A New Triterpenoid Saponin from Anemone tomentosa

Xun LIAO^{1,2}, Shu Lin PENG², Bo Gang LI², Yao Zu CHEN¹, Li Sheng DING^{2, *}

1. Department of Chemistry, Zhejiang University, Hangzhou 310027 2. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

Abstract: A new triterpenoid saponin, tomentoside (5), together with prosapogenin CP 4 (1), huzhangoside B (2), C (3) and D (4) was isolated from the ethanolic extract of *Anemone tomentosa*. Its structure was established by spectroscopic and chemical evidence.

Keywords: Anemone tomentosa, triterpenoid saponin, tomentoside.

The roots of *Anemone tomentosa* (Maxim.) Péi are used as a folk medicine for the treatment of dysenteria in China¹. Recently, two new coumarins and nine known compounds were isolated from the ethyl acetate extract which exhibited strong antifeedant activity against *Leucania Separata* Walker². During the further investigation of the title plant, a new minor saponin, tomentoside, together with four known ones was isolated.

Tomentoside (5), amorphous powder, $[\alpha]_D^{25}$ -41.5(MeOH; c 0.26). Molecular formula was determined as $C_{70}H_{114}O_{34}$ by HRFABMS, m/z: 1497.7166 ([M-H]]), calcd. 1497.7113. On acid hydrolysis, 5 gave oleanolic acid as aglycone and four kinds of monosaccharides, which were identified by TLC and PC as glucose, rhamnose, xylose and ribose respectively. Alkaline hydrolysis of 5 gave prosapogenin 5a, whose ¹³C NMR spectum disclosed the presence of 4 anomeric carbons (δ 106.2, 104.3, 103.4 and 101.5).

Comparing the ¹³C NMR signals with those of huzhangoside A (**4a**)³, **5a** was found to contain one more glucose. The signals ascribable to aglycone and the inner two sugars (xylose and rhamnose) of the sugar chain were the same with those of **4a**, while C-4 of ribose was displaced downfield by 7.7 ppm, C-3 and C-5 upfield by 0.9 and 2.9 ppm

respectively. According to the rule of glycosylation shift, the additional glucose must be linked to C-4 of ribose. The 13 C NMR signals of compound 5 minus that of 5a revealed that the ester-type sugar chain at C-28 hydrolysised by alkaline was -glc (6 \rightarrow 1)-glc (4 \rightarrow 1)-rha 3 .

Except for [M] at m/z 1498, FAB mass spectrum showed a series of fragment ions at m/z: 1028 (M-2glc-rha), 866 (1028-glc), 734 (866-rib), 587 (734-rha) and 454 (587-xyl), indicating the successive elimination of 2glc+rha, glc, rib, rha and xyl. This evidence supported the deduction of the sugar sequence by NMR data above.

Therefore, the structure of tomentoside can be established as 3-O- β -D-glucopyranosyl (1 \rightarrow 4)- β -D-ribopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-xylopyranosyl oleanolic acid 28-O- α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl estar.

By comparison with the published data³, saponin 1, 2, 3 and 4 were identified to be prosapogenin CP4, huzhangoside B, huzhangoside C and huzhangoside D respectively.

С	5	5a	С	5	5a		5	5a		5
Aglycone moiety						Sugar moiety				
1	39.0	39.3	16	23.7	24.0	Xyl	106.0	106.2	Glc	95.5
2	26.8	27.0	17	46.9	46.9	-	79.6	79.4		73.7°
3	88.5	89.1	18	41.5	42.2		78.1 ^a	77.7		78.5 ^a
4	39.8	40.0	19	46.2	46.7		71.4^{b}	71.3		70.6
5	56.1	56.5	20	30.7	31.2		66.9	66.8		77.0
6	18.4	18.8	21	33.9	34.4	Rha	101.3	101.5		69.0
7	32.4	33.3	22	33.0	33.4		71.7^{b}	71.8	Glc	104.7
8	39.5	39.8	23	28.1	28.3		81.9	81.4		75.2
9	48.0	48.3	24	17.1	17.2		72.6^{c}	72.8		76.3
10	37.0	37.3	25	15.6	15.7		69.6	69.9		78.5 ^a
11	23.3	23.8	26	17.4	17.5		18.5	18.5		78.1 ^b
12	122.8	122.8	27	26.0	26.3	Rib	104.5	104.3		61.1 ^d
13	144.0	144.9	28	176.4	180.7		72.4^{c}	72.0	Rha	102.6
14	42.0	42.3	29	33.1	33.4		69.6	68.9		72.6
15	28.5	28.5	30	23.6	23.8		78.5^{a}	76.5		72.4
							62.4	62.3		73.8°
						Glc	103.4	103.4		70.2
							74.6	74.7		18.4
							78.5^{a}	78.4		
							71.3 ^b	71.5		
							77.8	77.9		
							61.7^{d}	61.5		

Table-1 Chemical shifts of compounds 5 and 5a (in pyridine- d_6)

Acknowledgments

This work was supported by Chengdu Di'ao Science Fund (CDSF).

References

- 1. Academia Sinica, "Chinese Flora", vol. 28, Science Press, Beijing 1980, p. 29.
- 2. J.R. Wang, S.L.Peng, J.T.Feng and L.S.Ding, Acta Botanica Sinica, 1999, 41, 107.
- 3. K.Mizutani, K.Ohtani, J.X.Wei, R.Kasai, O.Tanaka, Planta Med, 1984, 50, 327.

^{a~e} The values may be interchangeable in each column.

Received 14 July 1999