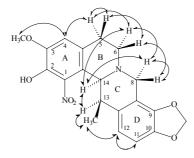
A New Nitro Alkaloid from Corydalis saxicola Bunting

Hui Liang LI, Wei Dong ZHANG*, Wei ZHANG, Chuan ZHANG, Run Hui LIU

Department of Natural Products Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433


Abstract: A new nitro tetrahydronprotoberberins alkaloid, 1-nitro-apocavidine was isolated from *Corydalis saxicola* Bunting. The structure was established by spectroscopic methods.

Keywords: Corydalis saxicola, nitro alkaloid.

The herb of *Corydalis saxicola* Bunting has been used as a kind of Chinese traditional medicine. Our investigation on chloroform extract of this plant resulted in the isolation of a new tetrahydronprotoberberins alkaloid, to our knowledge, which is the first nitro alkaloid isolated from natural products.

Compound **1** was isolated as yellow amorphous powder; mp 229~231°C, UV λ max (MeOH): 280 nm; The ESI-MS afforded the positive ion at m/z 385 [M+H]⁺, implying a molecular formula of $C_{20}H_{20}O_6N_2$, which was confirmed by the HRESI-MS ([M+H]⁺ found 385.1394, calcd. 385.1400). The fragments with m/z 223 (2.1%) and 162 (100%) in the EI-MS suggested the substitution pattern of 9, 10-methylenedioxy-13-methyl at ring C and D. The IR spectrum of **1** indicated the presence of nitryl (1534 cm⁻¹) and a phenolic hydroxy groups (3509 cm⁻¹). The ¹H-NMR spectrum shows one methoxy at δ 3.92 (s), one methyl at δ 0.89 (d) and one methylenedioxy at δ 5.91 (d) and 5.94 (d), four mutually coupling aliphatic protons at δ 2.52-3.21 (m, 4H, H-5, H-6), and other two mutually coupling aliphatic protons at δ 2.83 (qd, 1H, J= 7.3 Hz, H-13), δ 4.29 (d, 1H,

Figure 1 NOESY interactions observed for 1

^{*} E-mail:wdzhangy@hotmail.com

.

	δ_{C}	$\mathrm{HMQC}\left(\delta_{\mathrm{H}},J\mathrm{Hz}\right)$	НМВС
1	136.59		
2	146.39		
3	140.16		
4	114.00	H-4 (6.74, s)	C-2, C-3, C-5, C-4a, C-14a
4a	129.67		
5	30.67	H-5 α (3.12, m)	C-6, C-4a
		H-5 β (2.62, m)	C-4, C-4a, C-14, C-14a
6	49.74	H- 6α (2.67, m)	C-4, C-4a
		H-6 β (3.09, m)	C-4a, C-5, C-8, C-14
8	53.22	$H-8\alpha$ (3.63, d, $J = 15Hz$)	C-8a, C-9, C-12a, C-14
		H-8 β (4.03, d, $J = 15$ Hz)	C-8a, C-9, C-12a, C-14, C-6
8a	116.40		
9	142.88		
10	144.76		
11	106.85	H-11 (6.67, d, $J = 8$ Hz)	C-9, C-10, C-12a
12	121.52	H-12 (6.57, d, $J=8$ Hz)	C-8a, C-10, C-13
12a	135.29		
13	37.28	H-13 (2.83, qd, $J = 7.3$ Hz)	C-8a, C-12, C-12a, C-13-Me
13-Me	18.74	H-Me-13 (0.89, d, $J = 7$ Hz)	C12a, C-13, C-14
14	60.41	H-14 (4.29, d, $J=3$ Hz)	C-4a, C-6, C-14a, C-13-Me
14a	122.27		
-OCH ₃	56.50	3.92, s	C-2
-O-CH ₂ -O-	101.03	5.94, d, $J = 2$ Hz	C-9, C-10
		5.91, d, $J = 2$ Hz	C-9, C-10

Table 1 ¹H NMR (500MHz) and ¹³C NMR (125MHz) spectral data of **1** (CDCl₃)

J=3 Hz, H-14). In addition, the chemical shifts of aliphatic protons of ring B and C, including the signals at δ 3.63 and 4.03 (d, each 1H, J=15 Hz, H-8α and H-8β) were similar to those of apocavidine¹. The aromatic region of the spectrum showed three protons: one at δ 6.74 (s, 1H), and the other two *ortho*-coupled protons at δ 6.57 and 6.67 (d, each 1H, J=8 Hz), due to H-12 and H-11. The 13 C-NMR spectrum gave twenty carbon signals. The signal of $\delta_{\rm C}$ 136.59 indicated that compound 1 has the nitryl substituted pattern at ring A compared with those of apocavidine¹. A NOESY spectrum was run to establish the nitro-substituted location. From the spectrum, the proton signal at δ 6.74 (s, 1H) was related to H-5 and H-OMe, which suggested a proton at C-4. So the 1-nitro substituted pattern was determined (**Figure 1**). 1 H NMR and 13 C NMR are listed in **Table 1**.

Acknowledgments

This project was supported by the 863 Foundation of China (NO. 2003AA2Z3507) and Scientific Foundation of Shanghai China (NO. 02DZ19147, 01DJ19010).

References

1. G. Rücker, E. Breitmaier, G. L, et al., Phytochemistry, 1994, 36, 519.

Received 3 March, 2004