," Chapter VII, McGraw-Hill, Inc., New York, 1941.
- 16) Kawaki H., Chem. Pharm. Bull., 52, 221-225 (2004).
- Littlewood A. B., Phillips C. S. G., Price D. T., J. Chem. Soc., 1955, 1480—1489 (1955).
- 18) Kawaki H., Chem. Pharm. Bull., 41, 797—803 (1993).
- 19) Kawaki H., Chem. Pharm. Bull., 49, 5-9 (2001).
- Kawaki H., Sasaki Y., Takagi T., Fujii S., Masuda F., Chem. Pharm. Bull., 37, 3268—3271 (1989).
- 21) Aoki S., (htto://aoki2.si.gumma-u.ac.jp/BlackBox).
- 22) West R. C., "Handbook of Chemistry and Physics," 70th, ed. by CRC Press. Inc., Boca Raton, Florida, 1989—1990, pp. C4—C551.
- McClellan A. L., "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963.
- 24) Rollefson R., Havens R., Phys. Rev., 57, 710-717 (1940).
- 25) Petro A., J. Am. Chem. Soc., 80, 4230-4232 (1958).
- Shibasaki K., Fujii A., Mikami N., Tsuzuki S., J. Phys. Chem., A, 111, 753—758 (2007).
- Grover J. R., Walters E. A., Hui E. T., J. Phys. Chem., 91, 3233—3237 (1987).
- Lee E. C., Kim D., Jurecka D., Tarakeshwar P., Hobza P., Kim K. S., J. Phys. Chem., A, 111, 3446—3457 (2007).
- Rodham D. A., Suzuki S., Suenram R. D., Lovas F. J., Dasgupta S., Goddard III, W. A., Blake G. A., *Nature* (London), 362, 735—737 (1993).
- 30) Gotch A. J., Zwier T. S., J. Chem. Phys., 96, 3388—3401 (1992).
- Cheng B.-M., Grover J. R., Walters E. A., Chem. Phys. Lett., 232, 364—369 (1995).
- 32) Courty A., Mons M., Diminicoli I., Piuzzi F., Dimmicoli I., J. Phys.

March 2008

- Chem., A, 101, 1445—1450 (1997).
- Morita S., Fujii A., Mikami N., Tsuzuki S., J. Phys. Chem., A, 110, 10583—10590 (2006).
- Tsuzuki S., Honda K., Uchimaru T., Mikami N., Fujii A., J. Phys. Chem., A, 110, 10163—10168 (2006).
- Fujii A., Morita S., Miyazaki M., Ebata T., Mikami N., *J. Phys. Chem.*, A, 108, 2652—2658 (2004).
- Tsuzuki S., Honda K., Uchimaru T., Mikami M., Tanabe K., J. Am. Chem. Soc., 122, 11450—11458 (2000).

327

- Mignon P., Loverix S., DeProft F., Geerling P., J. Phys. Chem., A, 108, 6038—6044 (2004).
- Sinnokrot M. O., Sherrill C. D., J. Am. Chem. Soc., 126, 7690—7697 (2004).