The Synthesis of Third-order Optical Nonlinear Organic Polyheterocyclic Materials

Jian Rong GAO¹*, Bin XIANG¹, Wei Guang SHAN¹, Ming HUANG¹, Lu Bai CHENG²

¹College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014 ²State Key Lab. of Fine Chemicals, Dalian University of Technology, Dalian 116012

Abstract: Synthesis of the third-order nonlinear materials: bis (1,4-dihydroxynaphthalene) tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-1,4-naphthaquinone. The materials exhibit larger third-order nonlinear optical susceptibilities $\chi^{(3)}$.

Keywords: Synthesis, nonlinear optics, bis (1,4-dihydroxynaphthalene) tetrathiafulvalene, bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene .

The drive toward miniaturization of electronic devices has renewed interest in the feasibility and applications of molecular electronics. In the rapidly growing field the third-order nonlinear optical (NLO) organic materials are at the forefront of the research¹⁻³. Polycyclic and polyheterocyclic conjugated molecules with electron-donating and electron-accepting substituents have a large nonlinear electronic polarizibility caused by the large dipole moment charge in the process from the ground state to the excited state by optical radiation^{4,5}. We have studied the third-order nonlinear optical properties of bis(1,4-dihydroxynaphthalene) tetrathiafulvalene, bis (1,4-dialkoxylnaphthalene)tetrathia-fulvalene and some other kind of polyheterocyclic material⁶⁻⁸. Bis (1,4-naphthaquinone) tetrathiafulvalene 1, bis (1,4-dihydroxynaphthalene)tetrathiafulvalene 2 and bis (1,4 -dial-koxynaphthalene) tetrathiafulvalene 3a -d are the new materials with symmetrically poly-heterocyclic structure and different substituents. They were synthesized in four steps (shown in Scheme 1).

Tetrathiafulvalene (TTF) and their CT complexes have been synthesized as synthetic materials and organic superconductors⁹. Bis (1,4-naphthaquinone)tetrathia-fulvalene 1 was synthesized by the condensation of carbon disulfide, soduim and 2, 3-dichloro-1, 4-naphthaquinone in DMF. After reduction it was reacted with different alkylating agents to yield bis (1,4-dihydroxynaphthalene)tetrathiafulvalene 2 and bis (1,4-dialkoxynaphtha-thalene)tetrathiafulvalene 3a-d.

_

^{*}E-mail: gjrgs@mail.hz.zj.cn

Scheme 1

Na +
$$CS_2$$
 \longrightarrow NaS $C = C$ SNa OC SNa SNa

Experimental

The melting points were measured on the WRS-T digital melting apparatus. The ¹H-NMR were obtained on JEOL FX-90Q spectrometers using DMSO as solvent. IR, MS were recorded on Hitachi 260-511 and Finnigan MAT 200GS-MS spectrometers respectively. Microanalysis was carried out on PE-2400 instrument.

Procedure for bis (1,4-naphthaquinone) tetrathiafulvalene 1

Sodium 4.2 g (0.18 mol) was suspended in DMF 40 mL and carbon disulfide 23g (0.30 mol) was added at $0\sim5^{\circ}$ C. The mixture was stirred for $2\sim3$ hr and 2,3-dichloro-1,4 - naphthaquinone 20 g (0.088 mol) was added. The mixture was stirred for $15\sim20$ hr. The resulting precipitate was filtered, washed with mathanol and DMF to give a pale green powder, yield 85%, mp $314\sim315^{\circ}$ C. Anal. calcd. for $C_{22}H_8O_4S_4$: C, 56.90, H, 1.73. Found: C, 57.12, H, 1.51.

Procedure for bis (1,4-dihydroxynaphthalene) tetrathiafulvalene 2

Bis (1,4-naphthaquinone)tetrathiafulvalene 10 g (0.021 mol) was suspended in methanol 100 mL and tin dichloride 70 g, 32% hydrochloride acid 10 mL were added. The mixture was refluxed for 15~20 hr. The reaction mixture was poured into water (200 mL) and the precipitate was collected by filtration , washed with methanol to give the product, yield 70%, mp 215~216°C, Ms: (m/z) 468 (M+, 100%). The compound was easily oxidized by air. Anal. calcd. for $C_{22}H_{12}O_4S_4$: C, 56.41, H, 2.56. Found: C, 56.53, H, 2.42.

 $General\ procedure\ for\ bis\ (1,4\mbox{-}dialkoxynaphthalene)\ tetrathia fulvalene\ {\bf 3}$

Bis(1,4-dihydroxynaphthalene)tetrathiafulvalene 0.016 mol was suspended in propanone 50 mL and potassium carbonate 10 g and alkyl halide 0.069 mol were added. The

Synthesis of Third-order Optical Nonlinear Organic Polyheterocyclic Materials

mixture was refluxed for $10\sim12$ hr. After cooling the reaction mixture was poured into water (200 mL) and the precipitate was collected by filtration, recrystallized from DMF.

Bis (1,4-dimethoxynaphthalene) tetrathiafulvalene 3a

Pale yellow powder, yield 67%, mp 207 \sim 208°C, Ms: (m/z) 524 (M+, 100%). IR (KBr cm⁻¹): υ =2934, 2841, 1358, 1081. ¹H-NMR (in DMSO) δ ppm: 7.98-8.10 (m, 4H), 7.44-7.56 (m, 4H), 4.06-4.13 (s, 12H). Anal. calcd. for $C_{26}H_{20}O_4S_4$: C, 59.54, H, 3.82. Found: C, 59.72, H, 3.67

Bis (1,4-diethoxynaphthalene) tetrathiafulvalene 3b

Pale yellow powder, yield 64%, mp 193 \sim 195 $^{\circ}$ C, Ms: (m/z) 580 (M+, 100%). IR (KBr cm⁻¹): υ =2976, 2929, 2883, 1346, 1070. ¹H-NMR (in DMSO) δ ppm: 7.80-8.01 (m, 4H), 7.39-7.51 (m, 4H), 4.07-4.36 (q, 8H), 1.46-1.71 (t, 12H, J=10.2 Hz). Anal. calcd. for $C_{30}H_{28}O_4S_4$: C, 62.07, H, 4.83. Found: C, 62.30, H, 4.81

Bis (1,4-dipropoxynaphthalene) tetrathiafulvalene 3c

Pale yellow powder, yield 63%, mp 187 \sim 189°C, Ms: (m/z) 636 (M+, 100%). IR (KBr cm⁻¹): υ =2962, 2933 ,1874, 1337, 1079. ¹H-NMR (in DMSO) δ ppm: 7.90-8.03 (m, 4H), 7.32-7.52 (m, 4H), 4.01-4.20 (q, 8H), 1.86-2.10 (q, 8H), 1.08-1.32 (t, 12H, J=9.0, Hz). Anal. calcd. for $C_{34}H_{36}O_{4}S_{4}$: C, 64.15, H, 5.66. Found: C, 64.39, H, 5.44

Bis (1,4-dibutoxynaphthalene) tetrathiafulvalene 3d

Pale yellow powder, yield 61%, mp 166 \sim 168°C, Ms: (m/z) 692 (M+, 100%). IR (KBr cm⁻¹): υ = 2954, 2931, 2870, 1377, 1020. ¹H-NMR (in DMSO) δ ppm: 7.88-8.04 (m, 4H), 7.37-7.4 7 (m, 4H), 3.97-4.07 (q, 8H), 1.43-1.97 (m, 16H), 0.95-1.12 (t, 12H, J= 6.4 Hz). Anal calcd. for $C_{38}H_{44}O_4S_4$: C, 65.90, H, 6.65. Found: C, 66.08, H, 6.37.

The third-order nonlinear optical properties of materials

The phase-matched three-dimensional degenerate four-wave mixing (3D DFWM) was used as the nonlinear technique, which provided information about the size of susceptibilities $\chi^{(3)}$. It was performed with a Q-switched frequency-double YAG laser with a wavelength of 1064 nm 8 . In our experiment the medium with known $\chi^{(3)}$ is DMF solution containing 2.5×10^{-4} mol L $^{-1}$ of material. The $\chi^{(3)}$ value of the samples at 1064 nm deduced and calculated from the experimental results are listed in **Table 1** and that is considerable large for such small organic molecules in solution.

Table 1 The $\chi^{(3)}$ of materials

Material	R	UV/λ max	n	I_4/I_{4S}	$\chi^{(3)} (/10^{-13} \text{ esu})$
2	Н	< 400	1.4305	2.25	5.94
3a	CH_3	350	1.4372	1.75	5.29
3b	C_2H_5	375	1.4369	1.60	5.05
3c	$n - C_3H_7$	374	1.4389	1.20	4.37
3d	n - C ₄ H ₉	372	1.4363	1.25	4.48

In summary the simple method for the preparation of bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene was provided in good yields. Bis (1,4-dialkoxylnaphthalene) tetrathiafuvalene consisted of two parts of structure, namely polycycle (dialkoxylnaphthalene) and heterocycle (TTF). The special structure makes the molecules have stronger intramolecular charge-transfer, intermolecular π - π interaction and larger transition moments μ_{xnm} at lower excitation energy E_{gm} . As a result the materials exhibit larger third-order nonlinear optical susceptibilities $\chi^{\!\scriptscriptstyle{(3)}}$.

Acknowledgments

This research was supported by the National Natural Science Foundation (29476227) and the Natural Science Foundation of Zhejiang Province (1999-299003).

References

- 1. S. P. Kama, J. Phys. Chem. A., 2000, 20, 4671.
- D. A. Martin, J. R. Sambles, G. J. Ashewll, Phys. Rev. Lett., 1993,70, 218.
- M. A. Reed, C. Zhou, C. J. Mull, Science, 1997, 278, 252.
- T. Kuriham, N. Oba, Y. Mori, J. Appl. Phys., 1991,70, 17.
- 5. S. R.Flom, G. C. Walker, L. E. Lynch, Chem. Phys. Lett., 1989,154, 193.
- G Jianrong, C. Xing, C. Lubai, Acta Optica Sinica (in Chinese), 1998, 5, 533.
- G Jianrong, C. Xing, C. Lubai, *J. Functional Materials* (in Chinese), **1998**, *3*, 314. G Jianrong, C. Lubai, *High Technology Letters* (in Chinese), **1999**, 2, 45.
- M. Matsuoka, H. Oka, T.Kitao, Chemistry Letters, 1990, 2061.

Received 4 September, 2001